平面的基本性质练习题
- 格式:doc
- 大小:138.50 KB
- 文档页数:2
2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2的全部内容。
平面的基本性质及推论(答题时间:40分钟)*1。
(福州检测)下列说法正确的是________。
①三点可以确定一个平面②一条直线和一个点可以确定一个平面 ③四边形是平面图形④两条相交直线可以确定一个平面*2.(扬州检测)经过空间任意三点可以作________个平面.**3.(1)三条直线两两平行,但不共面,它们可以确定______个平面。
(2)共点的三条直线可以确定________个平面. *4。
(宿迁检测)空间中可以确定一个平面的条件是________.(填序号) ①两条直线;②一点和一直线;③一个三角形;④三个点 **5。
(梅州检测)如图所示的正方体中,P 、Q 、M 、N 分别是所在棱的中点,则这四个点共面的图形是________。
(把正确图形的序号都填上)**6。
(福建师大附中检测)三个平面把空间分成7部分时,它们的交线有________条. **7。
证明:两两相交且不共点的三条直线在同一平面内.**8. 如图所示,已知四面体ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且HCDHGC BG=2。
第1章立体几何初步1.2 点、线、面之间的位置关系1.2.1 平面的基本性质A组基础巩固1.下列有关平面的说法正确的是()A.平行四边形是一个平面B.任何一个平面图形都是一个平面C.安静的太平洋面就是一个平面D.圆和平行四边形都可以表示平面解析:我们用平行四边形表示平面,但不能说平行四边形就是一个平面,故A项不正确;平面图形和平面是两个概念,平面图形是有大小的,而平面无法度量,故B项不正确;太平洋面是有边界的,不是无限延展的,故C项不正确;在需要时,除用平行四边形表示平面外,还可用三角形、梯形、圆等来表示平面.答案:D2.如图所示,用符号语言可表示为()A.α∩β=m,n⊂α,m∩n=AB.α∩β=m,n∈a,m∩n=AC.α∩β=m,n⊂α,A⊂m,A⊂nD.α∩β=m,n∈a,A∈m,A∈n解析:α与β交于m,n在α内,m与n交于A.答案:A3.下列说法正确的是()A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面解析:对于A,若三点共线,则错误;对于B项,若两条直线既不平行,也不相交,则错误;对于C项,空间四边形就不只确定一个平面.答案:D4.一条直线和直线外的三点所确定的平面有()A.1个或3个B.1个或4个C.1个,3个或4个D.1个,2个或4个解析:若三点在同始终线上,且与已知直线平行或相交,或该直线在由该三点确定的平面内,则均确定1个平面;若三点有两点连线和已知直线平行时可确定3个平面;若三点不共线,且该直线在由该三点确定的平面外,则可确定4个平面.答案:C5.如图所示,平面α∩平面β=l,A,B∈α,C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定的平面为γ,则平面γ,β的交线必过点________.解析:依据公理判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.答案:C和D6.空间任意四点可以确定________个平面.解析:若四点共线,可确定很多个平面;若四点共面不共线,可确定一个平面;若四点不共面,可确定四个平面.答案:1个或4个或很多7.下列命题说法正确的是________(填序号).①空间中两两相交的三条直线确定一个平面;②一条直线和一个点能确定一个平面;③梯形肯定是平面图形.解析:依据三个公理及推论知①②均不正确.答案:③8.下列各图的正方体中,P,Q,R,S分别是所在棱的中点,则使这四个点共面的图形是________(把正确图形的序号都填上).解析:①中PS∥RQ,③中SR∥PQ,由推论3知四点共面.答案:①③9.点A在直线l上但不在平面α内,则l与α的公共点有__________个.答案:0或110.依据下列条件,画出图形:平面α∩平面β=AB,直线CD⊂α,CD∥AB,E∈CD,直线EF∩β=F,F∉AB.