第九章 玻色统计和费密统计理论
- 格式:pdf
- 大小:298.44 KB
- 文档页数:23
凝聚态物理学中的玻色子与费米子凝聚态物理学是研究物质在集体行为中的性质和相变的学科。
在这个广阔的领域中,玻色子和费米子是两种基本的粒子,它们在物质中起着重要的角色。
本文将介绍玻色子和费米子的特性以及它们在凝聚态物理学中的应用。
一、玻色子的特性玻色子是一类自旋为整数的基本粒子,根据玻色–爱因斯坦统计,它们具有玻色统计性质。
最著名的玻色子是光子,它是电磁辐射的量子,没有质量和电荷,也是光的传播媒介。
除了光子以外,还有声子、准粒子等许多其他的玻色子存在。
玻色子的一个重要特性是它们可以聚集在同一个量子态,形成所谓的玻色-爱因斯坦凝聚。
这种凝聚态相当于一个巨大的共振态,所有玻色子将集体行为地维持在同一个基态。
这种凝聚态物质的行为在超导领域引起了广泛的研究,使得科学家们能够更好地理解新奇的物理现象。
二、费米子的特性费米子是一类自旋为半整数的基本粒子,根据费米–狄拉克统计,它们具有费米统计性质。
最著名的费米子是电子,它是构成物质的基本组成部分,具有质量和电荷。
费米子具有一种独特的特性,即不能聚集在同一个量子态,这就是所谓的泡利不相容原理。
泡利不相容原理导致费米子的排斥行为,通过排斥来形成精细结构,如原子的电子排布和分子的化学键。
正是由于费米子的排斥性质,物质才能够在一些极端条件下得到更加复杂的表现。
三、玻色子和费米子在凝聚态物理学中的应用1. 量子统计和超流体玻色子和费米子的量子统计性质对凝聚态物理学研究具有重要影响。
在低温下,玻色子可以表现出超流性,即在没有粘滞性的情况下流动。
超流体的研究不仅有助于我们理解基本粒子的行为,还在技术和应用领域有很多潜在的应用,如量子计算和超导材料等。
2. 凝聚态物质的相变凝聚态物质可以在不同的温度和压力下发生各种相变,包括固体-液体相变、超导-非超导相变等。
这些相变的理解和控制对于实现新的功能材料和技术具有重要意义。
玻色子和费米子在相变研究中的作用体现在它们的自旋、电荷等性质能够在相变过程中发生变化,导致物质的性质发生巨大的变化。
凝聚态物理学中的玻色子与费米子凝聚态物理学是研究物质在宏观尺度上的性质和行为的领域。
在这个领域中,玻色子和费米子是两个重要的概念。
本文将探讨这两种粒子在凝聚态物理学中的重要性和应用。
玻色子和费米子是基本粒子的分类方式之一。
前者是具有整数自旋的粒子,如光子、声子、玻色-爱因斯坦凝聚(Bose-Einstein Condensate)中的粒子等;后者则是具有半整数自旋的粒子,如电子、质子和中子等。
这两种粒子的行为和性质有着显著的差异。
首先,玻色子和费米子的最显著区别之一是它们服从的统计分布。
根据玻色-爱因斯坦统计,多个玻色子可以占据同一个量子态,这就导致了Bose-Einstein凝聚的产生,其中所有粒子都处于同一个量子态,表现出量子相干性。
而根据费米-狄拉克统计,费米子不允许多个粒子处于同一个态,这也是为什么我们不能在同一时刻在同一个位置找到两个电子的原因。
这两种统计分布的不同给玻色子和费米子带来了截然不同的行为。
在凝聚态物理学中,玻色子和费米子有着不同的物理性质和相互作用。
作为最重要的实例之一,玻色-爱因斯坦凝聚是玻色子行为的一个突出例证。
在极低温度下,玻色子可以凝聚成一个巨大的波函数,而不再是彼此独立的实体。
这种凝聚体现了量子力学的特性,如相干性和波动性,是研究玻色子集体行为的有力工具。
与此相反,由于费米-狄拉克统计的限制,费米子之间的相互作用具有独特的属性。
著名的是,费米子统计下的电子导致了电子波函数的空间分布,进而导致了周期性的晶体结构。
这就是凝聚态物理学中晶体的形成原理之一。
费米子之间的排斥效应也导致了材料的稳定性,使得粒子之间不能靠得太近,从而形成凝聚态物质的基本结构。
除了上述的基本性质之外,玻色子和费米子在凝聚态物理学中还有广泛的应用。
玻色子激发态在超导体中扮演着重要的角色,通过与声子相互作用来传导电子。
费米子的行为则解释了诸如半导体和绝缘体等材料的电子结构,为材料的性质和行为提供了重要的基础。
费米狄拉克统计和玻色爱因斯坦统计费米狄拉克统计和玻色爱因斯坦统计是两种用于描述粒子统计行为的统计方法。
它们分别适用于费米子和玻色子,这两种粒子在量子力学中具有不同的交换行为和性质。
了解它们的差异对于研究粒子的行为以及理解宏观物理现象至关重要。
一、费米狄拉克统计费米狄拉克统计是描述费米子统计行为的一种统计方法。
费米子是一类具有半整数自旋的粒子,例如电子、质子和中子等。
