医学中常用激光器(详细)
- 格式:doc
- 大小:46.50 KB
- 文档页数:6
激光常见的分类激光(Laser)是一种以光学放大的原理产生的高度聚焦的光束。
它的特点是单色性、同相性和高亮度,广泛应用于各个领域,包括医疗、通信、制造等。
根据激光器的工作原理和应用领域的不同,激光可以被分为多种分类。
一、气体激光器气体激光器是一种利用气体放电形成的激发能量来激发激光发射的装置。
根据使用的气体种类不同,气体激光器可以分为氦氖激光器、二氧化碳激光器、氩离子激光器等。
其中,氦氖激光器是最早被发现的激光器,其工作波长为632.8纳米,广泛应用于医疗、测量和教育领域;二氧化碳激光器的工作波长为10.6微米,主要用于切割、焊接和雕刻等工业应用;氩离子激光器的工作波长为488纳米和514纳米,常用于生物医学研究和材料加工等领域。
二、固体激光器固体激光器是利用固体材料中的活性离子或色心离子来产生激光的装置。
常见的固体激光器有Nd:YAG激光器、Nd:YVO4激光器等。
其中,Nd:YAG激光器的工作波长为1064纳米,是目前应用最广泛的固体激光器之一,可用于切割、焊接、标记等工业应用;Nd:YVO4激光器的工作波长为1064纳米,它具有更高的光转换效率和更窄的线宽,适用于高精度的激光加工和科学研究等领域。
三、半导体激光器半导体激光器是利用半导体材料中的电子和空穴复合产生激光的装置。
半导体激光器具有体积小、功耗低和价格便宜等优点,广泛应用于通信、显示和医疗等领域。
根据结构和工作方式的不同,半导体激光器可以分为激光二极管、垂直腔面发射激光器(VCSEL)等。
激光二极管是最常见的半导体激光器,其工作波长范围广泛,可从红外到可见光,适用于光存储、医疗和传感等应用;VCSEL是一种垂直发射的半导体激光器,具有窄的光谱线宽和高的发射功率,主要用于光通信和3D成像等领域。
四、光纤激光器光纤激光器是利用光纤中的增益介质来放大激光的装置。
光纤激光器具有体积小、可靠性高和抗干扰能力强等优点,广泛应用于通信、材料加工和医疗等领域。
激光的种类和激光器的用途激光是一种由激活的原子、分子或离子产生的高度聚焦的光束。
根据激光的产生机制、波长、功率等不同特点,激光可以分为多种不同类型。
以下是常见的一些激光器种类及其应用。
1.气体激光器:气体激光器利用气体体积放电、电离、碰撞激发等原理产生激光。
其中,最常见的激光器是二氧化碳激光器(CO2激光器),它的波长为10.6微米。
CO2激光器广泛应用于切割和焊接金属材料、医学手术、纹身移除、装饰等领域。
2.固体激光器:固体激光器使用固体材料(如晶体或玻璃)作为激发介质,通过显微光泵或一个或多个便激光器激励来产生激光。
当固体材料受到外部能量激发时,光子被激发到高能级,并在经典的自发辐射下退回到较低的能级,产生激光。
常见的固体激光器有Nd:YAG激光器和Er:YAG激光器等。
Nd:YAG激光器工作在1064纳米,常用于望远镜、瞄准器、激光光纤通信等领域。
3.半导体激光器:半导体激光器是利用半导体材料和pn结构的特性产生激光。
半导体激光器通常体积小且寿命长,因此广泛用于信息存储、激光指示器、激光打印机、激光读取器、医疗设备等领域。
此外,半导体激光器还广泛应用于激光雷达、光通信和工业材料加工等领域。
4.光纤激光器:光纤激光器是一种利用光纤作为反馈介质产生激光的激光器。
相较于传统的固体激光器,光纤激光器具有更高的效率、更小的尺寸和更长的使用寿命。
光纤激光器广泛应用于医学手术、材料加工、激光测距、光纤通信等领域。
5.自由电子激光器:自由电子激光器是一种利用加速带电粒子(电子或电子束)产生激光的激光器。
自由电子激光器的波长范围广,功率高,可用于材料加工、电子束刻蚀、粒子加速器、原子核物理研究等领域。
除了上述激光器类型外,还有衍射光束激光器、液体激光器等特殊类型的激光器。
总结起来,激光器有着广泛的应用领域。
例如,激光器在医学领域中,可用于激光手术、激光治疗、激光诊断等;在通信领域中,激光器可用于光纤通信、激光雷达等;在材料加工领域中,激光器可用于切割、打孔、焊接、雕刻等;在科研领域中,激光器可用于光谱分析、粒子加速等。
激光分类与波长激光是一种具有高度聚焦能力和单色性的光源,广泛应用于医疗、通信、材料加工等领域。
根据激光器所发射的光波长的不同,可以将激光分为多种类型。
本文将介绍几种常见的激光分类以及它们对应的波长范围。
1. 气体激光器气体激光器是一种利用气体放电产生激光的装置。
根据不同的气体种类,气体激光器可以分为氦氖激光器、二氧化碳激光器、氩离子激光器等。
其中,氦氖激光器的波长范围大约在632.8纳米,主要用于医疗、教学和展示等领域;二氧化碳激光器的波长范围在10.6微米,适用于材料切割、焊接等工业应用;氩离子激光器的波长范围在488至514纳米,主要用于激光打印和医学研究等领域。
