大学概率论总复习-.
- 格式:ppt
- 大小:2.96 MB
- 文档页数:55
概率论与数理统计总复习第一章 概率论的基本概念 1. 事件的关系及运算互不相容事件:AB =Φ 即A,B 不能同时发生。
对立事件:A B =Ω且AB =Φ 即A B B ==Ω-差事件:A B - 即 A 发生但B 不发生的事件切记:()A B AB A AB AB B -==-=-2. 概率的性质 单调性:若BA ⊂,则)()()(A P B P A B P -=-加法定理:)()()()(AB P B P A P B A P -+=)()()()()(AB P C P B P A P C B A P -++=)()()(ABC P CA P BC P +--例1 设,,()0.7,()0.4,A C B C P A P A C ⊃⊃=-= ()0.5P AB =,求()P AB C -。
解:()()()P A C P A P AC -=-()()P A P C =- (AC C =)故 ()()()0.70.40.3P C P A P A C =--=-=由此 ()()()P AB C P AB P ABC -=-()()P AB P C =- (ABC C =)0.50.30.2=-=注:求事件的概率严禁画文氏图说明,一定要用概率的性质计算。
3. 条件概率与三个重要公式 乘法公式全概率公式1()()(/)ni i i P A P B P A B ==∑贝叶斯公式(求事后概率)例2、(10分)盒中有6个新乒乓球,每次比赛从其中任取两个球来用,赛后仍放回盒中,求第三次取得两个新球的概率。
解:设A i ——第2次摸出i 个新球(i =0,1,2), B ——第3次摸出两个新球∵ A 0,A 1,A 2构成Ω的一个划分 ∴ 由全概率公式 其中故;)/()()(A B P A P AB P =()(/)(/)()i i i P B P A B P B A P A =2()()(|)kkk P B P A P B A ==∑201102244224012222666186(),()()151515C C C C C C P A P A P A C C C ======202002334242012222666631(|)(|)(|)151515C C C C C C P B A P B A P B A C C C ======4()0.1625P B ==4. 事件的独立性A 与B 独立→P (AB )=P (A )P (B ) → P (B/A )= P (B )A 与B 互不相容→ AB=φ→ P (A ∪B )=P (A )+P (B )注:n (>2)个事件两两独立与相互独立的区别!例3若A 与B 独立,且A 与B 互不相容,则P (A )P (B )=____第二、三章 随机变量及其分布1. 5中常见分布及其对应模型和相互关系;2. 联合分布函数、边缘分布函数、联合分布律、边缘分布律、联合概率密度、边缘概率密度之间的关系;3. 随机变量落在某区间(域)的概率 ()(),()()x X X x P X x f t dt P X x f t dt +∞-∞≤=≥=⎰⎰5.随机变量函数的分布1) 公式法{(,)}(,)GP X Y G f x y d σ∈=⎰⎰()(,)()()()(,)()()X Y i i X Y X Y X Y P X Y k P X i Y k i P X i p Y k i f z f x z x dx f x f z x dx +∞+∞+-∞-∞⎧+====-===-⎪⎪⎨⎪=-=-⎪⎩∑∑⎰⎰与独立与独立[()](),()0,X Y f h y h y y f y αβ'⎧⋅<<=⎨⎩其他()()()y g x X x h y f x ==⇒2) 分布函数法注意画图分段讨论 6.随机变量的独立性 若 X 、Y 相互独立⇔ ⇔(,)()()X Y F x y F x F y =试考虑其它等价条件注:若 X 、Y 相互独立()()()E XY E X E Y ⇒= 反之不成立。
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。
2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。
3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。
4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。
5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。
6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。
7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。
8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。
二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。
A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。
样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。
必然事件---每次试验中必然发生的事件。
不可能事件∅--每次试验中一定不发生的事件。
事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。
