抽油机分类与特征
- 格式:pptx
- 大小:6.81 MB
- 文档页数:28
游梁式抽油机的技术特点和选型应用作者:马纪来源:《商情》2017年第23期【摘要】游梁式抽油机在油田生产中发挥的重要作用,但是人们在讨论游梁式抽油机的使用或改进问题中存在的一些认识上的不同,某些不同观点屡屡出现在新产品介绍或某些专业文献当中,为分清事实真相,正确指导油田生产经营取得更佳的经济效益。
【关键词】抽油机技术特征浅谈一、关于抽油机的“无功损耗”分析作为耗能大户,抽油机的节能广泛受到关注,部分理论认为,游梁式抽油机通常采用普通电机驱动,电机功率因数和负载率往往较低,常常在低于30%情况下运行,通过实施某些新技术或增加无功补偿装置就可将功率因数提高到90%以上,因此大大减小电机的无功损耗,起到大幅度节约能源的目的。
针对这种认识,我们需要理清一下什么是无功功率,在具有电感和电容的电路里,这些储能元件在半周期的时间里把电源能量变成磁场(或电场)的能量存起来,在另半周期的时间里对已存的磁场(或电场)能量送还给电源。
我们把与电源交换能量的速率的振幅值叫做无功功率。
它不对外做功只是与电源进行能量交换,才被定义为无功功率,但它决不是无用功功率,电动机需要有无功功率才能建立和维持旋转磁场,使转子转动,变压器也同样需要有无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。
因此,没有无功功率,电动机就不会转动,变压器也不能变压。
对于供电系统,如果出现低功率因数运行的情况,会造成发电机有功功率的输出降低,使电气设备容量得不到充分发挥等不良影响,因此在电网中必须设置一些无功补偿装置来补偿功率因数的降低。
对于具体的用电设备来说,无功功率增加会使电流增加造成部分用电设备有用功增加,对于电机来说无用功功率增大,会导致电机线损增加,但是由于电机内阻较小,通常可以忽略不计。
二、游梁式抽油机能耗分析“游梁式抽油机”实际是机械采油系统的代称,应该指由抽油机—抽油杆—抽油泵组成的采油系统。
在这种系统中,抽油机是系统的动力提供装置,它所提供的能量是包括抽油泵、抽油杆、油管以及电机、输出管线等等在内的机械采油系统能量消耗总和,在游梁式抽油机—抽油杆—抽油泵组成的机械采油系统中,抽油机的效率是最高的,设计合理的常规游梁式抽油机,不计减速器效率的情况下效率可达90%以上,其他结构形式的抽油机是难以做到的,系统的效率较低,主要是抽油泵、抽油杆等的效率较低,即使是抽油机、电机的综合效率达到1,则系统的效率仍然为30~45%,因此在这个有多个系统组成的串联动力传动系统中,研究节能问题需要从提高三抽系统效率着手,片面强调地面设施的节能,是难以取得理想效果的。
磕头机(抽油机)机构抽油机简图:E抽油机是开采石油的一种机器设备,俗称“磕头机”,通过加压的办法使石油出井。
抽油机工作原理:磕头机即游梁式抽油机是油田广泛应用的传统抽油设备,通常由普通交流异步电动机直接拖动。
其曲柄带以配重平衡块带动抽油杆,驱动井下抽油泵做固定周期的上下往复运动,把井下的油送到地面。
在一个冲次内,随着抽油杆的上升/下降,而使电机工作在电动/发电状态。
上升过程电机从电网吸收能量电动运行;下降过程电机的负载性质为位势负载,加之井下负压等使电动机处于发电状态,把机械能量转换成电能回馈到电网。