2. 固体激光器固体激光器是一种使用固体材料作为激发介质的激光器。
常见的固体激光器有钕玻璃激光器、掺钕钇铝石榴石激光器等。
钕玻璃激光器的波长范围在1053纳米,常用于军事、科研和医学领域;掺钕钇铝石榴石激光器的波长范围在1064纳米,主要应用于材料加工、激光雷达等领域。
3. 半导体激光器半导体激光器是一种利用半导体材料产生激光的器件。
它具有体积小、功耗低、寿命长等优点,被广泛应用于光通信、激光打印、激光医疗等领域。
半导体激光器的波长范围与具体的材料有关,常见的波长有650纳米、780纳米、850纳米、980纳米等。
4. 光纤激光器光纤激光器是一种将激光通过光纤传输的激光器。
它具有灵活性高、传输距离远等优点,被广泛应用于光通信、材料加工等领域。
光纤激光器的波长范围也与具体的激光器有关,常见的波长有1064纳米、1550纳米等。
除了以上几种常见的激光器类型,还有许多其他类型的激光器,如色心激光器、自由电子激光器等。
它们的波长范围也各不相同,适用于不同的应用领域。
总结起来,激光器根据波长的不同可以分为气体激光器、固体激光器、半导体激光器和光纤激光器等多种类型。
每种类型的激光器都有其独特的波长范围和应用领域。
了解不同类型的激光器以及它们的波长特性,有助于我们更好地选择和应用激光技术。
激光器的种类讲解激光器是一种能够产生高纯度、高亮度和一致的光束的装置。
他们在科研、医学、工业和通信等领域中具有广泛的应用。
根据激光器的工作原理和参数,可以将激光器分为多种类型,如气体激光器、固体激光器、半导体激光器和光纤激光器等。
本文将对各种类型的激光器进行深入的讲解。
1.气体激光器:气体激光器是最早被发明出来的激光器类型之一、它们通过用电流激励气体分子来产生所需波长的激光。
常见的气体激光器有氦氖激光器(He-Ne)、二氧化碳激光器(CO2)、氩离子激光器(Ar)等。
气体激光器具有较大的输出功率和较高的波长稳定性,适用于医学、切割和焊接等领域。
2.固体激光器:固体激光器是使用固体材料作为激光介质的激光器。
常见的固体材料有Nd:YAG、Nd:YVO4和Ti:sapphire等。
固体激光器可以通过激光二极管或弧光灯等能量源进行激发。
它们具有高效、高稳定性和长寿命的特点,适用于雷达系统、激光加工和科学研究等领域。
3.半导体激光器:半导体激光器是通过电流注入拥有p-n结构的半导体材料,使其产生激光。
半导体材料可以是单一的半导体材料,如GaAs、InP,也可以是多层薄膜结构,如VCSEL(垂直腔面发射激光器)。
半导体激光器具有小型化、低功率和高效率的特点,广泛应用于通信、光存储和光电显示等领域。
4.光纤激光器:光纤激光器是利用光纤作为激光介质的激光器。
光纤激光器通常包括光纤光源和光纤放大器两个部分。
光纤光源是利用受激辐射从光纤核心产生激光,通常使用稀土离子注入的光纤作为激发材料。
光纤放大器则通过将输入的激光信号放大,从而得到高亮度的激光输出。
光纤激光器具有小型化、高品质和集成化的特点,广泛应用于通信、激光打标和光纤光源等领域。
除了以上所述的主要激光器类型,还有许多其他的激光器类型,例如自由电子激光器、化学激光器和超短脉冲激光器等。
不同类型的激光器在应用领域和性能参数上有着差异。
因此,在选择激光器时,需要根据具体需求来确定最合适的类型和参数。
激光器的分类介绍激光器是一种能够产生具有高度一致性和同步性的激光光束的器件。
根据激光器的工作原理、激光器的波长、激光器的应用领域等不同方面的分类,下面将对激光器进行详细的介绍。
一、根据激光器的工作原理进行分类1.固体激光器:固体激光器是利用外部能量源(例如闪光灯、激光二极管)激励激光介质(例如Nd:YAG、Nd:YVO4)产生激光的一种激光器。
固体激光器具有高效率、高能量、高品质光束等特点,在军事、医学、科研等领域有广泛的应用。
2.气体激光器:气体激光器是利用放电激励稀薄气体分子产生粒子数密度高、能级分布宽的激光介质,然后通过光学共振腔将产生的激光进行放大和聚束。
常见的气体激光器有氦氖激光器、CO2激光器等,广泛应用于科研、测量、医学和工业等领域。
3.半导体激光器:半导体激光器是利用半导体材料在电流或者注入光子的作用下产生受激辐射所形成的激光。
其特点是体积小、效率高、功率低、寿命短等,被广泛应用于光通信、激光打印、激光显示等领域。
4.液体激光器:液体激光器采用液体介质作为激光介质进行激光产生。
液体激光器相比固体激光器和气体激光器具有较高的能量、频率较宽、调谐范围较大等特点,在科研和工业领域有着广泛的应用。
二、根据激光器的波长进行分类1.可见光激光器:可见光激光器产生的激光波长在400~700纳米之间,能够被人眼所感知。
可见光激光器广泛应用于激光显示、激光打印、激光医学等领域。
2.红外激光器:红外激光器产生的激光波长在700纳米到1毫米之间,是不可见光。