解:由题意画出图形如图所示.B级力量提升11.如图所示,在正方体ABCD-A1B1C1D1中,设A1C∩平面ABC1D1=E,则B,E,D1三点的关系是________________________.解析:连接AC、A1C1、AC1,(图略)则E为A1C与AC1的交点,故E为AC1的中点.又ABC1D1为平行四边形,所以B,E,D1三点共线.答案:共线12.下列叙述中,正确的是________(填序号).①若点P在直线l上,点P在直线m上,点P在直线n上,则l,m,n共面;②若点P在直线l上,点P在直线m上,则l,m共面;③若点P不在直线l上,点P不在直线m上,点P不在直线n上,则l,m,n不共面;④若点P不在直线l上,点P不在直线m上,则l,m不共面;⑤若点P在直线l上,点P不在直线m上,则l,m不共面.解析:由于P∈l,P∈m,所以l∩m=P.由推论2知,l,m共面.答案:②13.如图所示,在正方体ABCD-A1B1C1D1中,点M,N,E,F分别是棱CD,AB,DD1,AA1上的点,若MN与EF交于点Q,求证:D,A,Q三点共线.证明:由于MN∩EF=Q,所以Q∈直线MN,Q∈直线EF.又由于M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD,所以M,N⊂平面ABCD.所以MN⊂平面ABCD.所以Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.所以Q∈平面ADD1A1.又由于平面ABCD∩平面ADD1A1=AD,所以Q∈直线AD,即D,A,Q三点共线.14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,AB的中点,求证:D1E,CF,DA三线共点.证明:如图所示,连接EF,A1B,D1C,由于E,F为AA1,AB的中点,所以EF綊12A1B.又由于A1B綊D1C,所以EF綊12D1C.故直线D1E,CF在同一个平面内,且D1E,CF不平行,则D1E,CF必相交于一点,设该点为M.又由于M∈平面ABCD且M∈平面ADD1A1,所以M∈AD,即D1E、CF、DA三线共点.15.如图所示,在四周体ABCD中,E,G,H,F分别为BC,AB,AD,CD 上的点,EG∥HF,且HF<EG.求证:EF,GH,BD交于一点.证明:由于EG∥HF,所以E,F,H,G四点共面,又HF<EG,所以四边形EFHG是一个梯形.如图所示,延长GH和EF交于一点O,所以a,b,c,l四线共面.由于GH在平面ABD内,EF在平面BCD内,所以点O既在平面ABD内,又在平面BCD内.所以点O在这两个平面的交线上,而这两个平面的交线是BD,且交线只有这一条.所以点O在直线BD上.所以GH和EF的交点在BD上,即EF,GH,BD交于一点.16.已知:如图所示,a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:a,b,c,l四线共面.证明:由于a∥b,所以a,b确定一个平面α.由于A∈a,B∈b,所以A∈α,B∈α.所以AB⊂α,即l⊂α.同理,由b∥c,得b,c确定一个平面β,可证l⊂β.所以l,b⊂α,l,b⊂β.由于l∩b=B,所以l,b只能确定一个平面.所以α与β重合.故c在平面α内.。
平⾯基本性质习题平⾯的基本性质年级__________ 班级_________ 学号_________ 姓名__________ 分数____⼀、选择题(共18题,题分合计90分)1.公理1⽤符号表⽰,正确的是A.A ∈a ,B ∈a ,且A ∈α,B ∈α,则a ∈αB.A ∈a ,B ∈a ,且A ∈α,B ∈α,则a ?αC.A ∈a ,B ∈a ,则a ?αD.A ∈α,B ∈α,则a ?α2.设有如下三个命题:甲:相交的直线l ,m 都在平⾯α内,并且都不在平⾯β内; ⼄:直线l ,m 中⾄少有⼀条与平⾯β相交;丙:平⾯α与平⾯β相交. 当甲成⽴时A.⼄是丙的充分⽽不必要条件B.⼄是丙的必要⽽不充分条件C.⼄是丙的充分且必要条件D.⼄既不是丙的充分条件⼜不是丙的必要条件3.已知平⾯α与平⾯β相交,a 是α内的⼀条直线,则A.在β内必存在与a 平⾏的直线B.在β内必存在与a 垂直的直线 C.在β内必不存在与a 平⾏的直线 D.