冰川地貌与冻土地貌
- 格式:docx
- 大小:31.79 KB
- 文档页数:19
一、名词解释1、侵蚀基准面:通常把下蚀作用的极限称为侵蚀基准面。
2、河漫滩:是在一般年份河流高水位时,河水泛滥能淹没的谷底部分。
3、喀斯特作用:凡是水对可溶性岩石以化学过程为主,机械作用为辅的破坏和改造作用。
4、溶洞:地下水对可溶性岩体各种裂隙溶蚀,侵蚀扩大而成的地下空间。
5、雪线:是年降雪量等于年消融量的界限。
6、冰川:冰川冰在其本身的压力作用下能够沿山谷及斜坡流动,这种运动的冰川冰称为冰川。
7、冻土:是指温度在0℃以下并含有冰的各种土体和岩石。
8、地下冰:冻土含有的冰,称为地下冰。
9、热融作用:由于受气候转暖或人为地砍伐森林和兴建工程建筑等因素的影响,使多年冻土的热量平衡遭到破坏,导致冻土层上部局部融化,并使上覆盖层自行下沉,这种过程称为热融作用。
10、纹泥:冰川融水携带的细粒物质在冰川前缘湖泊中缓慢地沉积在湖底的具有明显韵律层理的冰川-湖沼沉积物。
11、湖泊:是经常充满水的陆上洼地,它是在一定的地质、地形和气候条件下形成和发展起来的。
12、沼泽:是地表过度潮湿,其上生长有湿生植被,有时还有泥炭积累的地段。
13、地壳运动:是地球内部热能、重力能和地球旋转能等所引起地壳的机械运动,主要表现在地层的变形,产生种种地质构造,同时引起了地表形态的改变。
14、节理:是指岩石中没有明显位移的断裂,裂开的面称为节理面。
15、断层:当岩层受力后,两侧的岩层有显著位移的断裂,叫做断层。
二、填空1、地表流水按其运动形式,可分为片状流水、沟谷流水与河流。
2、流水的搬运作用,包括对碎屑物的推移、跃移、悬移与化学溶解。
3、沟谷的形成与发展一般经过细沟、切沟、冲沟与坳沟。
4、根据泥石流中的物质组成与流态,可将泥石流分为粘性与稀性泥石流。
5、从横剖面上看,河谷主要由谷底与谷坡两部分组成。
6、喀斯特发育的基本条件包括岩石的可溶性、岩石的透水性、水的溶蚀力、水的流动性。
7、可溶性岩石包括碳酸盐类岩石、硫酸盐类岩石、卤盐类岩石三类岩石。
冰川在高纬和高山等气候寒冷地区,如果降雪的积累大于消融,积雪将逐年加厚。
在一系列物理过程下,积雪就变为冰川。
一、成冰作用成冰作用指积雪»粒雪»再经变质作用»冰川冰的过程。
雪是一种晶体,而任何晶体都具有使其内部包含的自由能趋向最小,以保持晶体稳定的性质,这就是最小自由能原则。
因此,在外界环境条件稳定时,雪晶力图向球形体转变。
这一过程称为自动圆化或粒雪化。
粒雪化过程可以分为冷型和暖型两类。
前者没有融化和在冻结现象,过程缓慢。
直径通常不足1m;暖型粒雪化过程进行的较快,雪粒直径比较大。
粒雪中含有贯通孔隙,当其进一步变化,全部孔隙被封闭后就变成冰川冰。
成冰作用也分为冷型和暖型。
冷型变质过程中,粒雪只能依靠其巨大厚度造成的压力加密而形成重结晶冰。
这种冰密度小,气泡多且气泡内的压力大。
冷型成冰过程历时很长。
暖型成冰作用有融水参与,并因融水数量不同而分别形成渗浸-重结晶冰、渗浸冰和渗浸-冻结冰。
当粒雪很薄而夏季气温较高时,粒雪可以完全融化,而后在冰川冷储作用下,在冰川表面重新冻结成冰。
重结晶、渗浸和冻结成冰,是成冰作用的三个基本类型。
渗浸重结晶及渗浸冻结作用则是两个过渡类型。