红外激光器在通信、材料加工、医学、军事等领域有广泛的应用。
3.紫外激光器:紫外激光器产生的激光波长在10纳米到400纳米之间,也是不可见光。
紫外激光器在微加工、光致发光、光解离等领域有重要的应用。
三、根据激光器的应用领域进行分类1.医学激光器:医学激光器广泛应用于激光治疗、激光手术等医学领域,例如激光照射可以刺激细胞增殖、促进伤口愈合,还可以用于激光石化术、激光治疗静脉曲张等。
激光器的种类及应用激光器是一种能够产生高强度、单色、相干光的装置,被广泛应用于科研、医学、工业、军事等领域。
根据激光器的工作原理和应用领域的不同,可以分为以下几种类型:1.气体激光器气体激光器利用气体电离放电激发基态原子或分子,从而产生激光。
常见的气体激光器包括CO2激光器、氦氖激光器、氩离子激光器等。
气体激光器具有较大的功率输出和较高的效率,被广泛应用于材料加工、医学、通信等领域。
2.固体激光器固体激光器利用固体材料中的色心离子或稀土离子来实现激光的产生。
常见的固体激光器有Nd:YAG激光器、Nd:YVO4激光器等。
固体激光器具有较高的光学效率和较长的寿命,在材料加工、医学、研究等领域有广泛应用。
3.半导体激光器半导体激光器利用半导体材料中的电子与空穴的复合辐射产生激光。
常见的半导体激光器有激光二极管和垂直腔面发射激光器(VCSEL)。
半导体激光器具有小体积、高效率、低功率消耗等优点,被广泛应用于光通信、激光打印、激光雷达等领域。
4.光纤激光器光纤激光器是利用光纤介质中的掺杂离子来产生激光。
常见的光纤激光器有光纤光栅激光器、光纤拉曼激光器等。
光纤激光器具有输出光束质量好、稳定性高、易于集成等优点,被广泛应用于通信、激光加工等领域。
5.势能激发激光器势能激发激光器利用电能、化学能等形式的势能转化为激光的能量。
其中,化学激光器通过化学反应释放能量来产生激光,常见的有二氧化碳化学激光器;核聚变激光器通过核聚变反应释放能量来产生激光。
6.自由电子激光器自由电子激光器利用电子在磁场中的轨道运动来产生激光。
自由电子激光器具有宽波谱、高亮度和超短脉冲等优点,被广泛应用于材料表面处理、生物医学和物理研究等领域。
激光器在各个领域具有广泛的应用:1.医疗领域激光器在医学诊断和治疗中发挥着重要作用。
例如,激光刀在手术中用于切割和凝固组织;激光眼科手术用于矫正视力;激光美容仪器用于皮肤治疗和脱毛等。
2.材料加工激光器在材料切割、焊接、打孔、刻蚀等方面发挥着重要作用。
各功率激光的特点功率激光是一种产生高能量和高功率输出的激光器。
它们通常用于工业、医学、国防等领域,具有许多独特的特点。
下面将详细介绍一些常见功率激光的特点。
1.CO2激光器CO2激光器使用碳气混合物来产生激光束,通常工作在10.6微米的波长。
CO2激光器具有以下特点:-高功率输出:CO2激光器可以产生高达几千瓦的功率输出,是一种非常强大的激光器。
-高效率:CO2激光器的光电转换效率通常在10-30%之间,能够最大限度地将电能转换为光能。
-较低的光束质量:CO2激光器的光束质量较差,通常具有较大的光斑尺寸和较差的光束射准度。
2.光纤激光器光纤激光器是一种使用光纤作为激光体的激光器,产生的激光束通常工作在1微米以下的波长。
光纤激光器具有以下特点:-高功率输出:光纤激光器具有较高的功率输出,通常为几千瓦。
-高效率:光纤激光器的光电转换效率较高,通常在30-40%之间。
-高光束质量:光纤激光器可以产生具有较小光斑尺寸和出色光束质量的激光束。
-可靠性和耐用性:光纤激光器具有较长的寿命和较高的可靠性,适用于长时间运行和恶劣环境。
3.二极管激光器二极管激光器是一种使用半导体材料作为激活介质的激光器,常见的波长包括808nm、940nm和980nm。
二极管激光器具有以下特点:-小巧轻便:二极管激光器体积小,重量轻,便于安装和携带。
-高效率:二极管激光器的光电转换效率通常在50%以上,具有优秀的能源利用率。
-窄光谱:二极管激光器产生的光束具有相对较窄的光谱线宽,适用于许多精密应用。
-快速调制:由于二极管激光器具有快速的调制特性,它们常用于通信和数据传输领域。
4.固体激光器固体激光器使用固体材料(如Nd:YAG、Nd:YVO4等)作为激活介质,并通过泵浦光源来激活材料产生激光束。
固体激光器具有以下特点:-高功率输出:固体激光器通常可以产生较高功率,从几十瓦到几千瓦不等。
-高光束质量:固体激光器可以产生较小的光斑尺寸和出色的光束质量。
各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。
激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。
下面将介绍几种常见的激光器。
1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。
氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。
2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。
二极管激光器广泛应用于通信领域,如光纤通信、光存储等。
它具有体积小、效率高的特点。
3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。
CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。
CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。
4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。
它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。
5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。
GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。
6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。
它具有波长调谐范围广、转换效率高的特点。
染料激光器在科学研究、生物医学等领域有广泛应用。
7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。
它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。
总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。
随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。
激光器的种类及应用激光器是一种产生高强度、高聚束、单色、相干光的装置。
它们被广泛应用于各个领域,包括医学、通信、材料加工、军事、测量和科学研究等。
下面将介绍几种常见激光器的种类及其应用。
1.气体激光器:气体激光器是最早被发展出来的激光器之一、最常见的气体激光器包括二氧化碳激光器和氩离子激光器。
二氧化碳激光器主要用于材料切割、焊接和打孔等工业应用,还被广泛应用于医学手术和皮肤美容治疗。
氩离子激光器在医学和科学研究中也有广泛应用,例如眼科手术、实验物理和化学研究。
2.固体激光器:固体激光器是一种使用固体材料作为激活介质的激光器。
最常见的固体激光器包括Nd:YAG激光器和铷钾硼酸盐(Nd:YVO4)激光器。
固体激光器有较高的光束质量和较长的寿命,被广泛应用于材料加工、医学、科学研究和军事领域。
它们可以用于切割、钻孔、焊接、标记和激光测距等应用。
3.半导体激光器:半导体激光器是使用半导体材料作为激发源的激光器。
它们具有体积小、功耗低和价格低廉的特点,因此在通信、激光打印、光存储和生物医学等领域得到了广泛应用。
激光二极管是最常见的半导体激光器之一,它们被广泛用于激光打印机、激光扫描仪和激光指示器等设备中。
4.光纤激光器:光纤激光器是利用光纤作为光传输介质的激光器。
它们具有高效率、高功率输出和相对较小的尺寸。
光纤激光器被广泛应用于通信、材料加工和医学等领域。
例如,光纤激光器可以用于光纤通信系统中的信号放大和发送,也可以用于材料切割、焊接和打标等高精度加工过程。
5.半导体激光二极管:半导体激光二极管是一种小型、低功耗的激光器。
它们主要用于光通信、激光打印、激光显示和传感器等领域。
激光二极管被广泛用于光纤通信系统中的光放大器和激光器,也被应用于激光打印机、光盘读写器和激光雷达等设备。
总而言之,激光器的种类繁多,每种类型都有其特定的应用领域。
激光技术的不断进步和创新将会带来更多新的应用和发展机会。
几种经常使用激光器的概述一、CO2激光器1、布景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。
特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。
二氧化碳分子气体激光器不但工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。
1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。
在1964年1月美国贝尔电话实验室的C.K.N.Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。
