红外光谱谱图解析实例
- 格式:ppt
- 大小:6.36 MB
- 文档页数:5
红外光谱法1. 试样的准备是整个光谱测定中极其重要的一步,因由杂质而引起的光谱吸收可以掩盖表面活性剂官能团的光谱吸收,或者导致吸收带的错误分布。
①试样中的无机盐、未转化的碱性物质、非表面活性剂物质、溶剂、水分(3300cm-1 1640cm-1)要设法去除②阴、阳离子和两性表面活性剂中含有金属、卤素反离子可能干扰分析,用离子交换树脂除去③阳离子表面活性剂中存在硫酸二甲酯或硫酸二乙酯或短链羧酸阴离子应尽量除去,否则会大大增大分析工作的复杂性④反离子可以从离子交换树脂柱上洗脱,并进行分析。
⑤混合活性物体系可用离子交换法进行分离注:在某些情况下(特别是在分子中可能存在羧酸时),可以分别获得在酸性和碱性pH下试样的红外光谱图。
表面活性剂水溶液的pH用NaOH或HCl调节至适当值,将水分蒸发干,残渣在50℃真空烘箱中细心地干燥以后再用于分析。
2. 操作步骤如果试样不是低熔点固体,最好用KBr压片法测定。
将1份经仔细碾碎了的试样与大约20份碾碎了的KBr混合(在碾磨时,可以加几点氯仿,以保证内部混合均匀)。
如果试样是液体,则制成薄膜3. 光谱解析要从红外谱图中获得被测物的准确分子结构,还必须与标准物质或标准红外谱图进行对照。
(1) 肥皂肥皂在1568cm-1呈特征吸收。
近羧基的碳链上引入吸电性基团,则特征吸收移向高波数。
由羧酸盐水解为羧酸时,此吸收消失,而出现1710cm-1吸收。
硬脂酸钠(KBr法)(2)磺酸盐和硫酸(酯)盐十四烷基硫酸盐(KBr法)链烷磺酸钠(KBr法)月桂基聚氧乙烯醚(3EO)硫酸钠(液膜法)烷基硫酸酯(AS)以1245cm-1、1220cm-1的强吸收,1085cm-1和835cm-1的吸收为特征。
AES(月桂基聚氧乙烯醚硫酸钠):除1220cm-1附近吸收外,在1120cm-1附近有宽吸收,随着环氧乙烷(EO)加合数增加,1120cm-1吸收带增强。
壬基酚聚氧乙烯醚(5EO)硫酸钠(液膜法)支链和直链烷基苯磺酸除1180cm-1的强而宽的吸收外,还有1600cm-1、1500cm-1和900-700cm-1的芳香环吸收,1135cm-1和1045cm-1的-SO3吸收为特征支链烷基苯磺酸钠(KBr法)直链烷基苯磺酸钠(KBr法)支链烷基苯磺酸钠(KBr法)琥珀酸乙基己基二酯-2'-磺酸钠(KBr法)C18-α-烯基磺酸钠(KBr法)(3) 磷酸(酯)盐烷基磷酸(酯)盐有1290~1235cm-1和1050~970cm-1 (主要在1030~1010cm-1)(p-o-c)两处宽而强的吸收。
图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为-CH2-的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2-的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2-的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
苯甲酸的红外光谱测定及谱图解析—KBr晶体压片法制样一、目的要求(1)学习用红外吸收光谱进行化合物的定性分析,(2)掌握用压片法制作固体试样晶片的方法;(3)熟悉红外分光光度仪的工作原理及其使用方法。
二、实验原理当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。
此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到了较高的振动能级),从而产生红外吸收光谱。
如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。
用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。
由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。
在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内,例如,CH3(CH2)5CH3、CH3(CH2)4C≡N和CH3(CH2)5CH=CH2等分子中都有-CH3,-CH2-基团,它们的伸缩振动基频峰都出现在同一频率区域内,即在<3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动,例如C=O基团的伸缩振动基频峰频率一般出现在1850~1860cm-1范围内,当它位于酸酐中时,C=O为1820~1750cm-1、在酯类中时,为1750~1725cm-1;在醛中时,为1740~1720cm-1;在酮类中时,为1725~17l0cm-l;在与苯环共轭时,如乙酞苯中C=O为1695~1680cm-1,在酰胺中时,C=O 为1650cm-1等。
因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。
红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。
在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。
要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。
这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。
低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。
这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。
3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。
H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。
2、某化合物的分子式为C 3H 6O ,根据其红外光谱图推测结构308029292876 2861 164213791459 1467 993910 Liquid filmLiquid film328130122861 16451423 11131028 993 9184、某化合物的分子式为C 8H 8O ,根据其红外光谱图推测结构KBr3291 33692930 29592876 1607146513881072904763Liquid film习题答案:1.解: U= 6 + 1 – 12/2 = 1①3080 cm-1υ=CH②2962 cm-1, 2929 cm-1, 2876 cm-1, 2861 cm-1υCH3as, υCH2as, υCH3s, υCH2s③1642 cm-1υC=C④1459 cm-1, 1379 cm-1δ CH3as, δCH2, δCH3s,1379 cm-1吸收峰没有裂分说明无偕二甲基和叔丁基⑤993 cm-1, 910 cm-1γ=CH, 说明烯键单取代,为端基烯键。
①,③和⑤说明化合物中含CH2=CH-基团②和④说明化合物含烷烃链根据上述解析,可以推测化合物可能是CH2=CH-(CH2)3-CH3验证:化合物的不饱度和计算的不饱和度吻合,可查阅标准谱图和该谱图比对,确认化合物。
2.解: U= 3 + 1 – 6/2 = 1①3281 cm-1υOH②3012 cm-1 υ=CH③2861 cm-1υCH2④1645 cm-1υC=C⑤1423 cm-1δ CH2⑥1113 cm-1, 1028 cm-1υC-O和υC-C⑦993 cm-1, 910 cm-1γ=CH, 说明烯键单取代,为端基烯键。
①和⑥说明化合物含- OH②、④和⑦说明化合物中含CH2=CH-基团③和⑤说明化合物含-CH2-根据上述解析,可以推测化合物可能是CH2=CHCH2OH验证:化合物的不饱度和计算的不饱和度吻合,可查阅标准谱图和该谱图比对,确认化合物。