综合评价预测学生学习成绩的数学模型
- 格式:doc
- 大小:201.00 KB
- 文档页数:6
学生成绩评价是一项重要的教育工作,数学建模可以为此提供一种科学而客观的方法。
下面是一个基于数学建模的学生成绩评价模型的示例:
1. 数据收集与处理:
-收集学生的考试成绩和其他相关数据,例如平时作业、课堂表现等。
-对数据进行预处理,如去除异常值、标准化等。
2. 成绩指标的选择:
-选择一些重要的成绩指标,如总分、平均分、标准差等,来反映学生的整体水平和成绩分布情况。
3. 成绩权重的确定:
-对不同的成绩指标进行权重分配,以反映各指标在总体评价中的重要程度。
-权重可以通过专家评估、学校规定或者统计分析等方式确定。
4. 成绩综合评价模型:
-将各项成绩指标按照权重进行加权求和,得到学生的综合评价分数。
-可以采用加权平均法、熵权法、主成分分析等方法来计算综合评价分数。
5. 成绩等级划分:
-根据学校或教育机构的规定,将综合评价分数划分为不同的等级或级别,如优秀、良好、及格等。
-划分标准可以根据历史数据、教育政策或者专家意见来制定。
6. 模型评估与优化:
-对建立的评价模型进行评估,检验其准确性和公平性。
-根据评估结果,对模型进行调整和优化,以提高评价的准确性和科学性。
需要注意的是,学生成绩评价是一个复杂的过程,除了数学建模外,还需要考虑教学环境、教师教育水平、学生特点等因素的影响。
数学建模只是辅助评价的工具之一,最终的评价结果需要结合多方面的信息和专业判断进行综合考量。
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值•例如,旅游景区质量等级有5A、4A、3A、2A 和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是(-10%,+5%)x标的价,超过此围的都将被淘汰,因此投标报价为区间型指标•投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷 等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望 取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必 须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同 的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标,将其转化为极大型指标时,只需对指标x 取倒数:jx'二丄,jxjx =M -x ,jjj其中M =max{x},即n 个评价对象第j 项指标值x..最大者.j 1<i<n 可IJ(2) 居中型指标化为极大型指标jj就可以将x 转化为极大型指标.j(3) 区间型指标化为极大型指标对区间型指标x ,x 是取值介于区间[a,b ]时为最好,指标值离该区间越远就越jjjj差.令M =max{x},m =min{x},c =max{a -m,M -b},取j1<i<n ijj1<i<n ijjjjjj对极小型指标xj或做平移变换:对居中型指标xj,令M =max{x}j1<i<n ij 2(x -m)jj —, M -m =V jj2(M -x)j—,M -m,m =min{x},取j1<i<n ijM +mm <x <—J j ;j J2M +m —J j <x <M.2jj就可以将区间型指标x 转化为极大型指标.j类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数 值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n个评价对象S,S,,S ,每个评价对象有m 个指标,其观测值分别为12nx(i=1,2,,n;j —1,2,,m).ij⑴标准样本变换法令••••••x —xx *—j (1<i <n ,1<j <m ).ijsj其中样本均值x -丄2x ,样本均方差s -£(x —x )2,x *称为标准观测值.jn ij j Vn ijjiji —11i —1特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(s —0)的情况不适用;对于要求指标评价值x *>0的评价方法(如jij 熵值法、几何加权平均法等)不适用.(2)线性比例变换法对于极大型指标,令xx *—j (max x 丰0,1<i<n ,1<j<m ). ijmax x 1<i<nij1对极小型指标,令minxx *—j(1<i <n,1<j <m). ij x或xx *=1-j —(maxx 丰0,1<i <n,1<j <m ).a -x 1——jjc j1,x —b 1——j jx <a;jja <x <b; jjjx >b.jj©maxx 1<i <n ij1<i <nij该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的x *=1和x *=0不一定同时出现.ijij特点:当x >0时,x *e[0,1];计算简便,并保留了相对排序关系.ijij(3)向量归一化法对于极大型指标,令优点:当x >0时,x *e[0,1],即£(x *)2=1•该方法使0<x *<1,且变换前ijij ij ij i =1后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令x -minxx *=ij ——1<i <n ij ——(1<i <n,1<j <m). ijmaxx -minx1<i <n ij 1<i <n ij对于极小型指标,令maxx -xx *=——_ij ij ——(1<i <m,1<j <n). ijmaxx -minx1<i <n ij 1<i <n ij其优点为经过极差变换后,均有0<x *<1,且最优指标值x *=1,最劣指标值ijijx *=0•该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(s =0)的情况ijj不适用.(5) 功效系数法令x -minxx *=c +—ij_i <i <n ij —x d (1<i <n ,1<j <m ). ijmax x -min x1<i <nij1<i <n ij其中c ,d 均为确定的常数.C 表示"平移量”,表示指标实际基础值,d 表示"旋转量”,即表示"放大”或“缩小”倍数,则x *e[c,c+d].ij通常取c =60,d =40,即xx对于极小型指标,令x *ijx-minxx*=60+—j_i<i<n j—x40(1<i<n,1<j<m).ij maxx-minx1<i<n ij1<i<n ij则x*实际基础值为60,最大值为100,即x*e[60,100].ijij特点:该方法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为c,最大值为c+d•3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等•对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化•一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0•对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.030,5.0,7.0和9.0,对应关系如图8-2所示•介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很低低一般高很高01.03.05.07.09.010.0图8-2极大型定性指标量化方法(2)极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很高高一般低很低IIIIII I101.03.05.07.09.010.0模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法..隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.①以年龄为论域X,在论域X中取一固定样本点x=27.②设A*为论域X上随机变动的普通集合,A是青年人在X上以A*为弹性边界的模糊集,对A*的变动具有制约作用.其中xeA,或x电A,使得x对A的隶属关系000具有不确定性•然后进行模糊统计试验,若n次试验中覆盖x的次数为m,则称m为0n nx对于A的隶属频率.由于当试验次数n不断增大时,隶属频率趋于某一确定的常数,o该常数就是x属于A的隶属度,即m卩(x)=lim--.A0n*n比如在论域X中取x=27,选择若干合适人选,请他们写出各自认为青年人最适0宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n次试验中覆盖27岁的年龄区间的次数为m,则称m为27岁对于青年人的隶属频率,表8-4是抽样调查n统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到x=27o属于模糊集A的隶属度卩(27)=0.78.A③在论域X中适当的取若干个样本点x,x,,x,分别确定出其隶属度12n卩(x)(i=1,2,,n),建立适当坐标系,描点连线即可得到模糊集A的隶属函数曲线.Ai将论域X分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到•••青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.16.5~17.5670.51928.5~29.5800.62017.5~18.51240.96129.5~30.5770.59718.5~19.5125 1.0030.5~31.5270.20919.5~20.5129 1.0031.5~32.5270.20920.5~21.5129 1.0032.5~33.5260.20221.5~22.5129 1.0033.5~34.5260.20222.5~23.5129 1.0034.5~35.5260.20223.5~24.5129 1.0035.5~36.510.00824.5~25.51280.992⑵三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法•例如建立矮个子A1,中等个子A2,高个子A3三个模糊概念的隶属函数•设P3={矮个子,中等个子,高个子},论域X为身高的集合,取X=(0,3)(单位:m).