不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采取Q开关技术已获得50千瓦的脉冲功率输出。
最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。
2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。
其中CO₂是发生激光辐射的气体、氮气及氦气为辅助性气体。
加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。
氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。
CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。
放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。
这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。
3、特点二氧化碳分子气体激光器不单具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。
(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。
典型激光器介绍大全激光器(Laser)是20世纪最具科技感的发明之一,其应用涉及到多个领域,包括医疗、通信、制造、测量等等。
本文将介绍激光器的基本原理、不同类型的激光器以及其主要应用。
激光器的基本原理:激光器的核心部分是激光介质,它能够产生并放大高度集中的光束。
激光介质通常是一个光学腔体,其中有一个主动介质,能够吸收能量并在放出来的时候放大光信号。
这个光学腔体准备一个部分透明的发布窗口,能够让光束从中逃逸。
不同类型的激光器:1.固态激光器:固态激光器使用固态材料(如纳米晶体或晶体)作为激光介质。
它们通常非常稳定和高效,并且常用于医疗和研究领域。
2. 气体激光器:气体激光器使用气体作为激光介质,如氦氖激光器(He-Ne),二氧化碳激光器(CO2),氩离子激光器(Ar-ion)等。
它们通常产生高功率的激光束,常用于切割、焊接和制造领域。
3.半导体激光器:半导体激光器是目前应用最广泛的激光器类型之一,它使用半导体材料(如镓砷化物或镓氮化物)作为激光介质,常用于通信、医疗和显示技术领域。
4.纳秒激光器:纳秒激光器产生持续时间在纳秒级别的脉冲激光,常用于测量和材料研究领域。
5.二极管激光器:二极管激光器是一种小型、高效的激光器,它使用半导体材料并具有相对低的功率要求。
它们通常用于激光打印、扫描和传感器等应用领域。
激光器的应用:1.医疗领域:激光器在医疗领域有广泛的应用,如激光眼科手术、激光去胎记、激光脱毛等。
其高度集中和精确的光束可以在微创手术中发挥重要作用。
2.通信领域:半导体激光器在光纤通信中起到关键作用,能够快速高效地传输数据。
激光器所产生的激光束可以通过千米以上的光纤传输,实现高速宽带通信。
3.制造领域:激光器在制造领域常用于切割、焊接和打标等应用。
激光束的高能量和精度可以在金属切割和焊接时实现高质量和高效率。
4.测量和科学研究领域:激光器在测量、科学研究和实验室使用中发挥着重要作用,如激光干涉仪、激光雷达等。
医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。
目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。
人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。
激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。
由于激光的物理特性决定了其具有明显的生物学效应,。
各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。
一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。
氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。
原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。
(2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。
分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。