抽油机上冲程时,油管弹性收缩向上运动,带动机械解堵采油器向上运动,撞击滑套产生振动;同时,正向单流阀关闭,变径活塞总成封堵油当抽油机下冲程时,油管弹性伸长向下运动,带动机械解堵采油器向下运动,撞击滑套产生振动;同时,反向单流阀部分关闭,变径活塞总成仍然封堵油套环形油道,使反向单流阀下方区域形成高压区,这一运动又对地层内的油流通道产生一种反向的冲击力。
油井内的机械解堵采油器就是利用油管柱周期性的弹性变形来产生周期性的上下往复运动,从而对地层产生抽吸挤压频繁交替变换的活塞作用。
油层内“粘连”的液滴和堵塞颗粒物受到这种频繁地抽吸力和挤压力扰动后,被迫脱离原位,最终,使不易移动的液滴开始流动,使“粘连”的堵塞颗粒物脱离油道,实现疏通油道、扩大油流增加原油产量的目的。
套环形油道,使正向单流阀下方区域形成负压区,相当于对地层产生了一个强大的抽吸力。
引进调速传动后,可根据井下状态调节抽油机冲程频次及分别调节上、下行程的速度,在提高泵的充满系数的同时减少泵的漏失,以获得最大出油量。
尤其是采用变频调速既无启动冲击,又可解决选型保守、线路较长等所致的功率因数偏低等问题,获得节能增效的同时又能提高整机寿命。
尤其是油泵的寿命,减少机械故障提高可靠性.抽油机种类:干扰平衡游梁抽油机:是一种新型的节能抽油机。
不仅保持了常规游梁抽油机结构简单、可靠耐用的优点,而且具有附加动载小,能耗低,综合效率高,比常规抽油机节电30-50%以上,能延长整机使用寿命的特点。
游梁型抽油机(俗称“磕头机”)复式永磁抽油机皮带式抽油机抽油机1、概述抽油机是开采石油的一种机器设备,俗称“磕头机”,通过加压的办法使石油出井。
2、工作原理当抽油机上冲程时,油管弹性收缩向上运动,带动机械解堵采油器向上运动,撞击滑套产生振动;同时,正向单流阀关闭,变径活塞总成封堵油当抽油机下冲程时,油管弹性伸长向下运动,带动机械解堵采油器向下运动,撞击滑套产生振动;同时,反向单流阀部分关闭,变径活塞总成仍然封堵油套环形油道,使反向单流阀下方区域形成高压区,这一运动又对地层内的油流通道产生一种反向的冲击力。
油井内的机械解堵采油器就是利用油管柱周期性的弹性变形来产生周期性的上下往复运动,从而对地层产生抽吸挤压频繁交替变换的活塞作用。
油层内“粘连”的液滴和堵塞颗粒物受到这种频繁地抽吸力和挤压力扰动后,被迫脱离原位,最终,使不易移动的液滴开始流动,使“粘连”的堵塞颗粒物脱离油道,实现疏通油道、扩大油流增加原油产量的目的。
套环形油道,使正向单流阀下方区域形成负压区,相当于对地层产生了一个强大的抽吸力。
磕头机即游梁式抽油机是油田广泛应用的传统抽油设备,通常由普通交流异步电动机直接拖动。
其曲柄带以配重平衡块带动抽油杆,驱动井下抽油泵做固定周期的上下往复运动,把井下的油送到地面。
在一个冲次内,随着抽油杆的上升/下降,而使电机工作在电动/发电状态。
上升过程电机从电网吸收能量电动运行;下降过程电机的负载性质为位势负载,加之井下负压等使电动机处于发电状态,把机械能量转换成电能回馈到电网。
然而,井下油层的情况特别复杂,有富油井、贫油井之分,有稀油井、稠油井之别。
恒速应用问题显而易见。
如抛却这些不谈,就抽油机油泵本身而言,磨损后的活塞与衬套的间隙漏失等都是很难解决的问题,况且变化的地层因素如油中含砂、蜡、水、气等复杂情况也对每冲次抽出的油量有很大的影响。
看来,只有调速驱动才能达到最佳控制。