狄拉克统计的主要特点是:每个量子态只能由一个费米子占据,不同费米子之间不能占据相同的量子态。
这种排斥行为称为泡利不相容原理,它导致了费米子在填充能级时的特殊性质。
对于费米子系统,它们的能级填充遵循费米-狄拉克分布函数。
费米-狄拉克分布函数表示了在温度为T的热平衡下,粒子占据能级的概率。
在零温下,费米子会填充最低的能级,而在有限温度下,费米子的填充受到波尔兹曼因子的影响。
二、玻色爱因斯坦统计玻色爱因斯坦统计是描述玻色子统计行为的统计方法。
玻色子是一类具有整数自旋的粒子,例如光子、声子和玻色凝聚中的声子等。
相比于费米子,玻色子具有不同的交换行为,允许多个玻色子占据相同的量子态。
玻色爱因斯坦统计的特点是,可以有多个玻色子处于同一能级上,而且他们之间的交换不会对系统的状态产生影响。
当玻色子系统处于热平衡时,玻色-爱因斯坦分布函数描述了粒子占据能级的概率分布。
在更低的温度下,玻色子会聚集在能级的基态上,形成玻色凝聚。
三、费米狄拉克统计和玻色爱因斯坦统计的应用费米狄拉克统计和玻色爱因斯坦统计在理论物理和实验物理研究中有广泛的应用。
它们被用来描述固体材料的电子结构、理解物质的热力学性质以及研究凝聚态物理中的相变和超流性等现象。
在固体物理学中,费米狄拉克统计用来解释电子在晶格中的分布,特别是在导体中的电子行为。
根据费米狄拉克统计,能带中的电子填充遵循泡利不相容原理,因此解释了为什么导体具有电流传导的性质。
而在玻色爱因斯坦统计方面,光子是一种典型的玻色子。
量子理论的诞生和发展(13):玻色统计和费米统计作者:张天蓉物理学中的统计规律是指粒子系统的宏观运动规律。
波尔兹曼研究的是经典粒子的统计行为,粒子系统的自由度用麦克斯韦-波尔兹曼统计方法来描述或计算。
不同于经典统计,量子力学的统计规律则有两种:玻色-爱因斯坦统计和费米-狄拉克统计。
图13-1:波色和费米提出量子统计理论的这四位物理学家,其中玻色可能是很多人不甚了解的一位。
玻色是印度人,他在一次有关光电效应的讲课中,因为犯了一个违反经典统计的“錯誤”却发现了玻色子的统计规律。
物理学中以他的名子命名玻色子,这使得他在物理学界还是挺有名的。
纳特·玻色(Nath Bose,1894年-1974年)出生于印度加尔各答,他的父亲是一名铁路工程师,他是七名孩子中的长子。
玻色在大学时曾得到几位优秀教师的赞赏和指点。
他获得数学硕士学位之后并未继续攻读博士,而是直接在加尔各答物理系担任讲师。
后来,他又到达卡大学物理系任讲师,并自学物理。
大约是在1921年,玻色讲授光电效应和黑体辐射引发的紫外灾难,他本来是想按照经典方法分析粒子的统计行为,结果犯了一个类似“掷两枚硬币,得到“正正”概率为三分之一”的错误。
然而没想到是,他的这个错误却得出了与实验相符合的结论,也就是不可区分的全同粒子所遵循的一种统计规律。
所谓“掷两枚硬币,‘正正’概率为三分之一”是错误的,意思是说当你掷两枚硬币的时候,因为每个硬币都有正反两面,实验结果就有四种情况:正正、正反、反正、反反。
也就是说,按照经典理论,这四种情况中的每一种发生的几率是一样的,即都是四分之一,但玻色所得到的结果却是三分之一。
玻色的这个“错误”之所以是“不可区分的全同粒子”的统计规律,是因为对于两个粒子而言,它们的统计行为是否可以区分或不可区分是有区别的。
假如两枚硬币不能区分谁正谁反,你掷两枚硬币所得到的正、反与反、正就是完全一样的结果。
“不可区分”的两个粒子如同“量子硬币”,它们在宏观系统中总是给我们完全一模一样的感觉。
玻色分布和费米分布现对费米分布推导如下 : 对 ()∏-=Ωl l l l l D F a a !!!..ωω 取对数得:()[]∑---=Ωl l l l l D F a !ln !ln !ln ln ..εωω N>>1,若假设a l >>1 , ωl >>1可得到:()()[]∑----=Ωll l l l l l l l D F a a a a ωωωωln ln ln ln ..约束条件:∑=llN a;∑=lll E a ε为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:l l l l l lD F a a aE N δβεαωβδαδδ∑⎪⎪⎭⎫ ⎝⎛++--=--Ωln ln .. 若令上式为零,则有:0ln=++-l l l l a a βεαω , 即上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。