分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。
(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。
氦镉激光器(激活介质为Cd+)等。
离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。
气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。
其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。
1、氦氖激光器氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。
它的光束质量很好(发散角小,单色性好,单色亮度大)。
激光器结构简单,成本低,但输出功率较小。
半导体激光器具有体积小、重量轻、成本低、寿命长、波长可选择、输出功率稳定、电源驱动系统简单等优点,特别适用于医疗设备,其临床应用几乎覆盖了所有其他类型的激光器的应用范围1眼科半导体激光器主要用于光凝和治疗眼底疾病。
低功率810nm近红外半导体激光器,由于该波长的激光穿透力强,屈光间质对其吸收最少,而且光斑直径可调节的范围较大,是眼科中最常用的热源,可用于治疗各种难治性青光眼、硅油注入术后难治性高眼压,以及视网膜的光凝和固定等。
美国IRIS、生产的810半导体激光系统,G探头。
可治疗青光眼2激光美容2.1激光脱毛在医学美容领域,激光的主要应用之一就是激光脱毛。
810nm半导体激光能够很好被毛囊内黑色素吸收,产生热效应,破坏毛囊,是激光脱毛的金标准。
目前,国际上的激光脱毛仪主要有美国Lumenis公司的Lightsheer脱毛仪、德国Asclepion—meditec激光技术公司的MeDioStarX 系列、以色列Alma公司的SoDranO XI系列脱毛仪等。
2.2除皱半导体激光在美容领域的另一个重要应用是皮肤重建手术,用于除皱、嫩肤。
Candela 公司研发的半导休激光治疗仪一Smooth Bea m,激光波长为1450nm,脉宽为210ms ,能量密度8J/cm2至25J/cm2,激光被真皮胶原组织中的水分吸收,产生热效应,刺激胶原蛋白的再生和重塑,使皮肤变得光滑细嫩,恢复弹性。
此外,Syneron Medical公司提出一种新的非消融性激光嫩肤技术——EIDS技术,把半导体激光(905nm±10nm) 与RF射频源相结合,半导体激光选择性作用于真皮胶原组织,产生热效应使其阻抗降低,促进射频能量进一步加热胶原组织,产生新的胶原质,抚平皱纹。
粉刺是最常见的一种皮肤疾病,在青少年人群中的发病率达80%以C a n d e l a 公司研发Smooth Beam激光治疗仪利用1450 nm半导体激光的选择性光热作用改善表皮下皮脂腺结构,配备动力冷却装置保护表皮,对脸、背部粉刺和癌疮愈合疤痕的治疗十分有效。
医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。
目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。
人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。
激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。
由于激光的物理特性决定了其具有明显的生物学效应,。
各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。
一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。
氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。
原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。
(2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。
分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。
分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。
(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。
氦镉激光器(激活介质为Cd+)等。
离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。