ang 《概率论与数理统计》总复习提纲第一块 随机事件及其概率内 容 提 要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1) 试验可在相同的条件下重复进行;2) 每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3) 每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间ω记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为w .(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为Ω)和不可能事件(记为Φ).2、事件的关系与运算(1)包含关系与相等:“事件A 发生必导致B 发生”,记为B A ⊂或A B ⊃;B A B A ⊂⇔=且A B ⊂.(2)互不相容性:φ=AB ;B A 、互为对立事件Ω=⋃⇔B A 且Φ=AB .(3)独立性:(1)设A B 、为事件,若有)()()(B P A P AB P =,则称事件A 与B 相互独立. 等价于:若)|()(A B P B P =(0)(>A P ).(2)多个事件的独立:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独立.3、事件的运算(1)和事件(并):“事件A 与B 至少有一个发生”,记为B A ⋃.(2)积事件(交):“ 事件A 与B 同时发生”,记为B A ⋂或AB .(3) 差事件、对立事件(余事件):“事件发生A 而B 不发生”,记为A B -称为A 与B 的差事件;B B =-Ω称为B 的对立事件;易知:B A B A =-.4、事件的运算法则1) 交换律:A B B A ⋃=⋃,BA AB =;2) 结合律:C B A C B A ⋃⋃=⋃⋃)()(,)()(BC A C AB =;3) 分配律:BC AC C B A ⋃=⋃)(,))(()(C B C A C AB ⋃⋃=⋃;4) 对偶(De Morgan)律:B A B A =⋃,B A AB ⋃=,可推广k k k k k k k k A A A A ==,5、概率的概念 (1)概率的公理化定义:(了解)ΩΩ设是一个样本空间,为的某些子集组成F ()A P A ∀∈的一个事件域.,定义在上的一个集值函数满足:F.F1()0;P A ≥)非负性:2()1;P Ω=)规范性:123,,A A )可列可加性:设是可列个互不相容事件,则11()()n n n n P A P A ∞∞===∑().P A A 则称为事件的概率(2)频率的定义:(了解)事件A 在n 次重复试验中出现A n 次,则比值n n A称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(.(3)概率的统计定义:(了解)频率具有稳定性,即()n k f A n=随n 的增大越来越靠近某个常数p ,称p 为事件A 的(统计)概率.在实际问题中,当n 很大时,取()().n P A p f A =≈(4)古典概率(有限等可能型): 若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件A 发生的概率为: n A k n k A A P )()(==中样本点总数中所含样本点数Ω=.(5)几何概率(无限等可能型):(了解)若试验基本结果数无限,随机点落在某区域g 的概率与区域g 的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域Ω中随机地取一点落在区域A 中”这一事件A 发生的概率为:()A P A Ω的测度=的测度.(6)主观概率:(了解)人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率为零: ()0P Φ=.(2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即i jA A =Φ,(i j ≠)n j i ,2,1,,=,则有)(21n A A A P ⋃⋃⋃ =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件,()()B A P B P A ⊃≥则,且()()()P B A P B P A -=-.(4) 互逆性:()1()P A P A =-且()1P A ≤.(5) 加法公式:对任意两事件B A 、,有=⋃)(B A P )()(B P A P +-)(AB P ;此性质可推广到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=,且()()()P A B P A P B ⋃≤+7、条件概率与乘法公式(1)条件概率:设B A 、是两个事件,若()0,P A >则)()()|(A P AB P A B P =称为事件A 发生的条件下事件B 发生的条件概率.(2)乘法公式:设()0,()0,P A P B >>则)|()()|()()(B A P B P A B P A P AB P ==.称为事件B A 、的概率乘法公式.其可推广成有即个的情形,详见书上第16页,其主要的意义在说明了前面的事件对后面的事件发生的概率产生影响.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件B ∈F.,有 ∑=n i i i A B P A P B P 1)|()()(=称为全概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么计算结果的概率就要用全概率公式, 相当于其是由原因计算结果.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ),,2,1(n i =,则对任何事件B ∈F.,有),,1(,)|()()|()()|(1n j A B P A P A B P A P B A P ni ii j j j ==∑= 称为贝叶斯公式或逆概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么若告诉你结果已发生,那么要计算某一种情况(“原因”)发生的概率时,就要用到贝叶斯公式,相当其主要的应用是要由结果计算原因.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常用)(A P p =表示,其中A =“成功”.