在β内不⼀定存在与a 垂直的直线4."三条直线a,b,c两两相交于不同三点A?B?C"是"这三条直线a,b,c共⾯"的A.充分⽽不必要条件B.必要⽽不充分条件C.充要条件D.既不充分也不必要条件5.在空间中,下列命题正确的是A.三点确定⼀个平⾯B.四边形⼀定是平⾯图形C.三条平⾏的直线共⾯D.梯形是平⾯图形6.a,b,c是空间三条直线,有下⾯4个命题:①如果a⊥b,b⊥c,则a∥c;②如果a、b是异⾯直线,b、c是异⾯直线,则a、c也是异⾯直线;③如果a和b相交,b和c相交,则a与c也相交;④如果a和b共⾯,b和c共⾯,则a与c也共⾯.其中正确命题的个数是A.3B.2C.1D.07.有三点不在⼀条直线上的四个点,能确定平⾯的最多个数是A.⼀个B.四个C.六个D.⽆穷多个8.任意三点不在⼀条直线上的四个点,能确定平⾯的最多个数是A.⼀个B.四个C.六个D.⽆穷多个9.空间四点A、B、C、D共⾯但不共线,则下⾯结论成⽴的是A.四点中必有三点共线B.四点中必有三点不共线C.AB、BC、CD、DA四条直线中总有两条直线平⾏D.直线AB与CD必相交10.给出下列四个命题:①空间四点共⾯,则其中必有三点共线②空间四点不共⾯,则其中任何三点不共线③空间四点中存在三点共线,则此四点共⾯④空间四点中任何三点不共线,则此四点不共⾯其中正确的有()A.②和③B.①②③C.①和②D.②③④11.空间三个平⾯两两相交,那么A.不可能有且只有两条交线B.必相交于⼀点C.必相交于⼀条直线D.必相交于三条平⾏直线12.直线a、b、c两两平⾏,但不共⾯,经过其中2条直线的平⾯的个数为A.1个B.3个C.0个D.6个13.下⾯四个命题中,真命题的个数为①如果两个平⾯有三个公共点,那么这两个平⾯重合②两条直线可以确定⼀个平⾯③若M∈α,M∈β,α∩β=l,则M∈l④空间中,相交于同⼀点的三直线在同⼀平⾯内A.1B.2C.3D.414.下列推理错误的是A.A∈a,A∈β,B∈a,B∈β?a?βB.M∈α,M∈β,N∈α,N∈β?A∩β=直线MNC.l?α,A∈l?A?αD.A、B、C∈α,A、B、C∈β,且A、B、C不共线?α与β重合α内,那么与此命题不等价的命题是15.已知命题,直线l上两点A、B在平⾯A.l?αB.平⾯α通过直线lC.直线l上只有这两个点在α内D.直线l上所有点都在α内16.根据下列条件,画出图形(1)平⾯α∩平⾯β=l,直线AB?α,AB∥l,E∈AB,直线EF∩β=F,F?l(2)平⾯α∩平⾯β=a,△ABC的三个顶点满⾜条件,A∈a,B∈α,B?a,C∈β,C?a.17.下⾯的三个命题:①四边相等的四边形是菱形②两组对边分别相等的四边形是平⾏四边形③若四边形有⼀组对⾓都是直⾓,则这四边形是圆的内接四边形其中正确的个数是A.1个B.2个C.3个D.⼀个也不正确18.如图,ABCD-A1B1C1D1是长⽅体,O是B1D1的中点,直线A1C交平⾯AB1D1于点M,则下列结论错误的是A.A、M、O三点共线B.A、M、O、A1四点共⾯C.A、O、C、M四点共⾯D.B、B1、O、M四点共⾯⼆、填空题(共6题,题分合计24分)1.经过三点的平⾯的个数为___________个.β,点E∈AB,点F∈BC,点G∈CD,点H∈DA,若直线EH∩直线FG=2.直线AB、AD ?α,直线CB、CD?M,则点M在______上.3.两两平⾏的三条直线,最多可以确定________个平⾯,⽽两两相交的三条直线最多可以确定_______个平⾯.4.已知α∩β=l,m?α,n?β,m∩n=P,则点P与直线l的位置关系⽤相应的符号表⽰为________.5.顺次连结空间四边形的各边中点所得四边形是_________.6.⼀个平⾯把空间分成______部分,两个平⾯把空间分成____或____部分,三个平⾯把空间分成_____或_____或_____或_____部分.三、解答题(共21题,题分合计168分)1.正⽅体ABCD-A1B1C1D1的棱长为8cm,M、N、P分别是AB、A1D1、BB1的中点,(1)画出过M、N、P三点的平⾯与平⾯A1B1C1D1的交线,以及与平⾯BB1C1C的交线.(2)设过M、N、P三点的平⾯与B1C1交于点Q,求PQ的长.2.求证空间四边形各中点的连线共⾯.3.如图,α∩β=BC,A∈α,D∈β,E、F、G、H分别是AB、AC、DB、CD上的点,若EF∩GH=P,则P点必在直线BC上.4.