气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。
其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。
1、氦氖激光器氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。
它的光束质量很好(发散角小,单色性好,单色亮度大)。
激光器结构简单,成本低,但输出功率较小。
氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。
氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。
它们均由放电管、谐振腔、激励电源等三部分组成。
以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。
电极A为阳极,由钨杆或钼(或镍)筒制成。
阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。
组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。
其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。
放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。
为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。
外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。
也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。
2、二氧化碳激光器二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。
它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用方便,是目前最常用的激光器之一,在医学上,CO2激光器作为手术刀使用日益引起人们的重视。
CO2激光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。
最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。
常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。
在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。
其光学谐振腔通常用平凹球面腔。
球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。
平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。
一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓做输出片。
电极材料常用镍,也可用钽、钼等。
根据构成光学谐振腔的两块反射镜紧贴放电管,或离开放电管,或一块紧贴一块离开放电管的情况,二氧化碳激光器又有内腔式、外腔式和半内腔式之分。
3、氮分子激光器氮分子激光器的激光输出波长主要在紫外区,有几十条谱线,其中以337.1nm最强。
激励方式为脉冲放电,输出几个纳秒(10-9s)的光脉冲。
输出的峰值功率相当高,达兆瓦级,甚至达到几十兆瓦。
重复率为每秒几十到几百次。
这种激光器构造简单,制造容易,可作染料激光器的抽运源,临床上可应用于外科、皮肤科、五管科和妇科等方面。
利用紫外激光的荧光效应,还可早期诊断某些肿瘤。
4、氩离子激光器Ar+激光器是一种惰性气体离子激光器。
它的激光波长主要是488nm和514.5nm的蓝色光和绿色光。
连续输出功率一般为数瓦至数十瓦,最高可达一百多瓦,是目前在可见光范围内连续输出功率最高的一种激光器。
Ar+激光器一般由放电管、电极、回气管、谐振腔和轴向磁场等部分组成。
放电管的核心部分是放电毛细管。
制作毛细管的材料要求能耐高温,散热性好,气密性好,吸气率低,机械强度高等,常用的材料有石英、氧化铍陶瓷和石墨等。
目前的Ar+激光器多数都是分段石墨管结构,即放电管由石墨片叠加而成,片间用小石英环隔开,彼皮绝缘。
整个装置放在有冷水套的石英管内。
管的两端分别为发射电子的阴极和收集电子的石墨阳极。
放电毛细管的作用是增强放电电流密度,以利提高发射强度。
轴向磁场是为了提高Ar+激光器的输出功率和寿命而设计的。
