勾股定理教案
- 格式:doc
- 大小:1.61 MB
- 文档页数:4
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
勾股定理教案(表格式)教学目标:1. 了解勾股定理的定义及其在几何学中的应用。
2. 学会使用勾股定理计算直角三角形的长度。
3. 培养学生的观察、分析和解决问题的能力。
教学重点:1. 勾股定理的定义及应用。
2. 学会使用勾股定理计算直角三角形的长度。
教学难点:1. 理解并应用勾股定理解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 直角三角形模型或图片。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍勾股定理的背景和重要性。
2. 展示直角三角形模型或图片,引导学生观察并提问:你们能发现什么规律吗?二、探索勾股定理(15分钟)1. 引导学生通过观察和实验,发现直角三角形两条直角边的平方和等于斜边的平方。
2. 学生分组讨论,总结出勾股定理的表达式:a^2 + b^2 = c^2。
三、验证勾股定理(15分钟)1. 学生使用三角板或直角三角形模型,进行实际测量和计算,验证勾股定理。
2. 学生展示验证结果,教师点评并总结。
四、应用勾股定理(15分钟)1. 教师提出实际问题,引导学生运用勾股定理解决问题。
2. 学生分组讨论并解答问题,展示解题过程和结果。
五、总结与评价(5分钟)1. 教师引导学生总结本节课的学习内容,强调勾股定理的重要性和应用。
2. 学生评价自己的学习成果,提出疑问和困惑。
教学延伸:1. 引导学生进一步探究勾股定理的证明方法。
2. 布置课后作业,巩固勾股定理的应用。
教学反思:本节课通过引导学生观察、实验、讨论和应用,让学生深入了解勾股定理的定义和应用。
在教学过程中,注意关注学生的学习情况,及时解答疑问,帮助学生克服学习难点。
通过实际问题的解决,培养学生的观察、分析和解决问题的能力。
总体来说,本节课达到了预期的教学目标。
六、实践练习(15分钟)1. 教师提供一系列有关勾股定理的练习题,让学生独立完成。
2. 学生展示解题过程和结果,教师点评并给予反馈。
七、拓展活动(15分钟)1. 学生分组,每组设计一个关于勾股定理的有趣活动,如小游戏、演示实验等。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
三、例题讲解例1:如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?学生理解勾股定理的逆定理应用四、巩固新知师巡视学生做练习后评讲1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
完成练习,指名回答板书五、归纳小结教师强调,今天,我们共同探究了利用勾股定理的逆定理来求角度、求边长以及生活中的实际问题,课下要反复思索理解。
学生梳理并理解勾股定理的逆定理解决实际问题六、布置作业课本P34第4、5题板书设计17.2 勾股定理的逆定理(二)1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题教学反思工作单位姓名课题第十九章《勾股定理》小结复习课时第15课时教学目标1.复习勾股定理和勾股定理的逆定理2.能进行相应的计算,并能在实际问题中应用3.灵活应用勾股定理及逆定理解决实际问题重点难点重点:能熟练运用勾股定理进行计算和证明。
难点:灵活应用勾股定理及逆定理解决实际问题。
教法学法归纳法教学准备多媒体课件教学步骤教师活动学生活动二次备课一、导入新课问题 1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想?学生回答问题,叙述勾股定理及其逆定理二、巩固旧知一、理清脉络、构建框架知识1:已知两边求第三边知识2:利用方程求线段长知识3:判断一个三角形是否是直角三角形学生按知识点回顾知识,点名回答问题。
第14章 勾股定理14.1 勾股定理第1课时 直角三角形的三边关系教学目标1.体验勾股定理的探索.2.会用勾股定理求直角三角形的边长.教学重难点重点:用勾股定理求直角三角形的边长. 难点:用拼图法证明勾股定理.教学过程导入新课2002年国际数学家大会在我国北京召开,投影显示本届国际数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)我国古代3000多年前有一个叫商高的人,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.画一个两直角边长分别为3和4的直角△ABC ,用刻度尺量出斜边的长,再画一个两直角边长分别为5和12的直角△ABC ,用刻度尺量出斜边的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?探究新知1.勾股定理的证明活动1:如图,让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.222(),ABCD ABCD S c S ab b a +-正方形正方形=,=从而222222(),.c ab a b c a b =+-+即=活动2:给学生如图所示的图形,利用面积证明.分析:左右两边的正方形边长相等,则两个正方形的面积相等.左边S =2214,2ab c S a b ⨯++右边=() .左边和右边的面积相等,即2214,2ab c a b ⨯++=()教学反思222.c a b +化简可得=教学说明:以上两图出示给学生,分两组交流、证明,完成后由学生代表展示.教师归纳板书:勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.求直角三角形的边长活动:出示习题:(1)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则AB =____; (2)在Rt △ABC 中,∠C =90°,AB =25,AC =20,则BC =____; (3)在Rt △ABC 中,∠C =90°,它的两边是6和8,则它的第三边长是__________.【答案】(1)13 (2)15 (3)10或教学说明:先由学生独立完成,再由学生展示,注意(3)要分类,分8为直角边长或斜边长两种情况.