引进调速传动后,可根据井下状态调节抽油机冲程频次及分别调节上、下行程的速度,在提高泵的充满系数的同时减少泵的漏失,以获得最大出油量。
油田抽油机知识点总结一、油田抽油机概述油田抽油机是用于油田开发过程中的一种关键设备,其作用是从油井中将原油抽到地面,通过管道输送到处理设备进行加工。
油田抽油机通常由电动机、减速器、抽油杆、抽油泵等组成,它承担了油田生产中的抽油任务,是实现油田油井生产的重要设备之一。
二、油田抽油机的分类1. 采油方式的不同,油田抽油机可以分为潜油泵和扬程泵两种类型。
潜油泵是安装在井下,通过电缆连接,直接从井底将原油抽上来;扬程泵则是安装在地面,通过管道将原油从井下抽出来。
2. 电机驱动方式的不同,油田抽油机可以分为交流电动机驱动和直流电动机驱动两种类型。
交流电动机驱动的抽油机具有结构简单、使用方便等特点;直流电动机驱动的抽油机具有调速范围广、速度调整平稳等优点。
三、油田抽油机的工作原理油田抽油机通过电动机带动减速器,减速器再带动抽油杆,抽油杆带动抽油泵从井下将原油抽到地面。
抽油泵通常是通过往复的方式将原油推到地面,其中液体循环运动的过程中,形成了一定的液头,通过液头的作用将原油提升到地面。
四、油田抽油机的主要部件及其作用1. 电动机:作为油田抽油机的动力源,将电能转换为机械能。
2. 减速器:将电动机输出的高速旋转转矩减速,并传递给抽油杆。
3. 抽油杆:连接减速器和抽油泵,传递旋转力。
通常由多根抽油杆组成。
4. 抽油泵:起到将原油从井下抽到地面的作用。
通常采用柱塞泵或螺杆泵。
五、油田抽油机的维护和保养1. 定期检查抽油机各部件的磨损情况,并及时更换磨损严重的零部件。
2. 定期进行抽油机的润滑与维护,保证各部件的正常运转。
3. 定期对抽油机进行清洗,去除积尘和杂物,避免对机械零部件造成损坏。
4. 定期对抽油机进行性能测试,如电动机的电压、电流、转速等参数。
5. 定期进行安全检查和保养,保证抽油机的安全可靠运行。
六、油田抽油机的发展趋势1. 自动化技术的应用:随着自动化技术的不断进步,油田抽油机也在向自动化、智能化方向发展,实现远程监控、遥控操作等。
新型抽油机汇总它的学名:带副连杆双四杆抽油机主要特点:1.运动性能及动力性能都有较大的改善,承载能力更大,动转更平稳,曲柄销,传动带等易损件寿命延长,使维护成本降低达到了运行经济的要求。
2.带副连杆双四杆抽油机适应于对常规抽油机进行节能升级改造,继承了常规抽油机的全部优点,且平衡效果好,这是其它节能抽油机所达不到的。
3.综合节能较常规机高40%以上。
4.转抽作业能利用自身动力将驴头打到最低点,完成悬点挂载。
特别说明:带副连杆双四杠系列节能抽油机是按SY5044-93,美国API等抽油机专业标准为基础依据精心设计,性能全面超越同型号常规抽油机。
并可按用户要求参数设计抽油机,减速器,电机等标准件及易损件合通用标准,完全互换。
应用此项技术可以方便地对常规抽油机进行改造,在一年内即可收回改造成本。
2)摩擦换向抽油机电动机换向抽油机是机电一体化、高效节能产品。
采用智能模拟及数字混合控制,以功率因数cosΦ=1的开关磁阻电动机作为原动机,摩擦轮传动作为工作机构,机械传动路线短,效率高,电机实现了正反转换向,启动换向平稳,冲击小;冲程、冲次可独立进行无级调节,光杆上行及下行速度可实现分别控制,能够适应各种油质(稀油和稠油)的采油工艺的需要。
该机与同型号的常规游梁抽油机相比,机械效率提高了两倍多,系统效率达50%,节约电力46%。