每次模糊试验确定X的一次划分,每次划分确定一对数(g,n),其中匕为矮个子与中等个子的分界点,耳为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(g,n)看作二维随机变量,进行抽样调查,求得g、n的概率分布p(x)、P(x)后,再分别导出A1、A?和A3的隶属函数卩(X)、R(X)和g_H_A1A2卩(x),相应的示意图如图8-6所示.A3图8-5年轻人的隶属函数曲线图8-6由概率分布确定模糊集隶属函数通常E 和耳分别服从正态分布N (a ,G 2)和N(a11分别为_gv⑶模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形•若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向.偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为「1,x <a; 卩(x)斗A [f (x),x >a.偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为f0,x <a ;卩(x )=\A [f (x ),x >a .中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.① 矩形(或半矩形)分布2,G2),则A 1、A 2和A3的隶属函数其中Q (x)二i卩(x)=1—① A1卩(x )=①A21气—e 2dt .(、 x 一a 1丿/ 1GiC\x 一a 2(G 丿2—① 卩(x)=1一① A3x 一a 、Gi丿、x 一ac 2G丿(c)中间型0,x <a ;1,a <x <b ; 0,x >b .卩A x )=<此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布梯形(或半梯形)分布的示意图如图8-8所示.③ 抛物形分布(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型1,x<a; b —x<<, b —a 0,x>b.卩A(x )=10,x <a;x —a,a <x <b;b —a 1,x >b.0,x <a ,x >d ; ,a <x <b ;b -a 1,b <x <c ;d —x,c <x <d ;d —c(a)偏小型(b)偏大型(c)中间型 图8-8梯形(或半梯形)分布示意图抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型图8-9抛物形分布示意图④正态分布(a)偏小型(b)偏大型1,x<a;0,x<a;卩(x)=<(x—a]2卩(x)=<(T—a J2、e〔b,x>a. 1—e—l b丿,x>a.(c)中间型⑤柯西分布(a)偏小型(b)偏大型(c)中间型⑥r 型分布(a)偏小型 (b)偏大型 (c)中间型f l,x <a ; [e _k (x _a ),x >a .f 0,x <a ;卩(x)=kA[1一e _k (x _a ),x >a .卩(x)=<Ae _k (x _a ),x <a; 1,a <x <b; e _k (b _x ),x >b.1,1 x <a; 1+a (x -a)P (a >0,B >0)x >a.0, 1x <a ; Q ,x >a .1+a (x 一a )_P叮x)=1+a (x -a )B'(a >0,B 为正偶数).(a >0,B>0)。
学生成绩分析模型摘要本文依据数理统计的知识为基础,结合统计分析有关方法,针对大学学生成绩的显著性分析、课程相关性分析和课程增减管理问题,在充分合理的假设条件下,建立了相应的检验和分析模型,并经过多个软件的辅助计算和分析,经过深刻讨论和综合评价,最后给出了学校课程增减的具体方案,很好的解决了相应的问题.首先,对于问题1用EXCEL求出所给学生每学期的平均成绩,然后根据查资料所得学生成绩总体服从正态分布这一结论,我们做出样本均值假设,构造t统计量,利用数理统计中的假设检验原理,并用SPSS计算出结果为:该专业学生的成绩在不同学期显著,即不是显著性不同。
接着,对于两个班学生成绩的显著性,对每个学生的七个学期成绩求平均,即将原始数据分为班一和班二两个样本,对于这两个样本我们利用EXCEL中的样本等方差和等均值检验,对两个班的成绩进行检验分析,结果显示:两个班的学生成绩是显著性不同。
其次,针对问题2,根据题目所求A、B、C类学生成绩的相关关系(即是否显著性相关),我们在问题1的基础之上,通过EXCEL得到了A、B、C三类学生成绩平均成绩,通过SPSS的相关分析,我们初步得到了A、B、C存在显著相关的结论。