上述各种冰是成冰作用初期的原生沉积变质冰,它们仅仅分布于冰川表层。
冰川冰的绝大部分是沉积变质冰在运动中经受压力形成的动力变质冰。
其中最常见的是冰川塑性流动状态下形成的次生重结晶冰。
动力变质冰具有一般变质岩的特点,如片理、褶皱和冰晶的定向排列等。
冰川冰最初形成时是乳白色的,经过漫长的岁月,冰川冰变得更加致密坚硬,里面的气泡也逐渐减少,慢慢地变成晶莹透彻,带有蓝色的水晶一样的老冰川冰。
二、冰川分类与分布按冰川发育的气候条件和冰川温度状况,分为海洋性冰川和大陆性冰川。
①海洋性冰川(暖冰川)发育在降水充沛的海洋性气候区,粒雪线在年降水2000-3000mm地区附近,冰川的形成以暖渗浸再结晶成冰过程为特征,冰川的温度接近压力熔点,液态水可以从冰川表面分布到底部。
16种常见地貌1、丹霞地貌由巨厚的红色砂岩、砾岩组成的方山、奇峰、峭壁、岩洞和石柱等特殊地貌的总称。
岩石地貌类型之一。
主要发育于侏罗纪到第三纪,产状水平或缓倾斜的红色陆相地层中。
以中国广东省仁化县境内的丹霞山为典型。
具顶平、坡陡、麓缓的形态特点。
丹霞地貌的发育,始于第三纪晚期的喜马拉雅运动,它使部分红层变形,并将盆地抬升。
红色地层沿着垂直节理受到流水、重力作用、风力作用等侵蚀,形成深沟、残峰、石墙、石柱、崩积锥以及石芽、溶洞、漏斗、石钟乳等地貌形态。
主要山体呈方山状、堡垒状、宝塔状、单斜状峰群等。
丹霞地貌区奇峰林立、景色瑰丽,旅游资源丰富,有的早已成为风景区,如丹霞山、金鸡岭、武夷山等。
是研究、恢复红色盆地的古地理环境的最佳地区。
2、喀斯特地貌 karst landform具有溶蚀力的水对可溶性岩石进行溶蚀等作用所形成的地表和地下形态的总称。
又称岩溶地貌。
水对可溶性岩石所进行的作用,统称为喀斯特作用。
它以溶蚀作用为主,还包括流水的冲蚀、潜蚀,以及坍陷等机械侵蚀过程。
这种作用及其产生的现象统称为喀斯特。
喀斯特是南斯拉夫西北部伊斯特拉半岛碳酸盐岩高原的地名,当地称为Kras,意为岩石裸露的地方。
近代喀斯特研究发轫于该地而得名。
喀斯特地貌分布在世界各地的可溶性岩石地区。
可溶性岩石有3类:①碳酸盐类岩石(石灰岩、白云岩、泥灰岩等 )。
②硫酸盐类岩石(石膏、硬石膏和芒硝)。
③卤盐类岩石(钾、钠、镁盐岩石等)。
总面积达 51×106 平方千米,占地球总面积的10%。
从热带到寒带、由大陆到海岛都有喀斯特地貌发育。
较著名的区域有中国广西、云南和贵州等省(区),越南北部,南斯拉夫狄那里克阿尔卑斯山区,意大利和奥地利交界的阿尔卑斯山区,法国中央高原,俄罗斯乌拉尔山,澳大利亚南部,美国肯塔基和印第安纳州,古巴及牙买加等地。
中国喀斯特地貌分布广、面积大。
主要分布在碳酸盐岩出露地区,面积约91~130万平方千米。
冰川与冻土地貌冰川与冻土是地球上重要的自然地貌现象,它们对于地球表面的形成和变化起着至关重要的作用。
本文将探讨冰川与冻土地貌的形成原因、特征及其对环境的影响。
一、冰川地貌冰川是由厚厚的冰雪层覆盖而成的地貌特征,其形成与温度、降水等多种因素有关。
冰川地貌主要分为山地冰川和冰原冰川两种类型。
1. 山地冰川山地冰川位于高山地区,受到地形的限制,形成的冰川呈现出壮丽的峡谷和冰川舌。
