(完整word版)初一数学上册试卷及答案
- 格式:doc
- 大小:264.09 KB
- 文档页数:6
初一数学上册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-3)答案:A4. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 可能是正数或0C. 一定是负数D. 一定是负数或0答案:B5. 下列哪个选项表示的是偶数?A. 2nB. 2n + 1C. 2n - 1D. 2n + 2答案:A6. 一个数的平方是它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A7. 计算下列哪个表达式的结果是负数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-3)答案:C8. 一个数的绝对值是它相反数的两倍,那么这个数是:A. 0B. 正数C. 负数D. 无法确定答案:C9. 下列哪个选项表示的是奇数?A. 2nB. 2n + 1C. 2n - 1D. 2n + 2答案:B10. 一个数的立方是它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A二、填空题(每题3分,共30分)1. 一个数的相反数是-7,则这个数是______。
答案:72. 绝对值等于5的数是______。
答案:±53. 如果一个数的平方等于16,则这个数是______。
答案:±44. 一个数的立方等于-27,则这个数是______。
答案:-35. 偶数可以表示为______。
答案:2n6. 奇数可以表示为______。
答案:2n+1 或 2n-17. 如果一个数的相反数是它本身,则这个数是______。
七年级上册数学全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。
七年级数学上册全册单元测试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.3.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC 的度数:(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.【答案】(1)解:如图1,∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,∴∠AOC= ∠AOB,又∵∠AOB=60°,∴∠AOC=20°(2)解:① 如图2,∵∠AOB=90°,OC,OD是∠AOB的两条三分线,∴∠COD = ∠AOB =30°;②分两种情况:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,∠AOC'=10°,∴∠DOC'=30°-10°=20°,∴∠DOD'=20°+30°=50°;当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,∠AOC'=20°,∴∠DOC'=30°-20°=10°,∴∠DOD'=10°+30°=40°;综上所述,n=40°或50°【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA 是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.4.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB重合时,求旋转的时间是多少?(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.【答案】(1)解:∠DPC=180°-∠APC-∠BPD=180°-60°-30°=90°故答案为:90°(2)解:设旋转的时间是t秒时PC与PB重合,根据题意列方程得5t-t=30+90解得t=30又∵180÷5=36秒∴30<36故旋转的时间是30秒时PC与PB重合(3)解:设t秒时其中一条射线平分另两条射线的夹角,分三种情况:①当PD平分∠BPC时,5t-t=90-30,解得t=15②当PC平分∠BPC时,,解得t=26.25③当PB平分∠DPC时,5t-t=90-2×30,解得t=37.5故15秒或26.25秒或37.5秒时其中一条射线平分另两条射线的夹角【解析】【分析】(1)易得∠DPC=180°-∠APC-∠BPD即可求(2)只需设旋转的时间是t 秒时PC与PB重合,列方程解可得(3)一条射线平分另两条射线的夹角,分三种情况:当PD平分∠BPC时;当PC平分∠BPC时;当PB平分∠DPC时,计算每种情况对应的时间即可.5.已知:,点,分别在,上,点为,之间的一点,连接, .(1)如图1,求证:;(2)如图2,,,,分别为,,,的角平分线,求证与互补;【答案】(1)证明:过C点作CG∥MN,∵,∴,∴∠MAC=∠ACG,∠PBC=∠GCB,∵∠ACB=∠ACG+∠GCB,∴∠ACB=∠MAC+∠PBC(2)证明:由(1)同理可知,∵,,,分别为,,,的角平分线,∴∠DAE=∠DBE= =90°,∴∠D+∠E=360°-(∠DAE+∠DBE)=180°,∴与互补.【解析】【分析】(1)过C点作CG∥MN,再根据两直线平行,内错角相等即可证明;(2)由(1)可知,,再根据角平分线的性质与平角的性质知∠DAE=∠DBE=90°,即可证得 + =180°.6.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。
七年级数学上册全册单元测试卷检测题(WORD版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD= ∠AOB,则∠COD是∠AOB的内半角.(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=________.(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,当旋转的角度a为何值时,∠COB是∠AOD的内半角.(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD 能否构成内半角,若能,请求出旋转的时间;若不能,请说明理由.【答案】(1)10°(2)解:∵∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,∴∠AOB=∠COD=60°∴∠AOC=∠BOD=a∴a+∠COB=60°∵∠COB是∠AOD的内半角∴∠COB=∠AOD∴2∠COB=∠COB+2a∴∠COB=2a∴a+2a=60°解之:a=20°即当旋转的角度a为20°时,∠COB是∠AOD的内半角。
