概率论 总复习
- 格式:pptx
- 大小:348.44 KB
- 文档页数:11
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
概率论总复习-知识总结(一)概率论总复习-知识总结概率论是一门广泛应用于自然科学、社会科学、医学、金融等领域的数学学科,是研究随机事件及其发生规律的学科。
下面就概率论常见的概念、公式和计算方法进行总结和复习。
一、基本概念1. 试验和事件:试验是人为、自然、社会等各种实际现象的模拟或观测过程,试验的每一个结果称为该试验的一个基本事件;事件是由基本事件构成的,即试验结果的任意某些组合,可以是单个事件,可以是多个事件组合形成的复合事件。
2. 样本空间和事件域:样本空间是由一切可能的基本事件组成的集合;事件域是指样本空间中,所有事件的全体,即事件的集合。
3. 必然事件和不可能事件:试验中一定会发生的事件称为必然事件,常用符号Ω表示;试验中不可能发生的事件称为不可能事件,常用符号Ø表示。
4. 等可能概型:所有基本事件的发生是等可能的,即每个基本事件发生的概率相等。
5. 概率的基本性质:对于任何事件A,有0 ≤ P(A) ≤ 1,并且P(Ω) = 1,P(Ø) = 0;对于任意两个互不相容的事件A和B,有P(A∪B) =P(A) + P(B)。
二、概率的计算方法1. 古典概型:若试验基本事件有限且等可能,则事件A的概率P(A) = A中基本事件数 / S中基本事件总数。
2. 几何概型:可以利用图形面积的比值计算。
3. 组合计数:若A是从n个不同元素中取m个元素集合,则其包含m个元素的子集个数称为A的组合数。
三、条件概率和独立事件1. 条件概率:设A、B是两个事件,且P(A) > 0,则事件B在事件A发生的条件下发生的概率记为P(B|A),称为条件概率,P(B|A) = P(AB) / P(A)。
2. 乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。
3. 全概率公式和贝叶斯公式:全概率公式是用于计算复杂事件的概率,表示为P(B) = ΣiP(Ai)P(B|Ai);贝叶斯公式是在已知结果的情况下,得出反推因果关系的方法,表示为P(Ai|B) = P(Ai)P(B|Ai) /ΣjP(Aj)P(B|Aj)。
随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式从m 个人中挑出n 个人进行排列的可能数。
)!(!n m m P n m-=从m 个人中挑出n 个人进行组合的可能数。
)!(!!n m n m C nm -=(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列①特殊排列 相邻 彼此隔开顺序一定和不可分辨②重复排列和非重复排列(有序)③对立事件④顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有,,则称事件A 与事件B 等价,或称A 等于B A ⊂A B ⊃B :A=B 。
A 、B 中至少有一个发生的事件:A B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者,它表示A 发生而B 不发生的事件。
B A A 、B 同时发生:A B ,或者AB 。
A B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11i ii i AA,B A B A =BA B A =3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P 常称为可列(完全)可加性。
《概率论》总复习提纲【精选】精⼼总结ang 《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间ω记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为w .(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为Ω)和不可能事件(记为Φ). 2、事件的关系与运算(1)包含关系与相等:“事件A 发⽣必导致B 发⽣”,记为B A ?或A B ?;B A B A ??=且A B ?.(2)互不相容性:φ=AB ;B A 、互为对⽴事件Ω=??B A 且Φ=AB . (3)独⽴性:(1)设A B 、为事件,若有)()()(B P A P AB P =,则称事件A 与B 相互独⽴. 等价于:若)|()(A B P B P =(0)(>A P ).(2)多个事件的独⽴:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独⽴. 3、事件的运算(1)和事件(并):“事件A 与B ⾄少有⼀个发⽣”,记为B A ?. (2)积事件(交):“ 事件A 与B 同时发⽣”,记为B A ?或AB .(3)差事件、对⽴事件(余事件):“事件发⽣A ⽽B 不发⽣”,记为A B -称为A 与B 的差事件;B B =-Ω称为B 的对⽴事件;易知:B A B A =-. 4、事件的运算法则1) 交换律:A B B A ?=?,BA AB =;2) 结合律:C B A C B A ??=??)()(,)()(BC A C AB =; 3) 分配律:BC AC C B A ?=?)(,))(()(C B C A C AB ??=?; 4) 对偶(De Morgan)律:B A B A =?,B A AB ?=,可推⼴kkkkkkAA A A ==,5、概率的概念(1)概率的公理化定义:(了解)ΩΩ设是⼀个样本空间,为的某些⼦集组成F()A P A ?