冰川的形成主要依靠积雪的堆积和气温的变化。
在冷雪季节,冰川融化的速度减慢,积雪会逐渐堆积成冰川,而在暖和的季节,融化的冰川会形成冰川舌。
2. 冰原冰川冰原冰川分布在高纬度的地区,由多年累积的积雪形成。
它们的面积巨大,对地表地貌的改变也非常显著。
冰原冰川表面呈现出光滑平坦的特征,其下方则形成了复杂的冰川融水通道和冰川蚀积地貌。
二、冻土地貌冻土地貌是位于高寒地区的一种地貌类型,主要由冻土的分布和特征所决定。
冻土受到气温和湿度的影响,可以分为两种类型:永久冻土和季节冻土。
1. 永久冻土永久冻土分布在极地和高山地区,地下冻结层的厚度很大,一般在2米以上。
它对于土壤和地表水分的循环起着重要的控制作用。
在永久冻土环境下,土壤的活动性受到限制,植物的生长也受到影响。
2. 季节冻土季节冻土分布在温带和亚寒带地区,地下冻结层的厚度一般较小,会在冬季的低温时期出现,夏季则会逐渐融化。
季节冻土的变化对于生态系统的稳定性和土地利用具有重要意义。
三、冰川与冻土地貌的影响冰川和冻土地貌的变化对于环境和人类活动都有着重要的影响。
1. 环境影响冰川融化和冻土变暖会导致水资源供应不稳定,容易引发洪水、泥石流等自然灾害。
此外,冰川融化还会加剧全球气温上升的速度,进一步加剧气候变化的问题。
2. 人类活动影响冰川和冻土地貌对人类的居住和经济活动有着重要的影响。
高山地区的冰川是重要的淡水资源,为河流的形成和农业灌溉提供了水源。
此外,冰川景观也吸引大量的旅游者,成为当地经济的重要支柱。
冰缘地貌知识点总结
冰缘地貌是指由寒冻风化和冻融作用形成的地表形态。
冰缘原意为冰川边缘地区,今一般指无冰川覆盖的气候严寒地区,范围相当于冻土分布区,部分季节冻土区也发育冰缘地貌。
因而冰缘地貌又称冻土地貌。
地表由于气温的年、日变化及相态变化所产生的一系列冻结和融化过程称冰缘作用。
主要有冻胀作用、热融蠕流作用、热融作用、雪蚀作用、风力作用。
冰缘作用形成的主要地貌类型有:石海、石河,多边形土和石环,冰丘和冰锥,热融地貌、雪蚀洼地。
冰川地貌组合有一定的分布规律,从冰川中心到外围由侵蚀地貌过渡到堆积地貌。
山岳冰川地貌按海拔高度可分为:雪线以上为冰斗、角峰、刃脊分布的冰川冰缘作用带;雪线以下至终碛垄为冰川侵蚀-堆积地貌交错带;最下部为终碛垄、冰川槽谷和冰水平原地带。
冰川地貌与冻土地貌在高纬和高山等气候寒冷地区,如果降雪的积累大于消融,积雪将逐年加厚。
在一系列物理过程影响下,积雪就变为冰川。
冰川本身就是一种地貌,也是寒冷地区重要的地貌营力,可塑造一系列冰川地貌。
但在降水量少的条件下,地表不能积雪成冰川。
在这种地区土层的上部常发生周期性的冻融,下部则长期处于冻结状态,成为多年冻土。
多年冻土层中发生的冻融作用,可塑造一系列冻土地貌。
关于冰川作用和冰川类型、分布,在第五章第四节已有介绍。
这里只着重讨论冰川的地貌作用和冰川地貌的特点。
、冰川作用冰川在运动时能对地表进行侵蚀。
但冰川运动的速度缓慢,每年只有数卜米至数百米不等。
冰川各个部分的运动速度并不一致,其中从粒雪盆(雪线以上的积雪盆地,即冰川的补给区)出口到冰舌上部这一段速度最快;在横剖面上则以冰川中部为最快。
实际观察还证明,冰川表面运动速度最快,且自冰面向底部递减。