(3)解:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角,理由:设按顺时针方向旋转一个角度α,旋转的时间为t如图1∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=30°-α∴(30°+α)=30°-α解之:α=10°∴t=s;如图2∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=α-30°∴(30°+α)=α-30°解之:α=90°∴t==30s;如图3∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∠AOD=∠BOC=360°-α-30°∴(360°+30°-α)=360°-α-30°解之:α=330°∴t==110s;如图4∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∴(360°+30°-α)=30°+30°-(360°+30°-α)解之:α=350°∴t=s;综上所述,当旋转的时间为s或30s或110s或s时,射线OA,OB,OC,OD能构成内半角。
人教版七年级上册数学全册单元试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.【答案】(1)解:①AP=AC-PC,CQ=CB-QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC-2PC=2AP,∴②设运动秒,分两种情况A: 在右侧,,分别是,的中点,,∴B: 在左侧,,分别是,的中点,,∴(2)解:∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD-BD|=BD-AD=AB= CD,∴CD=6x,∴;②当D在AC之间时,|AD-BD|=BD-AD= CD,∴2x+CD-x+CD= CD,x=- CD(不成立),③当D在BC之间时,|AD-BD|=AD-BD= CD,∴x+CD-2x+CD= CD,CD= x,∴;|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,∴CD=;④当D在B的右侧时,|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,CD=6x,∴ .综上所述,的值为或或或【解析】【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D在AC之间时,③当D在BC之间时,④当D在B的右侧时求解即可.2.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.3.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=________厘米;(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时间后线段PQ的长为5厘米.【答案】(1)6(2)解:如图2,当t=2时,BQ=2×2=4,则CQ=6-4=2.因为CP=2×1=2,所以PQ=CP+CQ=2+2=4(厘米)(3)解:设运动时间为t秒.①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,得:t+8-2t=5,解得t=3,②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,得:2t-8-t=5,解得t=13.③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,得:t+2t=3,解得t=1.④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,得:t+2t=13,解得t= .综合可得t=1,3,13, .所以经过1,3,13,秒后PQ的长为5厘米.【解析】【解答】(1)如图1,因为AB=12厘米,点C在线段AB上,所以,当点P、Q分别在线段AC、BC的中点时,线段PQ= AB=6.故答案为:6;【分析】(1)由线段中点的定义可得CP= AC,CQ= CB,所以PQ= AC+ CB= AB,把AB的值代入计算即可求解;(2)由路程=速度时间可求出BQ和CQ、CP的值,则PQ=CP+CQ可求解;(3)由题意可分4种情况求解:① 当点P、Q沿射线BA方向运动,若点Q在点P的后面,由图可列关于时间的方程求解;②当点P、Q沿射线BA方向运动,若点Q在点P前面,由图可列关于时间的方程求解;③当点P、Q在直线上相向运动,点P、Q在相遇前,由图可列关于时间的方程求解;④ 当点P、Q在直线上相向运动,点P、Q在相遇后,由图可列关于时间的方程求解。
人教版七年级数学上册全册单元试卷(基础篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。
人教版七年级数学上册全册单元试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、 MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.【答案】(1)∵BC=15,点C对应的数是10,∴c-b=15,∴b=-5,∵c-b=b-a=15,∴a=-20;(2)①∵OQ=10+t,OP=20+2t,∴PQ=(10+t)+( 20+2t)=30+3t;∵OB=5, OQ=10+t,∴BQ=15+t,∵M为BQ的中点,∴BM=7.5+0.5t,∴OM=7.5+0.5t-5=2.5+0.5t.∵OP=20+2t, N为OP的中点,∴ON=10+t,∴MN=OM+ON=12.5+1.5t;②PQ-2MN=5.∵PQ=30+3t,MN= 12.5+1.5t,∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.2.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