(2)把E 重复独立地进行n 次,所得的试验称为n 重贝努里试验,记为nE .(3)把E 重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为∞E .以上三种贝努里试验统称为贝努里概型.(4)n E 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n k n k k n ≤≤=---其中1(01)p q p +=≤≤.疑 难 分 析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件A 与B 必有一个事件发生,且至多有一个事件发生,则A 、B 为互逆事件;如果两个事件A 与B 不能同时发生,则A 、B 为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件A 、B 独立,则A 与B 中任一个事件的发生与另一个事件的发生无关,这时)()()(B P A P AB P =生,这两事件的发生是有影响的,这时0)(,=Φ=AB P AB .可以用图形作一直观 解释.在图1.1左边的正方形中,图1.1)(21)(,41)(B P A P AB P ===,表示样本空间中两事件的独立关系,而在右边的正方形中,0)(=AB P ,表示样本空间中两事件的互斥关系.4、条件概率)|(B A P 与积事件概率)(AB P)(AB P 是在样本空间Ω内,事件AB 的概率,而)|(B A P 是在试验E 增加了新条件B 发生后的缩减的样本空间B Ω中计算事件A 的概率.虽然A 、B 都发生,但两者是不同的,一般说来,当A 、B 同时发生时,常用)(AB P ,而在有包含关系或明确的主从关系时,用)|(B A P .如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块 随机变量及其分布内 容 提 要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设Ω是随机试验的样本空间,如果对于试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常用大写字母Z Y X 、、等表示.根据其取值的情形可以分成为⎧⎪⎨⎪⎩离散型随机变量(可能取值至多可列)随机变量连续型随机变量(可能取值充满某个区间)奇异型随机变量2、离散型随机变量及其分布列如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的一切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).也称分布列,常记为1212n n x x x p p p ⎛⎫ ⎪⎝⎭ 其中1,0=≥∑i i i p p .常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为(1,)((1,))X b p B p ,分布列为10,1,0,)1(}{1<<=-==-p k p p k X P k k 或 01~X q p ⎛⎫ ⎪⎝⎭(2)二项分布:记为(,)((,))X b n p B n p ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n k k n (3)泊松分布,记为()(())X P πλλ,概率函数0,,1,0,!}{>===-λλλ k k e k X P k泊松定理: 设0>λ是一常数,n 是任意正整数,设λ=nnp ,则对于任一固定的非负整数k ,有!)1(lim k e p p C k k n n k n k n n λλ--∞→=-.根据泊松定理可得,当n 很大(大于50)且p 很小(一般是小于0.05)时,二项分布可以用泊松分布近似代替,即!)1(k e p p C k k n k k n λλ--≈-,其中np =λ3、分布函数及其性质 分布函数的定义:设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F称为随机变量X 的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性: )(1)(0+∞<<-∞≤≤x x F ; (2)单调性: 如果21x x <,则)()(21x F x F ≤;(3)右连续: 即)()0(x F x F =+;(4)极限性: 1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5)完美性: )()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<.4、连续型随机变量及其分布如果对于随机变量X 的分布函数)(x F ,存在非负函数()p x ,使对于任一实数x ,有()()xF x p t dt -∞=⎰,则称X 为连续型随机变量.函数()p x 称为X 的概率密度函数,简称为概率密度.概率密度函数具有以下性质:(1)()0p x ≥; (2)()1p x dx +∞-∞=⎰; (3)2112{}()x x P x X x p t dt <≤=⎰; (4)0}{1==x X P ;(5)如果()p x 在x 处连续,则()()F x p x '=.常用连续型随机变量的分布:(1)均匀分布:记为),(~b a U X ,概率密度为1,,()0,a x b p x b a ⎧≤≤⎪=-⎨⎪⎩其它分布函数为⎪⎩⎪⎨⎧>≤≤--<=b x bx a a b a x a x x F ,1,,0)(性质:若a c d b <<<,则().d c P c X d b a -<<=- (2)指数分布:记为()X Exp θ,概率密度为/1,0,()0,x e x p x θθ-⎧>⎪=⎨⎪⎩其他, 分布函数为/1,0,()0,x e x F x θ-⎧->=⎨⎩其他. 无记忆性质:对于任意,0,s t >有{|}{}P X s t X s P X t >+>=>.