任务4:固体样品的红外吸收光谱绘制与解析
- 格式:ppt
- 大小:256.00 KB
- 文档页数:8
固体化合物红外光谱实验报告一、实验目的1、掌握红外光谱分析法的基本原理。
2、掌握傅立叶红外光谱仪的操作方法。
3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。
4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。
5、通过谱图解析推测未知化合物结构。
二、仪器及试剂1 仪器:傅立叶红外光谱仪,手动红外压片机及配套压片模具;红外灯干燥器;玛瑙研钵。
2 试剂:;KBr(光谱纯);未知化合物(C14H10O2)。
三、实验原理1.当样品受到频率连续变化的红外光照射时,物质分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比(或吸光度)与波数或波长关系曲线,就得到红外光谱,根据谱带的位置、峰形及强度,对待测样品进行分析。
2.将固体样品与卤化碱(通常是KBr)混合研细,并压成透明片状,然后放到红外光谱仪上进行分析,即为压片法。
四、实验步骤1.一般首次测试要先打开电脑及红外光谱仪主机电源,预热半小时;2.检查仪器工作状态并设置实验参数;3.根据样品的特点,在样品中加入一定比例的KBr并在玛瑙研钵中研磨均匀;4.将研磨好的样品装入模具中,然后用压片机压片;5.将试片在红外灯下干燥片刻后置于红外光谱仪主机的样品架上;6.采集样品的透射红外光谱图,并保存谱图;7.对谱图进行解析。
五、图谱解析首先该化合物的分子式为C14H12O2,则其不饱和度为:14-0.5*12+1=9. 推测其可能有芳香环。
其次该化合物在3350~3450cm-1之间有强而宽的吸收峰,推断其为O-H键的伸缩振动吸收峰。
其在1678cm-1有强的吸收峰,证明其含有羰基。
该化合物在3059 cm-1和3028cm-1的吸收峰为苯环上C-H键的伸缩振动吸收峰。
该化合物在2931 cm-1的吸收峰为饱和C-H键的伸缩振动吸收峰。
实验七固体样品的红外光谱测试及分析一、实验目的:1、学习有机化合物红外光谱测定的制样方法。
2、学习红外光谱仪的操作技术。
3、了解傅立叶变换红外光谱仪的基本构造及工作原理。
二、实验原理红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在0.78~300μm。
通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm (波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。
其中中红外区是研究、应用最多的区域。
红外区的光谱除用波长λ表征外,更常用波数(wave number)σ表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。
它最广泛的应用还在于对物质的化学组成进行分析。
用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。
其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。
它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。
而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。
因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。
因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。
只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。
实验七固体样品的红外光谱测试及分析
一、实验目的
1、了解红外光谱法的原理及操作过程;
2、样品的红外光谱测试及分析;
3、根据红外光谱数据的分析,指出样品的结构及其成分,从而确定
样品的性质。
二、实验原理
红外光谱法是检测物质分子结构的关键方法,是以红外光的吸收来测
量物质的光谱信息从而研究物质的结构特征。
红外光谱由于具有高分辨率
和精确的特点,故在其他光谱法中更胜一筹。
红外光谱可以帮助研究者快
速准确地检测物质中的有机化合物,并评估其结构,相比于其他光谱技术,红外光谱具有非常优越的灵敏度。
三、实验材料仪器
1、实验样品:选取一定量固体样品;
2、红外光谱仪:工作波段为4000-400cm-1;
3、光纤:连接实验仪器;
4、扫描器:对样品进行扫描,以获取光谱数据。
四、实验步骤
1、准备样品:体积为1cm3的固体样品,放置在实验仪器的样品显
示区域。
2、使用光纤连接实验仪器:将光纤接头连接到红外光谱仪和样品的样品显示区域,确保连接牢固,以便获得正确的数据。
3、设置参数:设置工作波段的范围和分辨率,扫描模式,持续扫描模式,扫描采样率等;
4、进行扫描:点击扫描按钮。
试验固体样品红外光谱的采集及分析当样品受到频率连续变化的红外光照耀时,分子汲取某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,从而形成的分子汲取光谱称为红外光谱,又称为分子振动转动光谱。
,V ---------------- 频率V --------向V --------------- 能量 -------- 原子内电千跃卑号子内电孑跃用 振动跃迁红外光区可分成三个区:近红外区、中红外区、远红外区。