∈的⼀个事件域.,定义在上的⼀个集值函数满⾜:F.F 1()0;P A ≥)⾮负性: 2()1;P Ω=)规范性: 123,,A A )可列可加性:设是可列个互不相容事件,则11()()n n n n P A P A ∞∞===∑().P A A 则称为事件的概率(2)频率的定义:(了解)事件A 在n 次重复试验中出现A n 次,则⽐值n n A 称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(.(3)概率的统计定义:(了解)频率具有稳定性,即()n kf A n=随n 的增⼤越来越靠近某个常数p ,称p 为事件A 的(统计)概率.在实际问题中,当n 很⼤时,取()().n P A p f A =≈(4)古典概率(有限等可能型):若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件A 发⽣的概率为:n A k n k A A P )()(==中样本点总数中所含样本点数Ω=.(5)⼏何概率(⽆限等可能型):(了解)若试验基本结果数⽆限,随机点落在某区域g 的概率与区域g 的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域Ω中随机地取⼀点落在区域A 中”这⼀事件A 发⽣的概率为:()A P A Ω的测度的测度.(6)主观概率:(了解)⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念. 6、概率的基本性质(1)不可能事件概率为零: ()0P Φ=. (2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即i jA A =Φ,(i j ≠)n j i ,2,1,,=,则有)(21n A A A P =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件,()()B A P B P A ?≥则,且()()()P B A P B P A -=-.(4)互逆性:()1()P A P A =-且()1P A ≤.(5)加法公式:对任意两事件B A 、,有=?)(B A P )()(B P A P +-)(AB P ;此性质可推⼴到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=,且()()()P A B P A P B ?≤+7、条件概率与乘法公式(1)条件概率:设B A 、是两个事件,若()0,P A >则)()()|(A P AB P A B P =称为事件A 发⽣的条件下事件B 发⽣的条件概率.(2)乘法公式:设()0,()0,P A P B >>则)|()()|()()(B A P B P A B P A P AB P ==.称为事件B A 、的概率乘法公式.其可推⼴成有即个的情形,详见书上第16页,其主要的意义在说明了前⾯的事件对后⾯的事件发⽣的概率产⽣影响. 8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的⼀个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件B ∈F.,有∑=ni i i A B P A P B P 1)|()()(=称为全概率公式.应⽤背景:若影响某⼀事件(“结果”)发⽣有⼏种不同的情况(“原因”),那么计算结果的概率就要⽤全概率公式, 相当于其是由原因计算结果.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的⼀个划分,且0)(>i A P ),,2,1(n i =,则对任何事件B ∈F.,有),,1(,)|()()n j A B P A P A B P A P B A P ni iij j j ==∑=称为贝叶斯公式或逆概率公式.应⽤背景:若影响某⼀事件(“结果”)发⽣有⼏种不同的情况(“原因”),那么若告诉你结果已发⽣,那么要计算某⼀种情况(“原因”)发⽣的概率时,就要⽤到贝叶斯公式,相当其主要的应⽤是要由结果计算原因. 9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常⽤)(A P p =表⽰,其中A =“成功”.(2)把E 重复独⽴地进⾏n 次,所得的试验称为n 重贝努⾥试验,记为nE .(3)把E 重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为∞E .以上三种贝努⾥试验统称为贝努⾥概型.(4)nE 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n kn k k n ≤≤=---其中1(01)p q p +=≤≤.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件A 与B 必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则A 、B 为互逆事件;如果两个事件A 与B 不能同时发⽣,则A 、B 为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个. 3、两事件独⽴与两事件互斥两事件A 、B 独⽴,则A 与B 中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时)()()(B P A P AB P =⽣,这两事件的发⽣是有影响的,这时0)(,=Φ=AB P AB .可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,)(21)(,41)(B P A P AB P ===,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,0)(=AB P ,表⽰样本空间中两事件的互斥关系.4、条件概率)|(B A P 与积事件概率)(AB P)(AB P 是在样本空间Ω内,事件AB 的概率,⽽)|(B A P 是在试验E 增加了新条件B发⽣后的缩减的样本空间B Ω中计算事件A 的概率.