最后教师板书:在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长,则c a b【合作探究,解决问题】【小组讨论,师生互学】例1 如图,在Rt △ABC 中,已知∠B =90°,AB =6, BC =8,求AC .解:根据勾股定理,可得AB ²+BC ²=AC ²,所以AC10.例2 如图,Rt △ABC 的斜边AC 比直角边AB 长2 cm ,另一直角边BC 长为6 cm ,求AC 的长.解:由已知AB =AC -2,BC =6cm ,根据勾股定理,可得AB ²+BC ²=(AC -2)²+6²=AC ²,解得AC =10(cm).例3 如图,为了求出湖边两点A ,B 之间的距离,一名观测者在点C 设桩,使△ABC 恰好为直角三角形,通过测量,得到160米,BC 的长为128米,问A ,B 解:Rt △ABC 中,AC =100,BC =128, 根据勾股定理得教学反思96AB (米).答: A ,B 两点之间距离96米.课堂练习1.在△ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边长. (1)已知a =2.4,b =3.2,则c =_______.(2)已知c =17,b =15,则△ABC 的面积等于_______. (3)已知∠A =45°,c =18,则a 2=______.2.直角三角形三边长是连续偶数,则这三角形的各边长分别为_______.3.△ABC 的周长为40 cm ,∠C =90°,BC ∶AC =15∶8,则它的斜边长为______.4.直角三角形的两直角边之和为14,斜边为10,则它的斜边上的高为________,两直角边分别为________.5.在Rt △ABC 中,已知两直角边长a =1,b =3,那么斜边c 的长为( ).A.2B.4C.22D.106.直角三角形的两直角边分别为5 cm ,12 cm ,则斜边上的高为( ).A.6 cmB.5 cmC.3060cm D.1313cm 参考答案1.(1)4 (2)60 (3)1622.6 8 103.17 cm4.4.8 6和85.D6.D课堂小结教师提问:这一节课我们一起学习了哪些知识和思想方法? 在学生自由发言的基础上,师生共同总结:知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=. 方法:(1) 观察——探索——猜想——验证——归纳——应用; (2)“割、补、拼、接”法.思想:(1) 特殊——一般——特殊; (2) 数形结合思想.布置作业请完成本课时对应练习!板书设计直角三角形的三边关系勾股定理直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边长和斜边长,那么222a b c +=.教学反思。
18.1《勾股定理》第一课时教学设计
汉川市庙头中学张丽红
一、教学背景
1、面向学生:八年级
2、学科:数学
3、课时:1课时
4、课前准备:勾股定理相关内容、课件和图片
5、学情分析:在学习了一般三角形的有关性质后,进一步学习特殊三角形的性质-—直角三角形三边的关系。
二、教学课题:
1、通过对比国内外数学家对勾股定理的研究成果,对学生进行爱国主义教育和民族
精神的培养。
2.、用数形结合这一重要的数学思想来证明勾股定理,提高学生的解题技能。
三、教材分析
(一)教材的地位与作用
勾股定理是数学中几个重要定理之一,也是我国古代数学家智慧的结晶。
它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的验证方法。
2、了解勾股定理的内容。
3、能利用已知两边的长求第三边的长。
过程与方法:
1、在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。
2、通过拼图活动,体验数学思维的严谨性,发展形象思维。
3、在探索活动中,学会合作与交流。
情感、态度与价值观:
1、通过对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验收获成功的快乐,锻炼克服困难的勇气,培养合作意识和探索创新精神。
(三)教学重、难点
重点:探索和证明勾股定理
难点:用拼图方法证明勾股定理
(四)学情分析
学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较强,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
四、教学策略
本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观
察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
五、教学程序
cm
AB AB BC AC AB 1502250022500
12090222222==∴=+=+=育。
更好地理解数形结合的方法。
归纳定理变式应用 勾股定理:如果直角三角形的两直角边分别为a,b,斜边为c , 那么222c b a =+
定理的归纳让学生从
感性认识过渡到理性认识,提高了数学语言的驾
驭能力。
应用新知解决问题 例题解析:如图,太阳能热水器的支架AC 长为90cm,与AC 垂直的BC 长120cm.太阳能真空管AB 有多长?
解:∵在Rt △ABC 中, ∠C=90° AC=90cm,BC=120cm ∴由勾股定理,得
答:太阳能真空管AB 长150cm.
让学生有机地把握所
学的知识技能,用来解决实际问题,加强对定理的理解,从而突出重点。
学以致用课内练习 1.如图,一根旗杆在离地面9米处折裂,旗杆顶部
落在离旗杆底部12米处,旗杆原来有多高?
进一步锻炼学生解决实际问题的能力。
回顾小结整体感知
通过本节课的学习你都有哪些收获?
学生通过对学习过程的小
结,领会其中的数学思想
方法;通过梳理所学内容,
形成完整知识结构,培养
归纳概括能力。
布置作业巩固加深
习题18.1 第1, 2, 3, 5题。
针对学生认知的差异设计
了有层次的作业题,既使
学生巩固知识,形成技能,
又使学有余力的学生获得
最佳发展。
附:板书设计
18.1 勾股定理
1、勾股定理:如果直角三角形的两直角
2、例题解析: 边长分别为a 、b ,斜边长为c ,那么
A B C 2、如图,一个高6米,宽8米的
大门,需在相对角的顶点间加一个加固木条
,则木条的长为( ) A. 6米 B.8米 C.10米 D.12米
6 8 C B A A
B C
2
2
+、学生演排,展示成果a c
b=。