百分百教育七年级数学期中调考试卷一、选一选,比比谁细心(本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.1的绝对值是().21 (B)1(A) (C)2 (D) -22 22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为().(A)1.68× 104m(B)16.8× 103m(C)0.168 × 104m (D)1.68 ×103m3.如果收入 15 元记作 +15 元,那么支出 20 元记作()元 .(A)+5 (B)+20 (C)-5 (D)-204.有理数( 1)2,( 1)3,12, 1 ,,1中,其中等于 1 的个数是(). -(-1) 1(A)3 个(B)4 个(C)5 个(D)6个5.已知 p 与 q 互为相反数,且p≠0,那么下列关系式正确的是().(A) p.q 1 (B) q (C)1p6.方程 5-3x=8 的解是().p q 0(D)p q0(A)x=1(B)x=-1(C)x=13(D)x=-133 37.下列变形中 , 不正确的是().(A) a+(b+c-d)=a+b+c-d(B) a-(b-c+d)=a-b+c-d(C) a-b-(c-d)=a-b-c-d(D) a+b-(-c-d)=a+b+c +d8.如图 , 若数轴上的两点A、B 表示的数分别为a、b,则下列结论正确的是().百分百教育(A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0 ABb 19.按括号内的要求,用四舍五入法, a -1022.0099 取近似 ,其中 的是().×103( 保留(A)1022.01( 精确到 0.01)(B)1.02 个有效数字 )(C)1020( 精确到十位 ) (D)1022.010( 精确到千分位 ) 10.“一个数比它的相反数大 -4 ”,若 数是 x , 可列出关于 x 的方程( ). (A)x=-x+4 (B)x=-x+ (-4 ) (C)x=-x- (-4 ) (D)x- (-x )=411. 下列等式 形:①若 ab ,ab;②若a b, a b ;③若 4a 7b ,xxx xa7;④若a 7, 4a 7b . 其中一定正确的个数是().b 4b 4(A)1 个(B)2个(C)3个(D)4个12. 已知 a 、 b 互 相反数, c 、 d 互 倒数, x 等于 -4的 2次方, 式子(cd a b)x 1x 的 ( ).2(A)2 (B)4(C)-8 (D)8二、填一填 , 看看 仔 ( 本大 共 4 小 , 每小 3分, 共 12 分, 将你的答案写在“ _______” )13.写出一个比1小的整数: .214.已知甲地的海拔高度是 300m ,乙地的海拔高度是- 50m ,那么甲地比乙地高 ____________m . 15.十一国 期 , 吴家山某眼惠学生配 的活 , 某款式眼 的广告 广告牌 上原价.原价: 元国庆节 8 折优惠,现价: 160 元店开展如 , 你 16.小方利用 算机 了一个 算程序, 入和 出的数据如下表:入 ⋯12345⋯百分百教育出⋯ 1 2 3 4 5 ⋯2 5 10 17 26那么,当入数据 8 ,出的数据.三、解一解 , 更棒 (本大共 9 小 ,共 72 分)17.(本 10 分)算( 1)(1 1 3) ( 48) (2)( 1) 10 2 ( 2) 3 46 41 118.(本 10 分)解方程 (1) 3x 7 32 2x (2) x x1 32 619.(本 6 分)某工厂一周划每日生自行100 , 由于工人行休 , 每日上班人数不一定相等 , 每日生量与划量相比情况如下表( 以划量准 ,增加的数正数, 减少的数数 ):星期一二三四五六日增减 /-1+3-2+4+7-5-10(1)生量最多的一天比生量最少的一天多生多少 ?(3 分)(2)本周的生量是多少 ?(3 分)20.(本 7 分)数据示,在我国的664 座城市中,按水源情况可分三:不缺水城市、一般缺水城市和重缺水城市.其中,不缺水城市数比重缺水城市数的 3 倍多 52 座,一般缺水城市数是重缺水城市数的 2 倍.求重缺水城市有多少座?21.(本 9 分)察一列数: 1、2、4、8、16、⋯我,一列数从第二起,每一与它前一的比都等于 2. 一般地,如果一列数从第二起,每一与它前一的比都等于同一个常数,一列数就叫做等比数列,个常数就叫做等比数列的公比 .(1)等比数列 5、-15 、45、⋯的第 4 是 _________.(2 分)( 2 )如果一列数a1, a2, a3, a4 是等比数列,且公比为q .那么有:a2 a1q ,a3 a2 q (a1q)q a1q 2, a4 a3 q (a1q 2 )q a1 q3则: a5= .(用 a1与q的式子表全球通神州行示)(2 分)(3) 一个等比数列的第 2 项是10,第 4 项是 40,求月租费50 元/分0它的公比 . (5 分)本地通0.40 元0.60 元/ 22.(本题 8 分)两种移动电话记费方式表话费/分分(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?( 5 分)(2)若某人预计一个月内使用本地通话费 180 元,则应该选择哪种通讯方式较合算?( 3 分)23.( 本题 10 分) 关于 x 的方程x2m3x 4 与 2 m x 的解互为相反数.(1)求 m的值;(6 分)(2)求这两个方程的解.(4 分)24.(本题 12 分)如图,点 A 从原点出发沿数轴向左运动,同时,点 B 也从原点出发沿数轴向右运动, 3 秒后,两点相距 15 个单位长度 . 已知点 B 的速度是点 A 的速度的 4 倍(速度单位:单位长度/ 秒) .(1)求出点 A、点 B 运动的速度,并在数轴上标出A、B 两点从原点出发运动3秒时的位置;(4 分)(2)若 A、B 两点从 (1) 中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点 A、点 B的正中间?( 4 分)(3)若 A、B 两点从 (1) 中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点 C 同时从 B 点位置出发向 A 点运动,当遇到 A 点后,立即返回向 B 点运动,遇到 B 点后又立即返回向 A 点运动,如此往返,直到 B 点追上 A 点时, C 点立即停止运动 . 若点 C 一直以 20 单位长度 / 秒的速度匀速运动,那么点 C 从开始运动到停止运动,行驶的路程是多少个单位长度?( 4 分)2006-2007 学年度上学期七年级数学期中考试参考答案与评分标准一、 一 ,比比 心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D二、填一填,看看 仔13.-1 等14. 35015.20016.865三、解一解, 更棒17.