(3)正态分布:记为),(~2σμN X ,概率密度为2()2(),x p x X μσ--=-∞<<+∞,相应的分布函数为 ⎰∞---=x x dt e x F 22)(21)(σμπ当1,0==σμ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别用)(x ϕ和)(x Φ表示X 的密度函数和分布函数,即⎰∞---=Φ=x t x dt e x e x 222221)(,21)(ππϕ 性质:① 若2(,)X N μσ,则其密度函数关于x μ=对称,从而1()()2P X P X μμ>=<=. ② )(1)(x x Φ-=-Φ.③ 若2(,)X N μσ,则(0,1)X N μσ-,即一般正态分布),(~2σμN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σμ-Φ=x x F .5、随机变量函数的分布 (1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2):表2-2则)(X g Y =任为离散型随机变量,其分布列为(表2-3):表2-3i y 有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为()X p x ,则)(X g Y =的概率密度有两种方法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0,)()]([)(βαy y h y h f y f XY .其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数. 2)分布函数法:先求)(X g Y =的分布函数∑⎰∆=≤=≤=k y xY k dxx fy X g P y Y P y F )()(})({}{)(然后求 ()[()]Y Y p y F y '=. 结论:若2(,)X N μσ,则22(0)(,)aX b a N a b a μσ+≠+.疑 难 分 析1、随机变量与普通函数随机变量是定义在随机试验的样本空间Ω上,对试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间. 2、分布函数)(x F 的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数)(x F 左连续,但大多数书籍定义分布函数)(xF为右连续. 左连续与右连续的区别在于计算)(xF时,xX=点的概率是否计算在内.对于连续型随机变量,由于}{1==xXP,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于}{1≠=xXP,则定义左连续或右连续时)(xF值就不相同,这时,就要注意对)(xF定义左连续还是右连续.第三块 多维随机变量及其分布内 容 提 要基本内容:多维随机变量及其分布函数 二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数 12(),(),,()(,,),n X X X F P ωωωΩ如果随机变量定义在同一概率空间上则称12(),(),,()n X X X X ωωωω=()(为n 维(n 元)随机变量或随机向量.n 当=2时,称为二维随机变量,常记为(,).X Y 联合分布函数的定义: 设12(),(),,()n XX X X n ωωωω=()()是维随机变量,,nx R n ∀∈则称元函数121122(,,,),,,)n n n F x x x P X x X x X x =≤≤≤(为随机向量12(),(),,()n X X X X ωωωω=()(的联合分布函数2,,n =特别时称为二维联合分布函数即(,)(,)F x y P X x Y y =≤≤二维联合分布函数具有以下基本性质:(1)单调性: ),(y x F 是变量x 或y 的非减函数; (2)有界性: 1),(0≤≤y x F ;(3)极限性:1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,,但注意(,)(),(,)()Y X F y F y F x F x +∞=+∞=,其中()X F x 与()Y F y 分别表示X 与Y 的分布函数.(4)连续性: ),(y x F 关于x 右连续,关于y 也右连续;(5)非负性: 对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表示随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、二维离散型随机变量及其联合分布列如果二维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为二维离散型随机变量.设),(Y X 为二维离散型随机变量,它的所有可能取值为,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布列.表3.1联合分布列具有下列性质:(1)≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、二维连续型随机变量及其概率密度函数如果存在一个非负函数),(y x p ,使得二维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有⎰⎰∞-∞-=xydydx y x p y x F ),(),(,则称),(Y X 是二维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性 对一切实数y x ,,有0),(≥y x p ; (2)规范性1),(=⎰⎰+∞∞-+∞∞-dy dx y x p ;(3)在任意平面域D 上,),(Y X 取值的概率⎰⎰=∈Ddxdyy x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p y x y x F =∂∂∂.