接着,我们没有直接选用传统的简单相关性分析法对于A、B、C具体的相关程度分析,而是选择了典型相关性分析法,通过MATLAB 的辅助计算,最终我们得出A、B、C三类课程的相关程度,得到了如下结论:(1)A类课程对B类课程有显著促进作用,(2)B类课程对C类课程有显著促进作用,(3)A类对B类影响与B对C影响程度相同接着,对于问题3,在问题1和2的分析和讨论之下,利用SPSS软件对各学生各科成绩进行了偏差分析,并结合直方图比较,再综合A、B、C类课程的重要程度以及相互影响,我们给出了学校每类课程可减的具体方案:A类可减课程:A11、A4、A2;B类可减课程:B10、B12、B8、B17、B16、B18;C类可减课程:C13;最后我们对建立的模型优缺点进行了分析,并说明了该模型在实际生活中的推广和应用,为学校对学生成绩的管理和课程设置的管理等有关方面的决策者具有一定的指导意义。
摘要对学生学习情况分析的目的是激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步。
然而,现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异;只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。
所以,一种能够全面、客观、公正的新型综合评价模式急需建立与应用。
来改变传统的评价方式以更好地促进全体同学学习的进步与发展。
本文通过对附件所给的数据进行全面的整合与分析,考虑各种可能因素对学习成绩的影响,并在此基础上建立了对学生学习状况的综合评价模型。
从解决以下几个问题来为学校提供更好的评价模型:1.针对问题一:对612名学生四个学期的综合成绩进行整体分析,经过对数据的初步处理和计算,绘制表格做出扇形图,更加直观的对计算结果(平均分、及格率、良好率、优秀率、极差等)的解析客观整体的评价学生学习的状况。
运用matlab对其进行直方图的统计以及正态曲线的拟合,通过结果客观去全面公正的对整体学生的学习情况做出评价。
2.针对问题二:对具体到个人的学习状况的分析和评价以及模型的建立。
m.考虑到每位同学的其实分数的差异即基础不同的同学学习成绩进步空间的难易是有差别的。
每位同学在不同难度的试卷测试中的发挥是不一样的,我们在建立模型的过程中引进了奖罚因子(a)并用多种微分方差和指数方程来转换测验成绩,使较低水平学生大幅增长的成绩与较高水平的选手小幅增长的成绩可以进行比较。
n.其次考虑到原始分一般不能直接反映出考生间差异状况,不能刻划出考生相互比较后所处的地位,也不能说明考生在其他等值测试上应获得什么样的分值。
我们采用了标准分计算法——将原始分数与平均分数之差除以标准差所得的商数,来评定对象之间的差异,它是以标准差为单位度量原始分数离开平均数的度量,标准分是一个抽象值,不受原始单位的影响,并且接受代数方法的处理。
综合上述因素,我们建立了标准分与进步度结合的综合评价数学模型。
教育评价的统计模型研究第一章绪论随着教育事业的发展,教育评价越来越受到重视。
教育评价的目的是根据一定的标准,对学生的学业成绩、素质发展等方面进行综合评定,为教育决策提供科学依据。
因此,建立科学合理的教育评价体系对于提高教育质量和促进学生全面发展至关重要。
本文围绕教育评价的统计模型进行研究,探讨其在教育评价体系中的应用以及改进方法。
第二章教育评价的统计模型教育评价的统计模型是指用数学模型、数据统计方法等手段对学生的学业成绩、素质和能力进行评价的方法。
常见的教育评价统计模型包括直接评价模型、单因素分析模型、多因素分析模型、结构方程模型等。
2.1 直接评价模型直接评价模型是比较简单的评价方法,直接根据学生的成绩进行评价。
这种方法主要适用于初步评估或单一项评价的情况。
但是,这种方法存在一些不足之处,如只能评价学生成绩,不能全面反映学生的素质和综合能力等问题。
2.2 单因素分析模型单因素分析模型是通过分析单个因素对学生学习成绩的影响程度,从而评价学生的表现。
单因素分析模型主要适用于特定研究问题的探索。
但是,由于忽略了其他因素的影响,这种方法容易导致评价结果出现偏差。
2.3 多因素分析模型多因素分析模型是根据多个因素的影响程度对学生进行综合评价的方法。
这种方法能够较为全面地反映学生的表现,但需要选择合适的因素,并且需要进行权重分配。
2.4 结构方程模型结构方程模型是一种较为复杂的评价方法,它能够综合考虑多个因素之间的相互作用关系,并将其转化为数学模型。
这种方法需要大量的数据支持,并且需要对模型进行验证和修正。
第三章教育评价的应用教育评价统计模型在教育评价体系中的应用主要包括以下几个方面:3.1 学生评价学生评价是教育评价的基本内容,通过教育评价统计模型可以对学生的学业成绩、素质和能力等方面进行综合评价,并据此给出科学的评价结果。
3.2 教师评价教师评价是对教师教学能力的评价,教育评价统计模型可以通过分析教师的授课成绩、课堂评价表现等来评估教师的教学水平。
学生学业成绩分析的数学模型1. 问题提出众所周知,初高中现今实行以“绝对分数”来分析一场考试中学生的成绩情况,分析学生学习状况的目的是激励优秀学生努力学习取得更好的成绩,同时为教师如何正确地引导学生学习提供帮助。
但是以“绝对分数”来分析只能对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。
因此,我们需要更为全面、客观、合理的方式来进行评价[1]。
我们搜集了金华二中高三某班的521名学生连续四个学期的数学成绩。
为了更直观地分析和比较四个学期中学生成绩的整体变化以及各学期的的差异,了解学生的学习能力、总体学习成绩等,运用统计学知识[2],对这521名学生的整体成绩情况进行了包括每个学期整体成绩的平均值、最大值、最小值、标准差、优秀率等多项指标在内的详细分析。