过直线l 外⼀点P 引两条直线P A 、PB 和直线l 分别相交于A 、B 两点,求证:三条直线P A 、PB 、l 共⾯.5.已知空间四点A 、B 、C 、D 不在同⼀平⾯内,求证:直线AB 和CD 既不相交也不平⾏.6.已知直线a 、b 、c 两两相交且不共⾯,求证:a 、b 、c 相交于⼀点.7.已知α∩β=a ,直线m ?α,n ?β,且a ∩m =M ,a ∩n =N ,M ?N 不重合,问m 与n 能否平⾏?证明你的结论? 8.如图,AD ∩平⾯α=B ,AE ∩平⾯α=C ,请画出直线DE 与平⾯α的交点P ,并指出点P 与直线BC 的位置关系.9.已知直线l 经过平⾯α外⼀点A ,求证:直线l 不在平⾯α内.10.空间四边形ABCD 的四边AB 、BC 、CD 、DA 上各有⼀点P 、Q 、R 、S ,且直线PS 与QR 交于K ,求证:B 、D 、K 共线.11.已知ABCD 是空间四边形,E 、H 分别是AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点且32==CD CG CB CF ,求证:EF 、GH 、CA 共点.12.⼀条直线与三条平⾏直线都相交,求证:这四条直线共⾯.13.如图,△ABC 在平⾯α外,它的三边所在的直线分别交平⾯α于P 、Q 、R ,求证:P 、Q、R 三点共线14.三个平⾯α、β、γ两两相交于三条直线,即α∩β=c ,β∩γ=A ,γ∩α=b ,已知直线a 和b 不平⾏.求证:a 、b 、c 三条直线必过同⼀点.15.已知四条直线a 、b 、c 、d 两两相交,但四线不共点,求证:a 、b 、c 、d 共⾯.16.已知三个平⾯两两相交,有三条交线,求证:这三条交线交于⼀点或互相平⾏.17.如图,在棱长为a的正⽅体ABCD-A1B1C1D1中,M、N分别是AA1,D1C1的中点,过D、M、N三点的平⾯与正⽅体的下底⾯相交于直线l.(1)画出l的位置.(2)设l∩A1B1=P,求PB1的长.(3)求D1到l的距离.18.如图,H是锐⾓△ABC的垂⼼,PH⊥平⾯ABC,若∠BPC=90°.求证:∠BP A=90°,∠APC=90°19.PD垂直于□ABCD所在平⾯,PB⊥AC,且P A⊥AB.求证:(1)ABCD是正⽅形;(2)PC⊥BC.20.n条直线中的任意三条直线均共⾯,求证:这n条直线均在同⼀个平⾯内.21.如图,正⽅体的棱长为4cm,M、N分别是A1B1和CC1的中点.(1)画出过点D、M、N的平⾯与平⾯BB1C1C及平⾯AA1B1B的两条交线;(2)设过D、M、N三点的平⾯与B1C1交于P,求PM+PN的值.平⾯的基本性质答案⼀、选择题(共18题,合计90分)1.6168答案:B2.5610答案:C3.5629答案:B4.5715答案:A5.5800答案:D6.5806答案:D7.6148答案:B8.6151答案:B9.6155答案:B10.6164答案:A11.6165答案:A12.6172答案:B13.6185答案:A14.6187答案:C15.6190答案:C16.6428答案:17.6489答案:D18.6169答案:D⼆、填空题(共6题,合计24分)1.6157答案:⼀或⽆数2.6173答案:BD3.6191答案:3,34.6195答案:P ∈l5.6488答案:平⾏四边形6.6194答案:2 3 4 4 6 7 8三、解答题(共21题,合计168分)1.6437答案:PQ =10342121=+Q B P B (cm )2.6160答案:见注释3.6161答案:见注释4.6198答案:见注释5.6211答案:见注释6.6425答案:见注释7.6429答案:不平⾏8.6434答案:见注释9.6436答案:见注释 10.6176答案:见注释 11.6182答案:见注释 12.6199答案:见注释 13.6202答案:见注释 14.6203答案:见注释 15.6205答案:见注释 16.6208答案:见注释17.6212答案:(2)PB 1=a -4a =a43.(3)D 1到l 的距离为17172a .18.6215答案:见注释 19.6216答案:见注释 20.6179答案:见注释21.6183答案:PM +PN =313210+。
平面的基本性质练习题