冰川运动的速度有季节变化和日变化,一般是夏季快,冬季慢;白昼快,夜间慢。
在粒雪盆中冰川有向心运动和下沉运动,在冰舌部分有侧向运动和上升运动。
冰川运动是由可塑带的流动和底部的滑动组成的。
而冰川滑动则是产生侵蚀作用的根本原因。
冰川是一种巨大的侵蚀力量。
冰岛的冰源河流含沙量为非冰川河流的五倍,侵蚀力可能超过一般河流的10—20 倍。
冰川主要是依靠冰内尤其是冰川底部所含的岩石碎块对地表进行侵蚀。
在冰川滑动过程中,它们不断锉磨冰川床,这种作用通常称为磨蚀(刨蚀)作用。
另外,冰川下面因节理发育而松动了的岩块和冰冻结在一起,冰川运动时岩块被拔起带走,这就是拔蚀(掘蚀)作用。
冰川的搬运能力是惊人的。
大陆冰川可以把大片基岩搬走;山岳冰川的搬运能力也不小。
喜马拉雅山中即有直径28 米,重量超过万吨的大漂砾。
冰川通过磨蚀、拔蚀、雪崩和山坡上的块体运动获得大量碎屑物质。
这些碎屑被冰川携带而下,通称运动冰碛。
其中,出露于冰面的叫表碛;夹带在冰内的叫内碛;在冰川底部的叫底碛;位于冰川两侧的叫侧碛;两支冰川会合则形成中碛。
由于冰川的消融或负荷过多,被搬运的物质就堆积下来成为冰碛物。
冰碛物往往是由漂砾(特大的石块)、砾石、砂和粘土组成的混合堆积物,因此有人把冰碛物称为冰砾泥。
但由于冰川活动区岩性的影响,冰碛物的成分和粒度可有较大的差别。
冰碛物缺乏分选,不显层次,但其中可夹有冰水形成的砂砾透镜体。
冰碛物中常含有大量砾石,磨圆度差,多呈次棱角状。
冰碛石表面常有冰川搬运时砾石与基岩或砾石之间相互刻磨而成的擦痕、刻槽及磨光面。
冰碛物中的石英砂粒棱角尖锐。
在冰川的研磨作用下,颗粒常具贝壳状断口。
有些侧碛有冰川表碛滚落堆积,因而可出现明显向外侧倾斜的现象。
有些冰碛石在运动过程中,适应冰流方向,调整自己的方位,其长轴顺冰流方向延伸。
、冰川地貌冰川地貌分为冰蚀地貌、冰碛地貌和冰水堆积地貌三类。
一)冰蚀地貌冰蚀地貌主要有冰斗、冰川谷、羊背石等。
1.冰斗冰斗是山岳冰川作用的结果。
冰斗呈剧场形状或围椅状,三面环以陡峭的岩壁,开口处为一高起的冰槛(岩槛),因而冰斗底部是一个洼地。
山坡集水盆中的多年积雪斑洼地岩石因冻融作用频繁,崩解为岩屑,并在重力和融雪水联合作用下搬运到低处,积雪斑后缘逐渐形成一个陡坎,雪斑下的地面也逐步蚀低成为洼地,这就是雪蚀洼地。
积雪演化为冰川后,冰川对底床的磨蚀作用使底床加深,在前方造成坡向相反的冰槛,陡壁受冰川的拔蚀作用而后退变高,就成为冰斗。
冰斗按其分布位置。
可分为谷源冰斗和谷坡冰斗两种。
相邻冰斗后退可形成刃脊和角峰冰斗发育于雪线附近,因而具有指示雪线的意义。
2.冰川谷冰川谷是冰川下蚀和展宽形成的槽谷,谷底自上游向下游变窄,谷地两侧常有谷肩和冰川切削山嘴而成的三角面,横剖面呈U形或槽形,故又称U形谷或槽谷。
冰床上常有冰川差别侵蚀形成的冰坎与冰盆。
这种差别侵蚀与冰床基岩的岩性、节理、构造及冰前期河床纵剖面的原始起伏有关。
在支冰川注入主冰川的汇合处,常在谷肩出现悬谷。
这是由于主冰川厚度较大,侵蚀深度也较大,而其两侧支冰川,则因厚度较小,侵蚀力较弱,冰床深度不大,故冰川退却后,支冰川谷常高悬在主冰川谷的谷底之上,形成悬谷。
峡湾是冰川谷的一种特殊形式。