常用连续型随机变量的分布:(1) 设D 是平面上的一个有界区域,其面积为A .若二维随机变量(,)X Y 的联合概率密度为1,(,),(,)0,x y D f x y A ⎧∈⎪=⎨⎪⎩其它,则称(,)X Y 服从区域D 上的二维均匀分布.(2) 二元正态分布:其密度函数不要求背,具体的请见课本P67. 4、二维随机变量的边缘分布设),(Y X 为二维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X },{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘(边际)分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i 分别为),(Y X 关于X 和关于Y 的边缘分布列.当),(Y X 为连续型随机变量,则称⎰⎰+∞∞-+∞∞-==dxy x p y p dy y x p x p Y X ),()(,),()( 分别为),(Y X 关于X 和关于Y 的边缘密度函数. 性质:221212(,)(,,,,)X Y N μμσσρ,则211(,)XN μσ,222(,)Y N μσ.5、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对几乎一切实数y x ,,有)()(),(y p x p y x p Y X =.性质:221212(,)(,,,,)X Y N μμσσρ,则0X Y ρ=⇔与相互独立.6、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdyy x p z F zy x Z ⎰⎰≤=),(),()(ϕ.对于一般的函数ϕ,求()Z F z 通过分布函数的方法,如第三章,习题29就是使用这种方法.但对于以下的几个,更加常用的是公式的方法. 若),(Y X 为连续型随机变量,概率密度函数为),(y x p .(1)Y X Z +=的分布:dyy y z p dx x z x p z p Z ⎰⎰+∞∞-+∞∞--=-=),(),()(.特别地,若X 与Y 相互独立,则()()()()().Z X Y X Y p z p x p z x dx p z y p y dy +∞+∞-∞-∞=-=-⎰⎰(2)Z X Y =-的分布:()(,).Z p z p z y y dy +∞-∞=+⎰特别地,若X 与Y 相互独立,则()()().Z X Y p z p z y p y dy +∞-∞=+⎰(3)Z XY =的分布:1()(,).||Z zp z p x dx x x+∞-∞=⎰特别地,若X 与Y 相互独立,则1()()().||Z X Y zp z p x p dx x x+∞-∞=⎰(4)Y XZ =的分布若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰+∞∞-=dyy yz p y z p Z ),()(.性质:①若(,),(,),(,)X b n p Y b m p X Y X Y b n m p ++且与相互独立,则.②若1212(),()().XY X Y X Y πλπλπλλ++且与相互独立,则③若221122(,),(,)XN YN μσμσ,且X 与Y 相互独立的,则22221212(,).X bY cN a b c a b μμσσ+++++a7.最大值与最小值的分布 1,,n X X n 设是相互独立的个随机变量,则1()()(max(,,))Y n F y P Y y P X X y =≤=≤1()ni i F y ==∏1()()(min(,,))Y n F y P Y y P X X y =≤=≤11(1())n i i F y ==--∏其中的()i F y 表示的是随机变量i X 的分布函数.疑 难 分 析1、事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?如同仅当事件B A 、相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、二维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由)|()(),(|x y p x p y x p X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果Y X 、相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=.说明当Y X 、独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量Y X 、相互独立,是指组成二维随机变量),(Y X 的两个分量Y X 、中一个分量的取值不受另一个分量取值的影响,满足}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有)()()(B P A P AB P ⋅=.两者可以说不是一个问题.但是,组成二维随机变量),(Y X 的两个分量Y X 、是同一试验E 的样本空间上的两个一维随机变量,而B A 、也是一个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块 随机变量的数字特征内 容 提 要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量X 的分布列为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k kk p x 绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果广义积分⎰+∞∞-dxx xp )(绝对收敛,则称此积分值⎰+∞∞-=dxx xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(; (2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+; 对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独立,则)()()(2121X E X E X X E =; 对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望(1)设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.