虽然A 、B 都发⽣,但两者是不同的,⼀般说来,当A 、B 同时发⽣时,常⽤)(AB P ,⽽在有包含关系或明确的主从关系时,⽤)|(B A P .如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设Ω是随机试验的样本空间,如果对于试验的每⼀个可能结果Ω∈ω,都有唯⼀的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常⽤⼤写字母Z Y X 、、等表⽰.根据其取值的情形可以分成为离散型随机变量(可能取值⾄多可列)随机变量连续型随机变量(可能取值充满某个区间)奇异型随机变量2、离散型随机变量及其分布列如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的⼀切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).也称分布列,常记为1212n nx x x p p p ?? ???其中1,0=≥∑i常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为(1,)((1,))Xb p B p ,分布列为10,1,0,)1(}{1<<=-==-p k p p k X P k k或1~X q p ??(2)⼆项分布:记为(,)((,))X b n p B n p ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n kk n(3)泊松分布,记为()(())X P πλλ,概率函数,,1,0,!}{>===-λλλk k e k X P k泊松定理:设0>λ是⼀常数,n 是任意正整数,设λ=nnp ,则对于任⼀固定的⾮负整数k ,有!)1(lim k e p p C k kn n k nknn λλ--∞→=-.根据泊松定理可得,当n 很⼤(⼤于50)且p 很⼩(⼀般是⼩于0.05)时,⼆项分布可以⽤泊松分布近似代替,即!)1(k e p p C k kn k k nλλ--≈-,其中np =λ3、分布函数及其性质分布函数的定义:设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性: )(1)(0+∞<<-∞≤≤x x F;(2)单调性:如果21x x <,则)()(21x F x F ≤;(3)右连续:即)()0(x F x F =+;(4)极限性:1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5)完美性: )()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<.4、连续型随机变量及其分布如果对于随机变量X 的分布函数)(x F ,存在⾮负函数()p x ,使对于任⼀实数x ,有()()xF x p t dt -∞=?,则称X 为连续型随机变量.函数()p x 称为X 的概率密度函数,简称为概率密度.概率密度函数具有以下性质:(1)()0p x ≥;(2)()1p x dx +∞-∞=?;(3)2112{}()x x P x X x p t dt<≤=?;(4)0}{1==x X P ;(5)如果()p x 在x 处连续,则()()F x p x '=. 常⽤连续型随机变量的分布:(1)均匀分布:记为),(~b a U X ,概率密度为1,,()0,a x b p x b a≤≤=-其它分布函数为>≤≤--<=b x bx a ab a x a x x F ,1,,0)(P c X d b a-<<=- (2)指数分布:记为()XExp θ,概率密度为/1,0,()0,x e x p x θθ-?>?=其他,分布函数为/1,0,()0,x e x F x θ-?->=??其他.⽆记忆性质:对于任意,0,s t >有{|}{}P X s t X s P X t >+>=>.(3)正态分布:记为),(~2σµN X ,概率密度为2()2(),x p x X µσ--=-∞<<+∞,相应的分布函数为∞---=xx dtex F 222)(21)(σµπ当1,0==σµ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别⽤)(x ?和)(x Φ表⽰X 的密度函数和分布函数,即-=Φ=x t x dte x ex 222221)(,21)(ππ性质:①若2(,)XN µσ,则其密度函数关于x µ=对称,从⽽1()()2P X P X µµ>=<=. ② )(1)(x x Φ-=-Φ. ③若2(,)XN µσ,则(0,1)X N µσ-,即⼀般正态分布),(~2σµN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σµ-Φ=x x F .5、随机变量函数的分布(1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2):则)(X g Y =任为离散型随机变量,其分布列为(表2-3):表2-3i y 有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为()X p x ,则)(X g Y =的概率密度有两种⽅法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为<<'=其它,0,)()]([)(βαy y h y h f y f XY .