玻色分布的推导作为练习,请同学们课后自己推导. 6.8 三种分布的关系 1 、由∑=llN a∑=lll E aε确定拉氏乘子a 和β的值.在许多实际问题中,也往往将β看作由实验确定的已知参量而由∑=l ll aεE 确定系统的内能.或将a 和β都当作由实验确定的已知参量,而由∑=llN a∑=lll E aε确定系统的平均总粒子数和内能.2 、能级的εl 有ωl 个量子态处在其中任何一个量子态上的平均粒子数应该是相同的,因此处在能量为εS 的量子态S 上的平均粒子数为: sss a f ω=即: sss a f ω=定域系统 :seβεα--费米系统:11++se βεα 玻色系统:11++seβεα总粒子数和能量可分别表示为: N =∑ssf定域系统 =∑--sSe βεα“+”费米系统 “-”玻色系统 =∑±+sSe 11βεαE =∑sss f ε定域系统 =∑--ss Se βεαε“+”费米系统 “-”玻色系统 =∑±+ssSe 1βεαε(式中εs 为粒子的所有量子状态求和 )3 、若α满足 1>>αe , 则 有: ss e e a lll βεαβεαωω++≈±=1这时玻色分布和费米分布都过渡到玻耳兹曼分布,由上式可知:11<<=+le a llβεαω(对所有l )这时任一量子态上的平均粒子数都远小于1,这个式子就是前边提到的所谓的非简并性条件,当非简并条件满足时,费米分布和玻色分布都过渡到玻耳兹曼分布. 4 、在推导最概然分布时,应用了l >>1 , ωl >>1, al -ωl >>1等条件,这些条件实际上是不满足的,这是推导过程的一个严重的缺点,我们将在后边的学习中用巨正则系统求平均分布的方法严格地导出这些分布.5 、定域系统和满足经典极限条件的玻色(费米)系统虽然遵从同样的分布,但它们的微观状态数是不同的.前者为ΩM.B.,后者为ΩM.B ./N!因此对那些直接由分布函数导出的热力学量,两者具有相同的统计表达式.然而,对于例如熵和自由能等与微观状态有关的热力学量,两者的统计表达式有差异.6最可几分布的推导也可以推广到含有多个组元的情况。
2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。
玻色统计研究玻色爱因斯坦凝聚
玻色爱因斯坦凝聚是一种奇特的量子现象,它描述了玻色子在低温条件下聚集到一个单一量子态的现象。
这种现象在实验室中已经被成功地观察到,并且已经被广泛应用于不同的领域,如超导性、光学和原子物理学等。
在理解玻色爱因斯坦凝聚的过程中,玻色统计发挥了重要的作用。
玻色子是一类不遵循泡利不相容原理的粒子,它们具有相同的量子态。
这意味着多个玻色子可以存在于同一个量子态中,形成一个大的集体。
在低温条件下,玻色子之间的相互作用将导致它们最终聚集在一个量子态中,形成玻色爱因斯坦凝聚。
这种凝聚现象在空间尺度上非常大,可以包含成千上万的玻色子。
玻色统计在理解玻色爱因斯坦凝聚的过程中起着至关重要的作用。
它提供了一种理论框架,描述了玻色子和凝聚态之间的相互作用。
同时,它也为实验研究和应用提供了丰富的思想和方法。
玻色子和费米子
粒子按其在高密度或低温度时集体行为的不同能够分成两大类:一类是费米子,得名于意大利物理学家费米,另一类是玻色子,得名于印度物理学家玻色。
区分这两类粒子的重要特点是自旋。
自旋是粒子的一种与其角动量(粒略地讲,确实是半径与转动速度的乘积)相联系的固有性质。
量子力学所揭示的一个重要之点是,自旋是量子化的,这确实是说,它只能取普朗克常数的整数倍(玻色子,如光子、介子等)或半整数倍(费米子,如电子、质子等)。
费米子和玻色子遵循完全不同的统计规律。
前者遵循的费米-狄拉克统计,其中一个显著和特点,确实是1925年瑞士科学家泡利发觉的“泡利不相容原理”,即在一个费米子系统中,绝不可能存在两个或两个以上在电荷、动量和自旋朝向等方面完全相同的费米子。
这就像电影院里的座位,每座只能容纳一个人。
而玻色子则完全不同,一个量子态能够容纳无穷多个玻色子。
因此,也只有玻色子才可能显现玻色-爱因斯坦凝聚现象。
例如,锂的两种同位素锂6和锂7分别为费米子和玻色子。
图片分别显示在810、510和240nk时锂6和锂7原子气和原子云照片。
我们能够看到,锂7(左),随着温度的降低所占的尺寸变小,也确实是发生了凝聚,而锂6(右)的尺寸则保持稳固,不发生凝聚。
这是因为泡利不相容原理的限制,使两个费米子不可能在同一时刻占据同一个空间。
正因如此,白矮星最终只能在引力作用下坍塌到一个极限尺寸而不再进一步缩小。