同时,为了更合理、科学地了解学生整体成绩特征的发展趋势,可以用偏度和峰度进行分析。
在数据处理[3]时把成绩分为四个等级,120分及以上的为优秀,105分到120分之间的为良好,90分到105分之间的为合格,小于90分的为不及格,来分析学生整体学习状态发展趋势。
最终对学生的整体情况进行全面、客观、科学的分析说明。
2. 模型建立2.1 模型一的建立我们先从整体评价学生成绩开始,对这521名学生的整体成绩情况进行包括每个学期整体成绩的平均分、最高分、最低分、标准差、极差、及格率等多项指标在内的详细分析。
为了进一步比较每个学期中学生整体成绩较各学期平均分的偏向程度和高分层人数的比例,运用偏度(Skewness)公式和峰度(Kurtosis):其中,μ表示每学期学生成绩的平均分,σ表示每学期学生成绩的标准差,x表示每学期中学生的成绩,S每个学期学生成绩的偏度,K表示每个学期学生成绩的峰度。
2.2 模型二的建立为了更加直观、清晰地?^测每个学期学生成绩的分布情况,了解每个学期中学生的基础掌握和四个学期中学生学习态度的整体变化。
利用直方图中各频率面积分布同时,结合正态分布公式如下:来进一步分析学生的每个学期成绩整体分布和学习状况。
客观、合理的评价学生综合学习情况的数学模型合肥学院第六届数学建模竞赛参赛论文●团队编号:●选择赛题:【A】【B】注:用2B铅笔将所选择的题目涂黑●论文题目:客观、合理的评价学生学习状况●参赛队员个人信息:姓名性别系别班级学生证号签名10级数学与应1007021017丁学明男数理系用数学(1)班09级数学与应汪於先男数理系0907021042用数学(1)班09级数学与应0907021038张跃女数理系用数学(1)班注:前五栏为四号宋体,最后一栏用黑色中性笔签名。
客观、合理的评价学生学习状况摘要:测试成绩对于学生、教师和教育管理者都很重要。
传统的对学生成绩的评价,只是单纯根据学生的“绝对分数”或者“绝对排名”作为评价,这种评价方法只能体现量化出学生的基础,而不能体现量化出学生学习的稳定性、潜力、变化趋势等等指标。
随着教学改革的不断深人, 科学评价教学质量极为重要。
考试是检验教学质量的重要手段。
然而, 考试成绩能否真实地反映教学质量和学生水平试题是否科学、准确, 它们在多大程度上是有效的和可靠的,但还是局限的,有失公允的。
本文通过科学合理的分析评价方法,不再单纯依据学生的“绝对分数”评价学生的学习状况,对学生学习状况做出全面、客观、合理的整体评价。
问题一:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:1、模糊层次分析模型:首先,为了体现学生成绩进步在整体评价中的作用,学生每个学期的成绩和进步情况。
通过模糊层次分析方法得出最后求出各个因素的权重向量为:(0.024,0.040,0.069,0.117,0.188,0.188,0.375)W =接着利用模糊层次分析方法得出学生i 学习状况的综合评定指标如下:11223344556677i i i i i i i i C k x k x k x k x k x k x k x =*+*+*+*+*+*+*2、成绩标准化模型:采用对数变换将负偏态的成绩分布正态化,并用Matlab 进行了正态检验。
客观、合理评价学生学习状况的数学模型摘 要目前对学生学习状况的评价相对比较主观,以测试成绩的高低来评价学生的学习优劣。
这种评价方式单一,忽略了不通基础水平同学的进步程度以及测试本身的局限性,为了更好鼓励基础相对较差的学生努力学习,我们需要建立一个客观、更合理的评价学生学习状况的数学模型。
通过以上考虑,本文试图通过回答以下几个问题来达到目的: 问题一:通过分析题目所给的612名学生的整体成绩情况,其中包括每个学期整体的平均成绩、及格率、最高分、最低分、方差、标准差等多项指标有关,通过所给数据,得到图表。
整体情况为:及格率均在90%以上,并逐年增长,平均分在70分以上,整体成绩良好。
问题二:为了体现学生成绩进步在整体评价中的作用,采用学生每个学期的成绩和进步情况作为指标, 我们采用了两种方法:模糊层次分析法:考虑到每次考试的难易度不同先通过分数转换将学生的成绩转换成“标准分”,且进步度=进步率×学生的成绩平均分。
通过糊层次分析方法得出最后求出各个因素的权重向量为:)2400.0,1800.0,1800.0,1030.0,1033.0,0967.0,0900.0('=W ,再利用模糊层次分析方法得出学生i 学习状况的综合评定指标如下:11223344556677i i i i i i i i C k x k x k x k x k x k x k x =*+*+*+*+*+*+*灰色关联分析法:利用标准分和由黑尔指数法求得的进步分数进行评价。
根据灰色关联度分析法得到各指标的关联度,又由于灰色关联分析法是等权划分,不能显示出各指标的重要性差异,所以我们运用模糊层次分析法中得到的权重。
由此可以得到较为客观的综合评价模型:总和评价结果=各个指标的权重与取值的乘积之和。
问题三: 根据不同的评价方法预测这些学生后两个学期的学习情况:多元线性回归预测模型:只考虑原先度考试成绩对后来考试成绩的影响。
评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