在大陆冰川或岛屿冰盖入海处常形成许多峡湾,它是过去溢出冰川的通道。
目前峡湾仍在海面以下。
3.羊背石在冰床的表面,由冰川侵蚀形成一些似羊背的石质小丘,称羊背石。
羊背石的迎冰川面因受磨蚀而平缓,布满磨光面、擦痕、刻槽等微形态;背冰川面因受拔蚀多为参差不齐的陡坎。
二)冰碛地貌冰碛地貌可分为冰碛丘陵、侧碛堤和终碛堤等。
1.冰碛丘陵(基碛丘陵)冰碛丘陵是冰川后退过程中,由于冰体的逐渐消融,原来的表碛、内碛、中碛都堆积在底碛之上形成的,表面丘陵起伏,洼地常常积水。
冰碛丘陵以大陆冰川区分布最广,高度由数十米至百余米。
大规模的山岳冰川区也能形成冰碛丘陵,分布在冰川谷的底部,高度较小。
2.侧碛堤(侧碛垅)与中碛堤(中碛垅)侧碛堤位于山谷冰川的两侧,常成条状岗地,两条侧碛会合形成中碛堤,它位于冰川谷的中间。
3.终碛堤(终碛垅)终碛堤又称前碛堤,位于冰川末端,呈弧形,常与侧碛堤相连。
终碛堤是冰川补给与消融处于相对平衡时,冰舌末端位置变动不大,大量冰碛物在此堆积而形成的。
如果冰川后退是断续进行的,则可形成数道终碛堤。
故根据终碛堤的分布及条数,可以确定与此相应的冰川作用范围及冰川退缩的阶段性和冰期的次数。
4.鼓丘鼓丘是高数十米、长几百米的流线型丘陵。
平面上呈蛋形,长轴与冰流方向平行。
迎冰面(后坡)陡,背冰面(前坡)缓,大部分鼓丘完全由冰碛物组成,有的则有一基岩核心。
鼓丘成群分布在大陆冰川终碛堤内侧不远的地方。
山岳冰川区则很少见。
三)冰水堆积地貌冰水是冰川的融水,因此冰水与冰川的动态息息相关。
同时冰水又具有流水作用的一般特征。
冰水作用主要是将冰碛物进行再搬运和再堆积,因此冰水堆积物有的具冰川作用的痕迹。
堆积物经分选,形成层理,其中砾石磨圆度较好。
冰水堆积地貌主要有冰水扇、冰水排泄平原、季候泥、蛇形丘等。
量碎屑物质堆积于终磧堤的外围, 形成冰水扇,许多冰水扇联合成外冲 平原;在山谷中形成冰水排泄平原, 经后期切割则成冰水阶地。
在冰川区域,湖泊往往是冰川作用的产物。
其中有的是冰蚀作用形成的;有的是冰积物堆积阻塞局部冰融水的结果。
冰水湖泊中的沉积,有明显 的季节变化,夏天冰融水增多,携带颗粒较粗的泥沙入湖沉积,颜色变 浅;秋季冰融水骤减,冬季湖泊封冻,悬浮的粘土胶粒沉淀,颜色较深。
这样就形成季候泥,亦称纹泥,它不仅象树木年轮一样,可据以计算沉 积物形成的年代,而且因其中含有抱粉,能为该地区的植物和气候演变 提供线索。
蛇形丘是一种狭长而曲折的岗地,蜿蜒伸展如蛇形,故名蛇形丘。
蛇形 丘两坡对称,丘脊狭窄。
大的蛇形丘长达数十公里,有的还爬上高坡。
这主要是冰下河道中的沉积,当冰川融化后,沉积物便显露出来,蛇形丘。
组成物质几乎全部是大致成层的砂砾,偶夹冰磧透镜体。
丘主要分布在大陆冰川地区。
冰川地貌类型具有明显的组合规律。
山岳冰川地貌由山顶至山麓, 组合依次为: ①冰斗、刃脊、角峰带 位于雪线以上,为冰蚀地貌带。
②冰川谷、侧磧堤和冰磧丘陵带 位于雪线以下,终磧堤以上,为冰蚀 冰积地貌带。
③终碛堤带 位于山谷冰川末端,为冰积地貌带。
④冰水扇和外冲平原带 位于终碛堤以外,为冰水堆积地貌带。
大陆冰川地貌组合以终碛堤为界, 堤内以冰碛地貌为主,以冰碛丘陵为 代表;堤外以冰水堆积地貌为主,以冰川外冲平原为代表。
