转速、电流双闭环控制的直流调速系统动态分析
- 格式:ppt
- 大小:340.00 KB
- 文档页数:21
第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法2.1 转速、电流双闭环直流调速系统及其静特性采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。
电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。
在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。
这样的理想起动过程波形示于图2-1b 。
为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。
应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。
2.1.1 转速、电流双闭环直流调速系统的组成系统中设置两个调节器,分别调节转速和电流,如图2-2所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
转速和电流两个调节器一般都采用PI 调节器,图2-3。
两个调节器的输出都是带限幅+TG nASRACRU*n+ -U nU iU*i+-U cTAM+-U dI dUPE-MT图2-2 转速、电流双闭环直流调速系统结构ASR —转速调节器 ACR —电流调节器 TG —测速发电机TA —电流互感器 UPE —电力电子变换器内外ni2作用的,转速调节器ASR 的输出限幅电压*im U 决定了电流给定电压的最大值,电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。
电流转速双闭环直流调速系统的工作原理(吴欢欢)(山东工商学院信息与电子工程学院电气122班山东省烟台 264005 )摘要:在工业生产中,需要高性能速度控制的电力拖动场合,直流调速系统发挥着极为重要的作用。
而采用电流转速双闭环直流调速系统,就可以充分利用电动机的过载能力获得最快的动态过程。
本次设计主要了解电流转速双闭环直流调速系统的工作原理、系统组成、静态几动态特性。
并绘出工作原理图。
关键词:双闭环控制系统、直流调速系统、ASR、直流电动机。
The working principle of current and speed double closed loop DC speed regulatingsystemWuhuanhuan(Shandong Institute of Business and Technology Yan Tai 264005)ABSTRACT:In industrial production, need to electric drive applications where high performance speed control, DC speed control system plays a very important role. While the current speed double loop speed control system, it can make full use of the overload capacity of a motor to obtain the dynamic process of the fastest. The working principle, the design of the main understanding current speed double loop DC motor control system, the static and dynamic characteristics. And draw the operating system diagram.KEYWORDS:The double closed loop control system、DC speed regulating system、ASR、continuous current motor一、引言直流电机调速,在额定转速以下,保持励磁电流恒定,可用改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
引言目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。
我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。
首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
在现代化的工业生产中,几乎无处不使用电力拖动装置。
轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。
随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。
从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。
这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动系统至今仍广泛的应用着。
直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。
在一定时期以内,直流拖动仍将具有强大的生命力。
实验二转速电流双闭环直流调速系统实验二转速、电流双闭环直流调速系统实验二速度和电流双闭环直流调速系统一、实验目的1.了解速度和电流双闭环直流调速系统的组成。