学⽣学习情况的评价与预测模型学⽣学习情况的评价与预测模型【摘要】在评价学⽣的学习状况时,科学准确地计算出学⽣的名次及进步情况具有重要意义。
评价学⽣学习状况的⽬的是激励优秀学⽣努⼒学习取得更好的成绩,同时⿎励基础相对薄弱的学⽣树⽴信⼼,不断进步。
然⽽,现⾏的评价⽅式单纯的根据“绝对分数”评价学⽣的学习状况,忽略了基础条件的差异;只对基础条件较好的学⽣起到促进作⽤,对基础条件相对薄弱的学⽣很难起到⿎励作⽤。
本⽂针对题⽬中所给问题,对学⽣的学习成绩评价以及预测展开了全⾯分析。
⾸先,在问题(1)中,我们通过Excel数理统计的⽅法,将学⽣的分数划分为优秀(80-100)、良好(60-79)和不及格(0-59)三个分数段,并且统计出相应分数段的分布率。
然后,我们根据三个分数段建⽴加权函数,计算出所有学⽣在四个学期相应的加权值,进⽽得出学⽣的整体学习情况在进步。
其次,对于问题(2),我们针对现⾏评价⽅式中绝对分数的⽚⾯性,采⽤Hale进步分⽅法和…,全⾯客观地评价这些学⽣的学习状况。
在Hale模型中,利⽤Hale提出的指数函数模型,对全体学⽣的成绩进⾏计算分析评价。
利⽤Hale模型还对整体情况作了评测,得到学⽣成绩整体稳定,略有起伏的结论。
……..;在********模型中,…………….。
接下来的问题(3),在预测学⽣后两个学期的学习情况时,我们主要使⽤了两种预测⽅法。
⾸先,建⽴灰⾊预测模型,结合第⼀学期⾄第四学期的学⽣成绩,通过Matlab对后两个学期的成绩做出预测分析。
然后,同理预测出第四个学期的成绩,结合第四个学期的实际分数对该模型进⾏了检验。
其次,我们⼜建⽴了基于趋势⽐率法的“季节指数”的模型,把学⽣成绩的波动以⼀学年为⼀个周期并将学年中的1,2学期⽐作季节1,2最终得到⼀个较好的结果。
关键字:加权函数,Hale进步⽅法,灰⾊预测模型,趋势⽐率法1.问题重述评价学⽣学习状况的⽬的是激励优秀学⽣努⼒学习取得更好的成绩,同时⿎励基础相对薄弱的学⽣树⽴信⼼,不断进步。
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
学生成绩评价及预测模型摘要学生学业成绩的分析和评价, 是教学工作的重要环节, 也是学校常规管理的重要内容。
科学地分析评价学生的学业成绩, 不仅可以使教师准确掌握学生的学习状况, 还可以使学生了解到自己的学习情况, 也能为教学管理、改进教学提供必要的依据分析。
为了全面、客观、合理地评价学生的学习状况,本文通过在对基础数据进行统计分析的基础上,采用聚类分析中的k-均值聚类分析法对612名学生的成绩进行分类评价,建立了成绩评价模型。
首先,根据统计学知识,通过对附表所给的数据进行统计和整理,对612名学生的整体成绩情况进行了详细分析说明。
同时运用Excel软件画出学生成绩波动图、成绩等级饼状分布图等,并对各图进行了相关分析和说明,最终得出学生总体成绩分布属于负偏态分布,绝大多数学生成绩分布在60-90分之间的结论。
最后还运用非参数检验方法Kolmogorov-Smirnov检验、Shapiro- Wilk检验以及图示检验法(直方图、标准Q-Q图以及箱式检验图)对结论进行检验,使用SPSS软件进行绘图与计算,最终验证了学生成绩分布为非正态分布,且为负偏态分布的结论是正确的。
然后在数据分析的基础上上建立了基于快速聚类(k-均值聚类)分析的成绩评价模型。
在确定分类数为5类后,利用SPSS进行快速聚类分析计算,结果显示其聚类中心均值依次为:62.223755、89.029319、54.237350、34.400759、14.932222,各类人数分别为231、286、84、8、3,分类结果科学合理。
为了对612名学生后两个学期的学习情况进行预测,本文采用灰色预测理论中基于时间序列的GM(1,1)一阶一元微分方程模型建立了成绩预测模型,为了保证建模方法的可行性,先对数据列进行了必要的检验处理,并且通过残差检验和级比偏差值检验两种方法对灰色预测GM(1,1)模型进行检验,结果显示模型的预测结果能达到较高的要求。
最后利用Matlab编程得出预测函数,计算每个学生第5、6学期的成绩预测值以及前四个学期的拟合成绩,并且运用Kolmogorov-Smirnov检验、Shapiro- Wilk检验以及图示检验法对对第5、6学期成绩预测值的正态性分布进行检验,得出学生成绩的总体分布不服从正态分布,而是负偏态分布,与前四个学期的分析结果相吻合,因此可以判定预测结果是合理可靠的,具有较高的可信度。
客观、合理的评价学生学习状况的数学模型摘要:测试成绩对于学生、教师和教育管理者都很重要。
以测试成绩的高低来评价一个学生的学习优劣是传统教育中的一种重要手段。
但是,由于现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异以及测试成绩本身的局限性,只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用,因此,我们那需要建立一种更合理,科学的评价学生学习状况的体系。
基于以上考虑,本文试图通过以下几个方面的建模来达到目的:问题一:学生成绩整体情况评价:我们认为学生的整体情况包括每个学期整体的平均成绩、及格率、最高分、最低分、方差、标准差等多项指标有关,通过对所给数据的计算,并结全图表,我们对学生的整体情况进行全面、直观的说明,得出学生的整体情况为:四个学期的成绩主要分布在60—90分之间,76%同学成绩均在良好分数线以内,及格率也始终保持在90%以上,整体成绩良好。