其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数. 2)分布函数法:先求)(X g Y =的分布函数∑=≤=≤=k y xY k dxx fy X g P y Y P y F )()(})({}{)(然后求 ()[()]Y Y p y F y '=. 结论:若2(,)X N µσ,则22(0)(,)aX b a N a b a µσ+≠+.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间Ω上,对试验的每⼀个可能结果Ω∈ω,都有唯⼀的实数)(ωX 与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间. 2、分布函数)(x F 的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数)(x F 左连续,但⼤多数书籍定义分布函数)(xF为右连续. 左连续与右连续的区别在于计算)F时,xX=点的概率是否计算在内.对于连续型随机变量,由于}{1==xXP,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于}{1≠=xXP,则定义左连续或右连续时)(xF值就不相同,这时,就要注意对)(xF定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数 12(),(),,()(,,),n X X X F P ωωωΩ如果随机变量定义在同⼀概率空间上则称12(),(),,()n X X X X ωωωω=()(为n 维(n 元)随机变量或随机向量.n 当=2时,称为⼆维随机变量,常记为(,).X Y 联合分布函数的定义:设12(),(),,()n XX X X n ωωωω=()()是维随机变量,,nx R n ?∈则称元函数121122(,,,),,,)n n n F x x x P X x X x X x =≤≤≤(为随机向量12(),(),,()n X X X X ωωωω=()(的联合分布函数2,,n =特别时称为⼆维联合分布函数即(,)(,)F x y P X x Y y =≤≤⼆维联合分布函数具有以下基本性质:(1)单调性: ),(y x F 是变量x 或y 的⾮减函数;(2)有界性: 1),(0≤≤y x F ;(3)极限性:1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,,但注意(,)(),(,)()Y X F y F y F x F x +∞=+∞=,其中()X F x 与()Y F y 分别表⽰X 与Y 的分布函数.(4)连续性: ),(y x F 关于x 右连续,关于y 也右连续;(5)⾮负性: 对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表⽰随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为⼆维离散型随机变量.设),(Y X 为⼆维离散型随机变量,它的所有可能取值为,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布列.表3.1联合分布列具有下列性质:(1)≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数),(y x p ,使得⼆维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有∞-∞-=xydydx y x p y x F ),(),(,则称),(Y X 是⼆维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数y x ,,有0),(≥y x p ;(2)规范性1),(=??+∞∞-+∞∞-dy dx y x p ;(3)在任意平⾯域D 上,),(Y X 取值的概率=∈Ddxdyy x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p y x y x F =.常⽤连续型随机变量的分布:(1) 设D 是平⾯上的⼀个有界区域,其⾯积为A .若⼆维随机变量(,)X Y 的联合概率密度为1,(,),(,)0,x y D f x y A ?∈?=其它,则称(,)X Y 服从区域D 上的⼆维均匀分布.(2) ⼆元正态分布:其密度函数不要求背,具体的请见课本P67. 4、⼆维随机变量的边缘分布设),(Y X 为⼆维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X },{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘(边际)分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i分别为),(Y X 关于X 和关于Y 的边缘分布列.当),(Y X 为连续型随机变量,则称+∞∞-+∞∞-==dxy x p y p dy y x p x p Y X ),()(,),()(分别为),(Y X 关于X 和关于Y 的边缘密度函数. 性质:221212(,)(,,,,)X Y N µµσσρ,则211(,)XN µσ,222(,)Y N µσ.5、随机变量的独⽴性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ?=则称随机变量X 与Y 相互独⽴.设),(Y X 为⼆维离散型随机变量,X 与Y 相互独⽴的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为⼆维连续型随机变量,X 与Y 相互独⽴的充要条件是对⼏乎⼀切实数y x ,,有)()(),(y p x p y x p Y X =.