2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能及其指标。
4.了解调节器参数对系统动态性能的影响。
二、实验系统的组成及工作原理双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。
实际系统的组成如实验图2-1所示。
~Fbcfaswtarglidrmgsldzsssggun*asrui*uiacrgtucvtud0amsf220vunfbstg实验图2-1速度和电流双闭环直流调速系统主电路采用三相桥式全控整流电路供电。
系统工作时,首先给电动机加上额定励磁,改*变速和给定电压UN可以轻松调整电机的速度。
速度调节器ASR和电流调节器ACR均配备*限制电路。
ASR的输出UIM*用作ACR的设置,ASR的输出限制UIM用于限制启动电流用;acr的输出uc作为触发器tg的移相控制电压,利用acr的输出限幅ucm起限制α作用。
分钟**当突加给定电压un时,asr立即达到饱和输出uim,使电动机以限定的最大电流idm加*以高速启动,直到电机速度达到给定速度(即UN?UN)并出现超调,从而使ASR退出饱和并最终稳定定运行在给定转速(或略低于给定转速)上。
三、实验设备和仪器1主控制面板nmcl-322.直流电动机-负载直流发电机-测速发电机组3.nmcl-18挂箱、nmcl-333挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.调整触发单元并确定其初始相移控制角,检查并调整ASR和ACR,并设置其输出正负限幅。
2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。
3.研究电流回路和速度回路的动态特性,将系统调整到最佳状态,并绘制ID?F(T)和n?f(t)的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能)。
直流电机双闭环调速控制系统分析摘要:直流电机双闭环调速控制系统用于工业生产中能够为其提供良好的调速支持,具有适应性强、经济性好、抗干扰能力较强等优势。
在工业生产中想要更好的发挥直流电机双闭环调速控制系统的作用,需要对其控制系统的工作原理与结构特点进行研究,应该注重分析系统在设计和应用中的注意事项,在应用过程中不断完善直流电机双闭环调速控制系统,进行细节控制,从而提升工业生产效率。
关键词:直流电机;双闭环调速;控制系统直流电机双闭环调速控制系统是一种结合了电子技术、直流调速、数字控制理论等技术于一体的调速控制系统,将其应用于工业生产中可以为生产活动提供可靠、稳定的电力传动支持,提高生产效率。
钢铁企业在生产过程中,合理的运用直流电机双闭环调速控制系统,能够为生产创造更加稳定、高效的条件,能够提供更加精准的调速,从而保证生产质量。
为了能够更好的应用直流电机双闭环调速控制系统,需要对其硬件要求、软件系统、转速调节原理、转换原理等各项内容进行研究,在了解转速调节程序的相关内容,以便在后续生产活动中更好的发挥其控制作用。
一、直流电机双闭环调速控制系统1、系统概述直流电机可以将电能转化为机械能,驱使机械设备完成生产工作,对于工业生产来说具有重要的意义。
由于工业生产环节和生产目标不同,直流电机的负载也各不相同,因此需要针对不同的负载需求在一定范围内进行电动机转速调节,保证其满足生产需求,直流电机双闭环调速控制系统就是其调速的系统[1]。
直流电机双闭环调速控制系统是应用最为广泛的速度调节控制系统之一,直流电机双闭环调速系统能够实现转速和电流两种负反馈,通过两个调节器的加入,可以分别对电流和转速进行调节,形成转速、电流双闭环调速系统。
2、工作原理直流电机双闭环调速控制系统中,直流电机的能量转换是将电能转化为机械能,而直流调速系统的工作原理是通过电流与转速调节器,由电流控制器负责给转速调节器输出电压,让电枢电流由电流环调节转速偏差,实现调速控制。
双闭环直流调速系统的设计及其仿真班级:自动化2班学号: xxxxxxxx姓名: xxxxxx指导教师:xxxxxx设计时间:2014年6月23日目录一、冃U言 (3)1.课题研究的意义 (3)2.课题研究的背景 (3)二、总体设计方案 (3)1.MATLAB 仿真软件介绍 (3)2.设计目标 (4)3.系统理论设计 (5)4.仿真实验 (9)5.仿真波形分析 (13)三、心得体会 (14)四、参考文献 (16)促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO MOSFE第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
3注意什么问题二、总体设计方案1.MATLAB仿真软件介绍本设计所采用的仿真软件是MATLABMATLAB!美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB S用非常之广泛!MATLA的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C, FORTRA等语言完成相同的事情简捷得多,并且MATLA也吸收了像Maple等软件的优点,使MATLA 成为一个强大的数学软件。
主要的优势特点为:①高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;②具有完备的图形处理功能,实现计算结果和编程的可视化;③友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;④功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等),为用户提供了大量方便实用的处理工具。