冰融水从冰川两侧和底部流到冰川末端,汇成冰前河流。
冰前河流将大蛇形地貌三、冻土与冻土地貌一)冻土凡处于零温或负温,并含有冰的各种土(或岩),称为冻土。
温度状况相同但不含冰的,则称为寒土。
冻土按其处于冻结状态的时间长短,可以分为季节冻土和多年冻土两类。
一两年之内不融化的土层称为隔年冻土,是上述两类冻土之间的过渡类型。
多年冻土可分为上下两层,上层为夏融冬冻的活动层,下层为多年冻结层。
活动层在冬季冻结时,能和下部的多年冻结层完全连接起来的,称为衔接多年冻土。
在这种情况下,活动层又称季节融化层。
活动层在冬季冻结时不与下部多年冻结层衔接,中间隔着一层融土的,则称为不衔接多年冻土。
在这种情况下,活动层又称季节冻结层。
多年冻结层距地表的深度,称为多年冻土的上限。
多年冻土在地球上的分布表现出明显的纬度地带性和垂直地带性规律。
无论在水平方向或垂直方向上,多年冻土带都可以分出连续冻土带和不连续冻土带。
在北半球,多年冻土从中纬向极地厚度不断增加,上限逐渐缩小。
北纬48°附近的多年冻土南界,地温接近0C,冻土层厚度仅1 —2米。
连续多年冻土带南部,年平均地温约为-3 —5C,冻土厚度可达100米。
北极附近岛屿的年平均地温降至-15C,冻土厚度达到1000米以上,上限趋近地面。
中低纬高山高原区冻土的分布,则表现为随海拔高度而变化。
海拔愈高,地温愈低,则冻土愈厚,而上限深度愈小。
地下冰的存在是冻土的最基本特征。
冻土中的地下冰,根据成因和埋藏形式可以分为组织冰、洞脉冰、埋藏冰等类型。
土层中的水分冻结所形成的组织冰是分布最广、含量最多、但冰的聚合体最小的一类地下冰。
洞脉冰是地表水注入土、岩垂直裂隙和洞穴冻结形成的,可分为脉冰和洞穴冰两种。
由于地表水周期性注入,因而在裂隙中多次重复冻结,这样形成的脉冰叫做复脉冰。
它具有垂直条带状构造,每一条带代表一个年层,常伸入到多年冻土层内,年代愈长,裂隙愈扩大,所以复脉冰也被称为冰楔。
埋藏冰是地表冰体(冰椎、河冰、湖冰、冰川冰等)被堆积物掩埋后形成的,通常呈透镜体。
我国多年冻土区地下冰分布很广泛,有的地方地下冰厚度很大,如青藏公路风火山最厚单层地下冰可达5 米,昆仑山垭口夹于沉积层中的冰透镜体,最厚可达10 余米。
地下冰的数量、分布及其与土中其他组成要素的位置关系不同,形成不同的冻土构造类型。
除地下冰外,冻土中还有一部分液态的地下水。
根据地下水与冻土层的位置关系,多年冻土区的地下水可以分为冻结层上水、冻结层间水和冻结层下水三类。
地下水与整个冻土层有密切的关系,一方面冻土影响着地下水的运动,另方面地下水的存在对冻土的温度、厚度变化也产生明显影响。
二)冻土地貌由于温度周期性地发生正负变化,冻土层中的地下冰和地下水不断发生相变和位移,使土层产生冻胀、融沉、流变等一系列应力变形,这一复杂过程称为冻融作用。
冻融作用是寒冷气候条件下特有的地貌营力,它使岩石遭受破坏,松散堆积物受到分选和干扰,冻土层发生变形,从而塑造出各种类型的冻土地貌。
冻土地貌也可称为冰缘地貌。
冰缘原指冰川边缘地区,现已泛指所有不被冰川覆盖的气候严寒地区,大致与多年冻土区相当。
1.石海与石河基岩经过剧烈的冻融风化,岩石崩解,产生大片巨砾岩屑,堆积在平缓的地面上,形成石海。