其中中红外区是讨论和应用最多的区域,一般说的红外光谱就是指中红外区的红外光谱。
区域名称 波长(Nm) 波数(Cm ・1) 能级跃迁类型近红外区 泛频区0.75-2.5 13158-4000 OH 、NH 、CH 键的倍频汲取 中红外区 基本振动区2.5-25 4000-400 分子振动/伴随转动 远红外区 分子转动区 25-300 400-10 分子转动波数(Cmj),它表示电磁波在单位距离(Cm)中振动的次数,波长和波数均反映了光的频率。
一、红外光谱的三要素1 .峰位分子内各种官能团的特征汲取峰只消失在红外光波谱的肯定范围,如:C=O 的伸缩振动一般在1700CmT 左右。
2 .峰强红外汲取峰的强度取决于分子振动时偶极矩的变化,振动时分子偶极矩的变化越小,谱带强度也就越弱。
一般说来,极性较强的基团(如C=O)振动,汲取强度较大;极性较弱的基团(如OC,NY 等)振动,汲取强度较弱;红外汲取强度分别用很强(Vs)、强(s)、中(m)、弱(W)表示.3 .峰形不同基团的某一种振动形式可能会在同一频率范围内都有红外汲取,如-OH 、-NH 的伸缩振动峰都在3400~3200cm 1,但二者峰外形有显著不同。
此时峰形的不同有助于官能团的鉴别。
远 外红中线波 无电 射频区200nm 40Onm 80Onm 2. 5 JA 15 ∖k Im 5m短 ------------------ 波长λ----------------------------- A 长光波造区及能量跃迁相关图常见官能团红外汲取特征频率表可见附录二、红外光谱仪的作用一是分析某化合物中是否含有某些官能团。
实验三固态及液态样品(有机实验产物)的红外光谱制样、分析及计算机检索(实验36+37)一、目的1. 了解付立叶变换红外光谱仪及光栅型分光光度计的基本原理、功能,并进行比较;2. 学习用红外光谱法进行化合物定性分析;3. 学习固体样品片及液膜法制样的方法;4. 测定有机实验中的产物,并对谱图(主要官能团)进行解析。
5.学习谱图的计算机检索。
二、原理红外吸收光谱法(Infrared Absorption Spectrometry, IR)是以一定波长的红外光照射物质时,若该红外光的频率,能满足物质分子中某些基团振动能级的跃迁频率条件,则该分子就吸收这一波长红外光的辐射能量,引起偶极矩变化,而由基态振动能级跃迁到较高能量的激发态振动能级。
同时伴随着转动能级的跃迁。
检测物质分子对不同波长红外光的吸收强度,就可以得到该物质的红外吸收光谱。
各种化合物分子结构不同,分子振动能级吸收的频率不同,其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构剖析、定性鉴定和定量分析。
绝大多数有机化合物的基团振动频率分布在中红外区(波数4000-400cm-1)因此对中红外光谱研究和应用的也最多。
红外光谱法具有灵敏度高、分析速度快、试样用量少,而且分析不受试样物态限制,可用于物质的气态、液态和固态的分析。
该法是现代结构化学、有机化学和分析化学等领域中最强有力的测试手段之一。
在石油化工领域中也有着十分广泛的应用。
自1980年代以来,付立叶变换红外光谱(简称FTIR)法得到飞速发展,其仪器不断更新换代。
色散型红外分光光度计已趋于淘汰。
仪器的数据处理已使用通用型计算机,过去的手工检索也部分被计算机检索取代。
计算机检索可以用几种不同的方法(可任意选择),将未知样品谱图与谱库中的标准图对比,从而筛选出几个(可任选)匹配最好的谱图供选择,选择时要认真对比,当谱库中没有与测试样品相同的谱图时,也会给出结果,因此对计算机的检索结果必须进行分析。
红外光谱法的实验步骤与数据解读红外光谱法是一种常用的分析技术,通过测定物质在红外光波段的吸收特性来确定其分子结构和化学组成。
在实验中,我们需要按照一定的步骤进行操作,并对测得的数据进行解读。
一、实验步骤1. 样品制备:首先需要将待测样品制备成适当的形式。
对于固体样品,可以将其粉碎成细小的颗粒;对于液体样品,可以将其溶解在适当的溶剂中;对于气体样品,需要将其抽取到透明的气体室中。
2. 仪器调节:接下来需要将红外光谱仪正确调节。
调节过程中,注意对仪器进行准确校正,确保其能够提供稳定强度和频率的光源。
同时,还需保持仪器的环境条件(如温度、湿度等)相对稳定。
3. 校准参照物:在进行样品测试之前,需要通过使用已知物质来校准仪器。
校准参照物是已知其光谱特性的物质,通过与样品测量结果的对比,可以得出准确的测试数据。
4. 测量样品:将校准后的仪器用于测量待测样品。
选择合适的测量模式(如透射、反射或微片法),将样品放置在仪器的样品台上,并对其进行红外光谱扫描。
二、数据解读在进行红外光谱实验后,我们会得到一个曲线,即红外吸收谱。
对这个谱图的解读可以提供样品的结构和成分信息。
1. 波数解读:红外光谱图的横轴表示光的波长或波数。
波数是红外光波与被测物质相互作用的度量,不同的波数对应不同的分子振动。
根据波数的大小和位置,可以判断样品中存在的官能团或化学键。
2. 吸收强度解读:红外光谱图的纵轴表示光吸收强度。
强度越大,表示吸收越强。
可以根据吸收峰的高度或面积来判断样品中特定官能团的存在量或相对含量。
3. 功能团解读:红外光谱图上不同的波数峰对应不同的官能团。
常见的官能团峰包括羟基(OH)、醇(ROH)、羰基(C=O)、取代氨基(NH2)等。
通过对比谱图中峰的位置和强度,可以确定样品中是否存在特定的官能团。
需要注意的是,红外光谱解读是一项复杂的工作,需要经验和专业知识的支持。
对于初学者来说,建议参考相关的文献和专家指导,以便更准确地理解和解释实验结果。