费米统计和玻色统计
- 格式:pdf
- 大小:98.71 KB
- 文档页数:6
费米狄拉克统计和玻色爱因斯坦统计费米狄拉克统计和玻色爱因斯坦统计是两种用于描述粒子统计行为的统计方法。
它们分别适用于费米子和玻色子,这两种粒子在量子力学中具有不同的交换行为和性质。
了解它们的差异对于研究粒子的行为以及理解宏观物理现象至关重要。
一、费米狄拉克统计费米狄拉克统计是描述费米子统计行为的一种统计方法。
费米子是一类具有半整数自旋的粒子,例如电子、质子和中子等。
狄拉克统计的主要特点是:每个量子态只能由一个费米子占据,不同费米子之间不能占据相同的量子态。
这种排斥行为称为泡利不相容原理,它导致了费米子在填充能级时的特殊性质。
对于费米子系统,它们的能级填充遵循费米-狄拉克分布函数。
费米-狄拉克分布函数表示了在温度为T的热平衡下,粒子占据能级的概率。
在零温下,费米子会填充最低的能级,而在有限温度下,费米子的填充受到波尔兹曼因子的影响。
二、玻色爱因斯坦统计玻色爱因斯坦统计是描述玻色子统计行为的统计方法。
玻色子是一类具有整数自旋的粒子,例如光子、声子和玻色凝聚中的声子等。
相比于费米子,玻色子具有不同的交换行为,允许多个玻色子占据相同的量子态。
玻色爱因斯坦统计的特点是,可以有多个玻色子处于同一能级上,而且他们之间的交换不会对系统的状态产生影响。
当玻色子系统处于热平衡时,玻色-爱因斯坦分布函数描述了粒子占据能级的概率分布。
在更低的温度下,玻色子会聚集在能级的基态上,形成玻色凝聚。
三、费米狄拉克统计和玻色爱因斯坦统计的应用费米狄拉克统计和玻色爱因斯坦统计在理论物理和实验物理研究中有广泛的应用。
它们被用来描述固体材料的电子结构、理解物质的热力学性质以及研究凝聚态物理中的相变和超流性等现象。
在固体物理学中,费米狄拉克统计用来解释电子在晶格中的分布,特别是在导体中的电子行为。
根据费米狄拉克统计,能带中的电子填充遵循泡利不相容原理,因此解释了为什么导体具有电流传导的性质。
而在玻色爱因斯坦统计方面,光子是一种典型的玻色子。
量子理论的诞生和发展(13):玻色统计和费米统计作者:张天蓉物理学中的统计规律是指粒子系统的宏观运动规律。
波尔兹曼研究的是经典粒子的统计行为,粒子系统的自由度用麦克斯韦-波尔兹曼统计方法来描述或计算。
不同于经典统计,量子力学的统计规律则有两种:玻色-爱因斯坦统计和费米-狄拉克统计。
图13-1:波色和费米提出量子统计理论的这四位物理学家,其中玻色可能是很多人不甚了解的一位。
玻色是印度人,他在一次有关光电效应的讲课中,因为犯了一个违反经典统计的“錯誤”却发现了玻色子的统计规律。
物理学中以他的名子命名玻色子,这使得他在物理学界还是挺有名的。
纳特·玻色(Nath Bose,1894年-1974年)出生于印度加尔各答,他的父亲是一名铁路工程师,他是七名孩子中的长子。
玻色在大学时曾得到几位优秀教师的赞赏和指点。
他获得数学硕士学位之后并未继续攻读博士,而是直接在加尔各答物理系担任讲师。
后来,他又到达卡大学物理系任讲师,并自学物理。
大约是在1921年,玻色讲授光电效应和黑体辐射引发的紫外灾难,他本来是想按照经典方法分析粒子的统计行为,结果犯了一个类似“掷两枚硬币,得到“正正”概率为三分之一”的错误。
然而没想到是,他的这个错误却得出了与实验相符合的结论,也就是不可区分的全同粒子所遵循的一种统计规律。
所谓“掷两枚硬币,‘正正’概率为三分之一”是错误的,意思是说当你掷两枚硬币的时候,因为每个硬币都有正反两面,实验结果就有四种情况:正正、正反、反正、反反。
也就是说,按照经典理论,这四种情况中的每一种发生的几率是一样的,即都是四分之一,但玻色所得到的结果却是三分之一。
玻色的这个“错误”之所以是“不可区分的全同粒子”的统计规律,是因为对于两个粒子而言,它们的统计行为是否可以区分或不可区分是有区别的。
假如两枚硬币不能区分谁正谁反,你掷两枚硬币所得到的正、反与反、正就是完全一样的结果。
“不可区分”的两个粒子如同“量子硬币”,它们在宏观系统中总是给我们完全一模一样的感觉。