直流电动汽车电机转速、电流双闭环调速系统突加给定启动过程的动态波形如图1 -16所示。
按照启动电流(电枢电流)的变化情况可分为下述三个阶段进行分析。
1.电流上升阶段(t o~t1)启动过程开始(t o)时,转速给定电压U gn突加于转速调节器的输入端,通过转速调节器、电流调节器的控制作用使U d0、I d上升。
由于机电惯性,只有当I d>I L时,转速n才从零开始逐步增加,转速负反馈电压U fn也只能从零开始逐步增加,所以偏差信号△U n=U gn-U fn的数值较大,使转速调节器ASR的输出电压U gi很快达到限幅值U gim,强迫I d迅速上升。
由于转速调节器ASR是PI调节器,只要△U n=U gn-U fn≥0,其输出电压U gi将一直保持U gim不变。
电流调节器和电流环的调节作用使I d很快到达I dm。
在这个阶段,转速调节器ASR由不饱和迅速到达饱和,而电流调节器ACR突加给定启动过程的动态波形一般不饱和,起到调节作用。
2.恒流升速阶段(t1~t2)从t1时刻电流上升到最大值I dm开始一直到t2,转速n上升到给定转速n g为止的这一阶段是启动的主要加速阶段。
在这个阶段,由于n<n g,U f<U g,转速调节器ASR一直处于开环饱和状态,其输出电压U gi一直处于限幅最大值gim不变。
当电流I d=I dm时,电动机以最大的启动转矩等加速度线性上升。
随着电动机转速n上升,电动汽车电机反电动势E n 也相应升高。
由于电枢电流,E m的升高使I d下降,电流反馈电压U fi也下降。
通过电流调节器的调节作用使其输出电压U k上升,从而使晶闸管变流器输出电压U do上升,力图使电流I d又回到最大值I dm。
随着转速n的上升,电流调节器就一直按照上述调节规律,力图使电流I d保持在最大值I dm,此时控制系统表现为恒值电流调节系统,使电动机以最大启动转矩等加速度线性上升。
案例转速、电流双闭环直流调速系统一、概述现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。
该装置的基本性能如下:(1)装置的负荷性质按连续工作制考核。
(2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。
(3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。
电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。
(4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。
转速反馈元件采用ZYS型永磁直流测速发电机。
(5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。
(6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。
(7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。
二、系统的组成1、主电路ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。
为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。
2、控制系统ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示ZCC1系列晶闸管直流调速装置各单元的电气原理图如图3-2至图3-9所示。
三、直流调速系统简单工作原理下面结合整个系统对不可逆直流调速系统停车、正向启动、减速各种运行工作过程进行分析。
摘要转速、电流双闭环控制直流调速系统是性能很好,应用最广的直流调速系统,是目前直流调速系统中的主流设备。
具有调速范围宽、平稳性好、稳速精度高等优点。
在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。
本人此次设计的步骤主要是:查阅相关的资料、书籍,确定整个设计的方案和框图。
然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。
接着驱动电路的设计包括触发电路和脉冲变压器的设计。
转速和电流调节器的计算和设计给予详细介绍。
每一步设计都会给出相应的原理图,并进行分析。
最后用学过的MATLAB/SIMULINK进行仿真,给出模块搭建及仿真图形的结果。
目录第1章系统总体设计 (1)1.1设计任务 (1)1.2设计要求 (1)1.3设计的基本思路 (1)第2章整体电路分析 (4)2.1电流调节器的设计 (4)2.2转速调节器的设计 (7)第3章硬件电路图及保护电路的设计 (10)3.1系统主电路图绘制 (10)3.2晶闸管的保护与选择 (10)3.3 整流变压器的选择 (13)3.4触发电路的设计 (14)3.5.电动机的励磁回路 (15)第4章MATLAB仿真 (16)结论 (19)参考资料 (20)第1章 系统总体设计1.1 设计任务设计一个V-M 转速、电流双闭环直流调速系统,相关数据:电动机参数:N P =40kw 、N U =300v 、N I =148A 、N n =910rpm 、f U =220v 、dm I =296A 、 2GD =1.00kg ⋅2m 、a R =0.08Ω、a L =2.05mH ;其它参数:整流侧内阻n R =0.092Ω、整流变压器漏感T L =7.5mH ,电抗器直流电阻H R =0.15Ω、电抗器电感H L =4.0mH 、负载2GD 折算值=9 kg ⋅2m ;电流、转速滤波时间常数参考教材例题数据。