(1) 解 : (1 13 ) ( 48)6 4= -48+8-36 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分=-76⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(2) 解 : ( 1)102 ( 2)34=1× 2 +(-8) ÷4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分=2-2=0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分 18.(1) 解 : 3x7 32 2x3x+2x=32-7 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 5x=25 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分x=5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(2) 解 : 1131xx61 2 1x 3 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分2 x61x =2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3x=-6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 19. 解 : (1)7-(-10)=17⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) (-1+3-2+4+7-5-10 )+100 ×7=696⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 20.解: 重缺水城市有x 座,依 意有 :⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分 3x 52 2x x664⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分解得 x=102⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分答: 重缺水城市有 102 座 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分21. (1)81⋯⋯ 2 分(2) a 1q4⋯⋯⋯⋯⋯⋯⋯ 4 分(3)依 意有: a 4a 2q 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ∴ 40=10× q 2 ∴ q 2 =4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分 ∴ q2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分22.(1) 一个月内本地通t 分 ,两种通 方式的 用相同.依 意有: 50+0.4t=0.6t⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 t=250⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( 2)若某人 一个月内使用本地通 180 元 , 使用全球通有:50+0.4t=180∴ t 1 =325⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分若某人 一个月内使用本地通 180 元, 使用神州行有:0.6t=180∴ t 2 =300∴使用全球通的通 方式 合算.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分23. 解: (1)由 x 2m3x 4 得: x=1m 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分依 意有: 1m21+2-m=0 解得: m=6⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2( 2)由 m=6,解得方程 x 2m3x 4 的解 x=4⋯⋯⋯⋯⋯ 8 分解得方程 2 m x 的解 x=-4⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分 24. ( 1) 点 A 的速度 每秒 t 个 位 度, 点 B 的速度 每秒 4t 个 位 度 .依 意有: 3t+3× 4t=15, 解得 t=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∴点 A 的速度 每秒 1 个 位 度 ,点 B 的速度 每秒4 个 位 度 .⋯3 分画( 2) x 秒 ,原点恰好 在点根据 意,得3+x=12-4xA 、点B 的正中.⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯4 分5 分7 分解之得x=1.8即运1.8秒 ,原点恰好 在A 、B 两点的正中⋯⋯⋯⋯⋯⋯8 分( 3) 运 y 秒 ,点 B 追上点 A根据 意 , 得 4y-y=15,解之得y=5即点 B 追上点 A 共用去的路程 :20 × 5=100( 位 度⋯⋯⋯⋯⋯⋯ 10 分5 秒 , 而 个 恰好是点C 从开始运 到停止运 所花的)⋯⋯⋯⋯⋯⋯12 分, 因此点C 行。
七年级数学期中调考试卷一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ).(A) 12 (B)12- (C)2 (D) -2 2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m(D)1.68×103m3.如果收入15元记作+15元,那么支出20元记作( )元.(A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ).(A)3个 (B)4个 (C)5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A).1p q = (B) 1q p= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( ). (A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0 9.按括号内的要求,用四舍五入法,对1022.0099取近似值( ).