设连续型随机变量X 的密度函数为)(x p ,则X 的函数)(X g Y =的数学期望为⎰+∞∞-=dxx p x g x g E )()()]([,式中积分绝对收敛.(2)若二维离散型随机变量(,)X Y 的联合分布列为3、随机变量的方差设X 是一个随机变量,则})]({[)()(2X E X E X Var X D -==称为X 的方差.)()(X X D σ=称为X 的标准差或均方差.计算方差也常用公式22)]([)()(X E X E X D -=. 方差具有如下性质:(1)设C 是常数,则0)(=C D ;(2)设C 是常数,则)()(2X D C CX D =; (3)22()()()2(())(())D aX bY a D X b D Y abE X E X Y E Y ±=+±--=22()()2cov(,)a D X b D Y ab X Y +±=22()()2a D X b D Y ab ρ+±. 特别地,若X Y 与相互独立,则22()()()D aX bY a D X b D Y ±=+.更加一般地,对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X D X D X D X X X D +++=+++ ;(4)0)(=X D 的充要条件是:存在常数C ,使))((1}{X E C C X P ===. 4、几种常见分布的数学期望与方差:(1)~(1,),.(),()(1)X B p E X p D X p p ==-; (2))1()(,)().,(~p np X D np X E p n B X -==; (3)~().(),()X P E X D X λλλ==;(4)12/)()(,2/)()().,(~2a b X D b a X E b a U X -=+=; (5)()XExp θ,则2(),()E X D X θθ==;(6)22)(,)().,(~σμσμ==XDXENX.6、协方差与相关系数随机变量),(YX的协方差为)]}()][({[),cov(YEYXEXEYX--=.它是1+1阶混合中心矩,有计算公式:)()()(),cov(YEXEXYEYX-=.随机变量),(YX的相关系数为DYDXYXXY),cov(=ρ.相关系数具有如下性质:(1)1≤XYρ;(2)⇔=1XYρ存在常数ba,,使}{baXYP+==1,即X与Y以概率1线性相关;(3)若YX,独立,则0=XYρ,即YX,不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则2[(,)]Cov X Y DX DY≤⋅疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数XY ρ反映了随机变量X 和Y 之间的什么关系?相关系数XY ρ是用随机变量X 和Y 的协方差和标准差来定义的,它反映了随机变量X 和Y 之间的相关程度.当1=XY ρ时,称X 与Y 依概率1线性相关;当0=XY ρ时,称X 与Y 不相关;当10<<XY ρ时,又分为强相关与弱相关.4、两个随机变量X 与Y 相互独立和不相关是一种什么样的关系?(1)若X 、Y 相互独立,则X 、Y 不相关.因为X 、Y 独立,则)()()(Y E X E XY E =,故0)()()(),cov(=--=Y E X E XY E Y X ,从而0=XY ρ,所以X 、Y 不相关.(2)若X 、Y 不相关,则X 、Y 不一定独立.如:⎩⎨⎧≤+=.,0,1,/1),(22 其它 y x y x p π 因为0)()(==Y E X E ,4/1)()(==Y D X D 0,0),cov(==XY Y X ρ,知X 、Y 不相关.但π/12)(2x x p X -=,π/12)(2y y p Y -=,)()(),(Y p x p y x p y X ≠,知X 、Y 不独立.(3)若X 、Y 相关,则X 、Y 一定不独立.可由反证法说明.(4)若X 、Y 不相关,则X 、Y 不一定不相关.因为X 、Y 不独立,)()()(Y E X E XY E ≠,但若0)()()(===XY E Y E X E 时,可以有0=XY ρ,从而可以有X 、Y 不相关.但是,也有特殊情况,如),(Y X 服从二维正态分布时,X 、Y 不相关与X 、Y 独立是等价的.第五块 大数定律和中心极限定理内 容 提 要基本内容:切比雪夫(Chebyshev )不等式,切比雪夫大数定律,伯努里(Bernoulli )大数定律,辛钦(Khinchine )大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace )定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式 22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(了解)(1)贝努利大数定律:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp n n P A n .贝努利大数定理给出了当n 很大时,A 发生的频率/A n n 依概率收敛于A 的概率,证明了频率的稳定性.