摩擦换向抽油机具有以下优点:(1)装机容量低、机械效率高,可达80%以上(2)电动机功率因数COSФ=1,可提高变电设备的利用率。
(3)电动机起动电流小,当负载为电机额定负载l50%时,起动电流仅为额定电流的30%,电气系统保护措施完善,不会出现烧毁电机事故。
(4)平衡度高,平衡方式为对称式平衡,可达精确平衡。
(5)抽油杆上行、下行速度可分别独立控制、冲程、冲次无级调节,能够很好地适应油井状况从而提高泵效。
(6)该机效率高、能耗低,正常情况下,系统效率可达40%~50%。
(7)该机适用于较稠油采汲,恰当调整参数,可有效解决或减轻油杆及油管偏磨问题。
液压抽油机介绍一、前言随着定向井、海陆丛式井和水平井钻井技术的快速推进,现有采油设备已渐渐难以适应时代的发展,因此,液力无杆采油技术逐渐得到重视,早年的水力活塞泵虽因结构复杂而退出市场,但不能因此否定此种原理的可行性,无杆泵的设计成功,正是这种液力采油技术的一种延续、一种更新,它使我们在深井和超深井内采收稠油、高凝油有了可靠的保证。
二、技术特点1,无杆泵是用标准抽油泵的零部件装配而成,所以,其使用寿命和工作环境与普通管式泵等同。
2,举升液活塞与动力液活塞的面积比可随意调节,从而使地面泵的输出压力随意降低。
3,无杆泵是一种集加热和采油为一体的采油工具,工作时可将液压泵内原油加热后输送至无杆泵,这样,可将井下的稠油、蜡油热释降粘后举升到地面,在循环的全过程可保持温度均衡,可实现全井段降粘清蜡。
4,无杆泵动力液为油井采出液,即井内原油。
5,使用无杆泵后,没有机械传动部分,所以,运行效率高,节能节电。
三、工作原理上冲程时,换向阀控制上油腔室的进油孔开启,出油孔关闭,同时控制下油腔室的进油孔关闭,出油孔开启,此时动力液经油管进入上油腔室推动柱塞管上行,使柱塞管上部原油、顶部油腔室内原油和下油腔室内原油流入油套环空,部分原油经油套环空被推向地面,与此同时,底部油腔室内将吸入部分原油,其目的是在降低推油压力的前提下,为下一个冲程做准备(见附图1)。
下冲程:当柱塞管上冲程至上止点时,换向阀自动将上油腔室的进油孔关闭,出油孔开启,并同时控制下油腔室的进油孔开启,出油孔关闭,这时动力液便进入下油腔室推动柱塞管下行,使柱塞管上部空间压力降低,从而,吸进井内原油,与此同时,底部油腔室和上油腔室内原油流入油套环空,部分原油经油套环空被推向地面,此时顶部油腔室吸入部分原油,以降低推油压力(见附图2),完成一个循环过程。
全部抽油过程见动画示意图。
四、主要技术指标项目指标无杆泵总长4900mm无杆泵两端扣型 2 1/2″TBG泵体最大外径:112mm双向作功冲程1400mm动力液活塞直径Φ68mm×Φ68mm举液活塞直径Φ38mm×Φ38mm活塞作用面积比1:举液活塞总重量30Kg无杆泵井下工作时间与管式泵等同五、最小启动压力计算示例:以泵挂深度2000米为例,油压1Mpa,不考虑泵沉没压力,举液活塞上行时,受力为:Φ38柱塞面上的液柱载荷Kg,油压产生的压力Kg,泵筒与活塞的半干摩擦力(参考资料:泵径小于Φ70mm时,单个活塞摩擦力小于),活塞自重30Kg,动力液水力损失(动力液水力损失每千米Mpa),合计Kg由于作用在动力液活塞上下两个端面的液柱载荷相等,所以动力液自重不作计算,因此,只要动力液活塞上产生的推力大于举液活塞上的合力,就可使活塞上行。