(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022.010(精确到千分位)10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b x x =;②若a b x x=,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( ). (A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ). (A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: .14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输出 … 12 25 310 417 526 …那么,当输入数据为8时,输出的数据为 .三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.(本题10分)计算(1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯-18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=-19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一 二 三 四 五 六 日 增减/辆-1+3 -2 +4 +7 -5 -10 (1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分) (2) 本周总的生产量是多少辆?(3分) 20.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)(2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a = .(用1a 与q 的式子表示)(2分)(3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分)22.(本题8分)两种移动电话记费方式表 (1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分)(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)23.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分)(2)求这两个方程的解.(4分)24.(本题12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分)(2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间?(4分)(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动全球通 神州行 月租费 50元/分 0 本地通话费 0.40元/分 0.60元/分时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?(4分)2006-2007学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D二、填一填,看看谁仔细13.-1等 14. 350 15.200 16.865 三、解一解,试试谁更棒17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分=-76 ………………………………5分(2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分=2-2=0 ………………………………5分18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分x=5 ………………………………5分(2) 解:111326x x -=- 113126x x -+=- ………………………………2分 13x -=2 ………………………………4分 x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分(2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分20.解:设严重缺水城市有x 座,依题意有: ………………………………1分3522664x x x +++= ………………………………4分解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分21.(1)81……2分 (2) 41a q …………………4分(3)依题意有:242a a q = ………………………………6分∴40=10×2q ∴2q =4 ………………………………7分∴2q =± ……………………………9分22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分解得t=250 ………………………………4分(2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分若某人预计一个月内使用本地通话费180元,则使用神州行有:0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分 (2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分 解得方程2m x -=的解为x=-4 ………………………10分24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度.依题意有:3t+3×4t=15,解得t=1 …………………………2分∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分(2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分根据题意,得3+x=12-4x ………………7分解之得 x=1.8即运动1.8秒时,原点恰好处在A 、B 两点的正中间 ………………8分(3)设运动y 秒时,点B 追上点A根据题意,得4y-y=15,解之得 y=5 ………………10分即点B 追上点A 共用去5秒,而这个时间恰好是点C 从开始运动到停止运动所花的时间,因此点C 行驶的路程为:20×5=100(单位长度) ………………12分。