(2)辛钦大数定律:设 ,,,,21n X X X 相互独立,服从同一分布的随机变量序列,且()k E X μ=(1,2,k =),则对任意给定的0>ε,有11lim {||} 1.nk n k P X n με→∞=-<=∑3、中心极限定律(1)林德贝格-勒维中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y n i i n i i n ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=x t n n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:(了解)设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ.记 ∑==n i i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++n i i i n X E B δδμ, 则随机变量n n i i n i i n i i n i i n i i n B X X D X E X Z ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==n i n i n i i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有 ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n X Y n k K n ,nY 为校对后错误总数.按中心极限定理(德—拉定理),有 )58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.。
概率论总复习知识总结-V1概率论总复习知识总结概率论是一门重要的数学分支,是研究随机现象的规律性的学科。
作为内容创作者,了解概率论的知识可以帮助我们更好地理解和分析各种事件的概率,从而更准确地撰写相关的文本。
下面是一份概率论总复习知识总结,希望对广大内容创作者有所帮助。
一、基本概念1.试验:具有明确结果的随机现象称为试验。
2.样本空间:样本空间是指试验所有可能结果的集合。
3.随机事件:样本空间的子集称为随机事件。
4.频率与概率:频率是指大量实验中某一事件出现的次数与实验总次数的比值。
而概率则是对于单次试验而言,某一事件发生的可能性大小。
二、概率的计算方法1.古典概型:指试验的样本空间具有等可能性质的情况,此时事件的概率可以通过公式P(A)=m/n来计算,其中m为事件A中等可能结果的个数,n为样本空间中等可能结果的总数。
2.几何概型:指试验的样本空间是由几何对象组成的情况,此时事件的概率可以通过计算几何面积、体积等来计算。
3.统计概型:指试验本身不存在等可能性质的情况,此时事件的概率通常通过频率来估计。
三、概率的基本性质1.非负性:对于任意事件A,有P(A)>=0。
2.规范性:对于样本空间Ω,有P(Ω)=1。
3.可列可加性:对于任意试验和两个事件A、B,有P(AUB)=P(A)+P(B)-P(AnB)。
四、条件概率与独立性1.条件概率:指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B),计算公式为P(A|B)=P(AnB)/P(B)。
2.乘法公式:对于任意试验和两个事件A、B,有P(AnB)=P(B)P(A|B)。
3.总概率公式:对于试验的样本空间Ω和一组互不相容的事件B1、B2、……、Bn,有P(A)=∑i=1~nP(Bi)P(A|Bi)。
4.独立性:指事件A和B的发生不相互影响,称为独立事件。
若事件A 和B独立,则有P(AnB)=P(A)P(B)。
五、随机变量与概率分布1.随机变量:指可以随机取到不同值的数学变量,通常用大写字母X、Y表示。
大学教案总结之《概率论与数理统计》期末复习目录第一章 (4)定义:一般的,称试验E 的样本空间Ω的子集为E 的随机事件。
.......................... 4 事件间的关系与运算 ....................................................................................................... 4 定义: ............................................................................................................................... 4 概率的性质: ................................................................................................................... 4 古典概率 ................................................................................................................................... 4 条件概率 .. (4)定义: (4)⑴条件概率的乘法公式:()()()A P A B P AB P |= (5)⑵全概率公式 ................................................................................................................... 5 ⑶贝叶斯公式 ................................................................................................................... 5 随机事件的独立性 ................................................................................................................... 5 第二章 一维随机变量及其分布 .. (6)定义:一维随机变量。