性质:221212(,)(,,,,)X Y N µµσσρ,则0X Y ρ=?与相互独⽴.6、两个随机变量函数的分布设⼆维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ?=是Y X ,的函数,则Z 的分布函数为dxdyy x p z F zy x Z ??≤=),(),()(?.对于⼀般的函数?,求()Z F z 通过分布函数的⽅法,如第三章,习题29就是使⽤这种⽅法.但对于以下的⼏个,更加常⽤的是公式的⽅法. 若),(Y X 为连续型随机变量,概率密度函数为),(y x p .(1)Y X Z +=的分布:dyy y z p dx x z x p z p Z ??+∞∞-+∞∞--=-=),(),()(.特别地,若X 与Y 相互独⽴,则()()()()().Z X Y X Y p z p x p z x dx p z y p y dy +∞+∞-∞-∞=-=-?(2)Z X Y =-的分布:()(,).Z p z p z y y dy +∞-∞=+?特别地,若X 与Y 相互独⽴,则()()().Z X Y p z p z y p y dy +∞-∞=+?(3)Z XY =的分布:1()(,).||Z zp z p x dx x x+∞-∞=?特别地,若X 与Y 相互独⽴,则1()()().||Z X Y zp z p x p dx x x+∞-∞=?(4)Y XZ =的分布若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:+∞∞-=dyy yz p y z p Z ),()(.性质:①若(,),(,),(,)X b n p Y b m p X Y X Y b n m p ++且与相互独⽴,则.②若1212(),()().XY X Y X Y πλπλπλλ++且与相互独⽴,则③若221122(,),(,)XN YN µσµσ,且X 与Y 相互独⽴的,则22221212(,).X bY cN a b c a b µµσσ+++++a7.最⼤值与最⼩值的分布 1,,n X X n 设是相互独⽴的个随机变量,则1()()(max(,,))Y n F y P Y y P X X y =≤=≤1()ni i F y ==∏1()()(min(,,))Y n F y P Y y P X X y =≤=≤11(1())n i i F y ==--∏其中的()i F y 表⽰的是随机变量i X 的分布函数.疑难分析1、事件},{y Y x X ≤≤表⽰事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不⼀定等于}{}{y Y P x X P ≤?≤?如同仅当事件B A 、相互独⽴时,才有)()()(B P A P AB P ?=⼀样,这⾥},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤?≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独⽴时,才有}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、⼆维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由)|()(),(|x y p x p y x p X Y X ?=知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果Y X 、相互独⽴,则}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤,即)()(),(y F x F y x F Y X ?=.说明当Y X 、独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量Y X 、相互独⽴,是指组成⼆维随机变量),(Y X 的两个分量Y X 、中⼀个分量的取值不受另⼀个分量取值的影响,满⾜}{}{},{y Y P x X P y Y x X P ≤?≤=≤≤.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有)()()(B P A P AB P ?=.两者可以说不是⼀个问题.但是,组成⼆维随机变量),(Y X 的两个分量Y X 、是同⼀试验E 的样本空间上的两个⼀维随机变量,⽽B A 、也是⼀个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量X 的分布列为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k kk p x 绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果⼴义积分+∞∞-dxx xp )(绝对收敛,则称此积分值?+∞∞-=dxx xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(;(2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+;对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独⽴,则)()()(2121X E X E X X E =;对任意n 个相互独⽴的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望(1)设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.。