问题二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:1、模糊层次分析模型:首先,为了体现学生成绩进步在整体评价中的作用,学生每个学期的成绩和进步情况。
通过模糊层次分析方法得出最后求出各个因素的权重向量为:(0.024,0.040,0.069,0.117,0.188,0.188,0.375)W =接着利用模糊层次分析方法得出学生i 学习状况的综合评定指标如下:11223344556677i i i i i i i i C k x k x k x k x k x k x k x =*+*+*+*+*+*+*2、成绩标准化模型:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。
从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。
然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。
摘要对学生学习情况分析的目的是激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步。
然而,现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异;只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。
所以,一种能够全面、客观、公正的新型综合评价模式急需建立与应用。
来改变传统的评价方式以更好地促进全体同学学习的进步与发展。
本文通过对附件所给的数据进行全面的整合与分析,考虑各种可能因素对学习成绩的影响,并在此基础上建立了对学生学习状况的综合评价模型。
从解决以下几个问题来为学校提供更好的评价模型:1.针对问题一:对612名学生四个学期的综合成绩进行整体分析,经过对数据的初步处理和计算,绘制表格做出扇形图,更加直观的对计算结果(平均分、及格率、良好率、优秀率、极差等)的解析客观整体的评价学生学习的状况。
运用matlab对其进行直方图的统计以及正态曲线的拟合,通过结果客观去全面公正的对整体学生的学习情况做出评价。
2.针对问题二:对具体到个人的学习状况的分析和评价以及模型的建立。
m.考虑到每位同学的其实分数的差异即基础不同的同学学习成绩进步空间的难易是有差别的。
每位同学在不同难度的试卷测试中的发挥是不一样的,我们在建立模型的过程中引进了奖罚因子(a)并用多种微分方差和指数方程来转换测验成绩,使较低水平学生大幅增长的成绩与较高水平的选手小幅增长的成绩可以进行比较。
n.其次考虑到原始分一般不能直接反映出考生间差异状况,不能刻划出考生相互比较后所处的地位,也不能说明考生在其他等值测试上应获得什么样的分值。
我们采用了标准分计算法——将原始分数与平均分数之差除以标准差所得的商数,来评定对象之间的差异,它是以标准差为单位度量原始分数离开平均数的度量,标准分是一个抽象值,不受原始单位的影响,并且接受代数方法的处理。
综合上述因素,我们建立了标准分与进步度结合的综合评价数学模型。
针对问题三:基于问题一中对数据的处理,以及考虑到现实情况中学习成绩的波动性,学生的成绩是一个随时间变化的变量,但是任何两个学期的学习成绩又是存在一定的相关性的因素。
我们选择了基于微分拟合方程的灰色预测模型。
(灰色系统理论认为,已有的数据携带者充分的信息,采用一定的数据生成方法,可以减少数据的随机性,增加数据的规律性,在此基础上拟合建模将会提高模型精度)因此我们对原始分数进行了一次累加,使得生成数规律性大大增强,从而提高模型可靠性。
并且利用残差分析对所建模型进行检验保证预测结果的精确度达到满意程度.针对每一问题,考虑多种实际因素,通过对数据的处理与计算。
建立了能够对学生成绩进行客观全面又公正的综合评价模型与合理的预测模型。
在反复检验与运算的基础上不断地对模型进行改进和完善。
相信所建模型能够帮助学校解决传统依靠绝对分数不能公正的评判学生学习状况的不足。
关键词:数据分析、正态分布、标准分、微分拟合、灰色预测模型一、问题的重新提出客观、科学地全面评价学生,是对学生个体的认可、也是对学生个体的鼓励;激励先进,勉励后进。
这是营造良好学风的关键之一。
而如何做到科学、全面的评价则是关键之关键。
根据题意,本文要解决的问题有:1请根据附件数据,分析和比较这四个学期的成绩,对这些学生的整体状况进行说明;2请根据附件数据,建立全面、客观、合理的评价这些学生的学习状况的数学模型;3根据你的模型,对学生后两个学期的成绩做预测。
一、模型的基本假设1.假设影响学习成绩的因素主要有真实成绩与进步程度;2.假设附件数据的两个零是有特殊情况所致,作为异样数据排除后,整体情况不会发生变动;3.假设每位学生的学习能力基本保持不变,都处于一个变动的状态,在这一状态下,变化幅度快慢的变化是相对渐变的,不会出现骤变的现象,并且是有规律可循的。
二、对学生整体的学习情况进行评价1. 学生整体成绩的预处理:利用附件中所给的数据进行统计,得到了学生成绩总体分布的情况如(图一)所示。