1.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作 A、N α∈∈a B、N α⊂∈a
C、N α⊂⊂a D、N α
∈⊂a
2.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;, B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=AB
C.αα∉⇒∈⊄A A
, D.A,B,C α
∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合
3. 空间不共线的四点,可以确定平面的个数为( )
A.0 B.1 C.1或4 D. 无法确定 4. 空间不重合的三个平面可以把空间分成( )
A. 4或6或7个部分
B. 4或6或7或8个部分
C. 4或7或8个部分
D. 6或7或8个部分 5.下列说法正确的是( )
①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.
A. ①②③
B. ②③④
C. ③④
D. ②③
6.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( ) A. 1 B.1或3 C. 1或2或3 D.1或 4 7.如果,,,,B b A a b a =⋂=⋂⊂⊂ αα那么下列关系成立的是( ) A. α⊂ B.α∉ C. A =⋂α D.B =⋂α 8.两个平面重合的条件是它们的公共部分有( )
A. 两个公共点
B. 三个公共点
C. 四个公共点
D.两条平行直线 9.三条直线两两相交,可以确定平面的个数是( )
A.1个
B. 1个或2个
C. 1个或3个
D.3个
10.平面α⋂平面β= ,点A βα∈∈C ,且C ∉, 又AB ⋂=R , 如图1, 过A 、B 、C 三点确定的平面为γ, 则
γβ⋂是( )
A. 直线AC
B. 直线BC
C. 直线CR
D. 以上均错
11.空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ⋂GH=P ,则点P A. 一定在直线BD 上 B. 一定在直线AC 上
C. 在直线AC 或BD 上
D. 不在直线AC 上也不在直线BD 上
12.如上图2,在正方体ABCD-A 1B 1C 1D 1中,直线EF 是平面ACD 1与下面哪个平面的交线( ) A .面BDB 1 B. 面BDC 1 C. 面ACB 1 D. 面ACC 1
13.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直 线AB β⋂=_____________. 14.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .
15.直线AB 、AD α⊂,直线CB 、CD β⊂点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上
16 如上图3,在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M 、N 分 别为AA 1、C 1D 1的中点,过D 、M 、N 三点的平面与直线A 1B 1 交于点P ,则线段PB 1的长为_______________
17.如图,E 、F 、G 、H 分别是空间四边形AB 、BC 、CD 、DA 上的点,且EH 与FG 交于点O. 求证:B 、D 、O 三点共线.
18.三个平面两两相交于三条直线,若这三条交线不互相平行,求证:它们必交于一点。
19.已知, 点O 是正方体ABCD-A 1B 1C 1D 1上底面ABCD 的中心,M 是正方体对角线AC 1和截面A 1BD 的交点.求证:O 、M 、A 1三点共线.
20.在正方体ABCD-A 1B 1C 1D 1中, 直线A 1C 交平面ABC 1D 1于点M , 试作出点M 的位置.
21.如图,直角梯形ABDC 中,AB ∥CD ,AB>CD ,S 是直角梯形ABDC 所在
平面外一点,画出平面SBD 和平面SAC 的交线,并说明理由
C
O D
B
A
F
E
H
G α
β
γ
c
b
a
M。