数据处理时把成绩分为四个等级,80分及以上的为优秀,70分到80分之间的为良好,60分到70分之间的合格,低于60分的为不及格。
第一学期第二学期第三学期第四学期平均分72.55 74.37 73.17 75.06最高分89.45 90.85 90.62 89.63最低分24.34 19.12 16.25 16.5极差65.11 90.85 74.37 89.63中位数74.32 76.64 74.19 76.54及格率90.36% 91.83% 94.28% 95.75%良好率44.93% 40.20% 49.51% 46.90%优秀率22.55% 33.66% 21.24% 31.70%图一(成绩整体分析表)有表格可知:学生平均分都在74分左右,虽上下浮动但整体水平稳定且较高。
及格率稳步上升第四学期可达95.75%表明学生整体成绩较好。
图(1)反映出学生的初级学习状况,从图示来图(2)中及格率较第一学期稍高,但良好率与看良好率为45%,侧面反映了70分到80分这优秀率发生较大变动,良好率下降5%优秀率上升个分数段的学生正是反应整体学生水平状况。
低11%说明介于70分与80分之间的部分学生有了一于70分的学生占到了32%远大于优秀人数所占定的进步,同时也反映出有两级分化的趋势。
比例,反映出不少学生学习基础不是很好,整体学生学习状况有待提高。
图(三)显示了优秀率较第二学期有所下降甚至图(四)中及格率达到96%,说明整体学生的学低于第一学期,但是良好率达到50%及格率也习状况有了长足进步,较第一学期提高了6%。
良好较第一学期上升5%。
因此,虽然平均分较第二率达到47%虽然较第三学期有下降,但是优秀率提学期有所降低,成绩有所下滑。
但是,离散程高了11%。
由表一也能看出平均分也高于第二学期度明显变小,较第一学期整体学生的学习状况因此,可以得出结论:第四学期的学习成绩取得了有所提高。
很大的进步。
图(5)图(6)对四个学期学生的学习成绩数据进行整合与分析,发现:1·数据在一定程度上的分布近似符合正态分布(附图(5)图(6)表示部分研究过程),即期望值(75分)附近的分数段内学生人数较多可以肯定学生整体的学习水平是不错的,且较平稳。
2·从图(5)及图(6)反应的离散程度来看,第二学期稍微增大,但整体学习成绩的离散程度成降低趋势,即学生学习水平之间的差距在不断地缩小,证明学校的学习教育的有效成果。
3·从图中发现期望值逐渐往X轴右方向移动。
可以看出学生的学习水平是在不断增强的。
但是第四学期的高分段人数低于第二学期,也说明学校应加大对优秀生的培养。
以上是通过多方面、多层次、多角度的对学生成绩数据的不断挖掘与整合,考虑了种种因素,并非单纯依赖平均分去片面评价学生的学习状况,因此所得出的对于学生学习状况的整体分析是可信的。
四、结合标准分及进步度评价的综合评价模型由于每个学期的测试难易程度及区分度存在差异,一定程度上影响了不同分数段即不同基础的学生在测试中的发挥,又因为考虑到不同基础的学生尤其是处于优秀分数段的学生其进步空间与处于其他分数段的学生其进步潜力的不同。
以及原始分数的不可加性等等各种因素的影响。
我们建立了直观且能够客观全面评价学生综合成绩的数学模型:结合标准分及进步度评价的综合评价模型。
最终达到对学校学生的学习状况做出较全面、公平排名的目的。
考虑到原始分一般不能直接反映出考生间差异状况,不能刻划出考生相互比较后所处的地位,也不能说明考生在其他等值测试上应获得什么样的分值。
影响综合评价的准确性,所以为了更好、更科学地解释分数的含义,进行分数的组合,实现分数的等值化,我们将采用标准分(标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。
)进行模型建立及最终对学生学习状况的评价。
标准分计算公式:s xx z -=(x为原始分x为平均分s为标准差)由此可知∆z表示客观的进步分数。
根据学生进步的空间大小不同,所以进步的难易不同,由此我们引入奖罚系数a 。
模型的建立根据学生的进步分数∆z 的不同,我们可以将学生的进步情况分为四种类型。
即()()()()⎪⎪⎩⎪⎪⎨⎧∆>∆>∆∆<∆<∆∆∆∆情况除上述三种以外的其他非平稳性退步型提高型均小于平稳型.4z z z .3z z z .248.0z .z .z .1321321321为了客观评价学生的能力,并鼓动其学习的热情和积极性,所以本文不单单以学生的分数作为评价其成绩的标准,而是综合考虑学生的原始分数以及其相对于上学期的进步分数进行综合评价。
但由于其第一学期的分数并相对于上学期的进步分数,所以我们将第一学期的分数作为评价其成绩的评价分数。
即S i =S j且0≤S i ≤100从第二学期开始的评价分数可表示为S i =S j +∆z*a且0≤S i ≤100但由于考虑到对其奖罚系数和进步分数的大小以及对学生成绩的评价是否准确,因此引入了∆z*a 取值范围的上限S m ax 和S m in 。
由此可得⎩⎨⎧≥∆≤∆min max S a *z S a *z 评价一个学生成绩时,引入排名p 。
对于学生的评价分数越高则排名越靠前,即p 的值就越小。
则使用以上模型对学生的成绩进行客观评价时应遵从以下规则:当S ia =S ib 时 若S j a >S j b 则P a <P b否则P a >P b当S ia >S ib 时 则P a <P b当S ia <S ib 时 则P a >P b 。