它有聚集带电离子的作用,可以增强电子密度和离子密度,减少离子对放电毛细管的轰击。
谐振腔由两块镀有多层介质膜的反射镜组成。
反射镜要相互平行,且与毛细管的轴线垂直。
水冷却系统是为了保证激光器的正常工作而设计的。
因为在放电过程中,电流很大(数十安培),激光器的温度升高快,必须加以冷却才行。
镇气瓶与放电管相通。
因为激光器工作一段时间之后,管内的气压就会明显下降,从而导致激光输出功率下降。
而镇气瓶可以通过控制开关自动向放电管内充气,使之保持最佳气压,达到维持激光输出功率基本不变的目的。
5、氦镉离子激光器氦镉离子激光器是一种金属蒸汽离子激光器,由镉(Cd)离子产生激光,氦为辅助气体。
这种激光器输出的激光波长主要是441.6nm(蓝光)和325nm(紫外光),连续输出功率较高,为几十毫瓦。
在临床上可用于诊断和照射治疗,例如检查五官科方面的癌肿,照射穴位以治疗高血压和慢性肝炎等。
氦镉激光器的石英毛细管内充以几乇气压的氦气,两端封以布儒斯特窗片。
阳极为钨杆,阴极为钼或铝筒。
靠近阳极处有一镉池,内盛高纯镉(99.99%)。
把镉加热到200~250℃左右,镉就升华为蒸气。
电极间加以电压使毛细管中的放电电流为几十毫安,若两端配以反射镜组成谐振腔,即有激光输出。
放电毛细管的内径为2~3毫米。
为了防止镉蒸气沾污阳极端的窗片(对内腔管而言为介质膜反射镜),镉池和窗片间设置电泳封锁区。
镉离子(Cd+)在电场作用下不断向阴极运动(这个过程称电泳效应),同时设置冷凝室,使通过毛细管的镉蒸气在此室冷凝。
氦镉激光器的输出功率与镉蒸气压、氦的气压及放电电流有关。
二.固体激光器固体激光器体积小,输出功率大,使用方便,但工作物质(激活介质)较贵,结构及制造均较复杂。
常用的固体激光器为红宝石、钕玻璃和掺钕钇铝石榴石等。
工作物质的性能好坏直接影响器件的输出特性,它有如下要求:(1)良好的激光性能:包括宽的吸收带和大的吸收系数;高的荧光量子效率;高能级寿命短,亚稳态寿命长;荧光谱线宽度小(锁模激光器例外);内部损耗小等等,上述各因素利于粒子数反转,输出较大功率的激光。
(2)良好的物理化学性能:包括机械强度高,熔点高,热导率高,热膨胀系数小,能制成较大尺寸,掺杂浓度高,光照稳定性、化学稳定性好等等,这些因素可使器件重复频率高,寿命长。
(3)良好的光学质量:光学质量差的工作物质,散射、吸收和退偏(一种因双折射而引起的损耗)也大,会使器件阈值升高,效率下降。
因此材料必须均匀。
此外,工作物质的形状及加工也有一定要求,固体激光器的工作物质常制成棒形(截面为圆形或矩形,称为激光棒),其长度和直径比为10∶1左右。
对连续工作的器件,为提高散热效果可取12∶1到15∶1。
棒两端面的平面平行度应小于10″,光洁度优于PⅢ。
为了减少侧壁效应,提高泵浦效率,激光棒的侧面应磨毛。
下面具体叙述各种固体激光器的结构和特性。
1、红宝石激光器红宝石是一种晶体,主要成份是Al2O3,掺入的激活离子是三价铬离子Cr3+,离子密度约为1.6×1019/cm3,Cr3+的重量掺杂比约为0.035~0.05%。
整个红宝石晶体呈淡红色,表示式为Al2O3:Cr3+。
当入射光为700nm时,o光的折射率为1.769,e光的折射率为1.761。
红宝石的机械性能很好,质硬,熔点高,热变形小,热导率高,化学性能稳定,具有较高的抗激光破坏能力,是较好的晶体材料之一。
它属于三能级结构,激光输出波长为694.3nm。
红宝石棒和脉冲氙灯同置于聚光腔内。
全反射镜和部分反射镜组成光学谐振腔(光学谐振腔也可由激光棒的二端面构成)。
电源的脉冲高电压使氙灯闪光,对红宝石进行光激励,以产生激光。
聚光器的作用是使光源发出的光尽量多地汇聚于工作物质,并使照明尽量均匀,以形成较好的光耦合。
前者用以提高整个系统的效率,后者则决定输出激光束的质量(光强度分布均匀性和发散角大小)。
红宝石激光器的激励光源为脉冲氙灯,其充气气压较高(大于几百乇)。
在较短的时间内(几微秒到几毫秒)通过大电流放电(几千安培/厘米2)使管内放电气体等离子体瞬时达到高温(104K),从而发出高亮度的以连续光谱为主的白光辐射,其色温为5000~15000K。
脉冲氙灯作单次闪光后间歇时间较长,通常不需采取冷却措施。
它在高于100次/秒的重复闪光频率下也能工作,但必须采取专门的风冷或水冷措施。
脉冲氙灯的电能和光能转换效率较高,可达50~60%以上。
红宝石的独特优点是它的激光为红光,这种激光人眼可见,对绝大多数光敏材料和器件来说,也易于进行探测和测量。
红宝石激光器是最早应用于医疗上的激光器:在眼科中用于视网膜的焊接,治疗青光眼,进行虹膜的切除等,在皮肤科中用于照射治疗,在生物学方面,用于细胞的研究等等。
红宝石属于三能级结构。
为了实现粒子数反转,至少需要把半数以上的工作粒子激励到激光跃迁的高能级,因此产生激光所要求的阈值激励功率较高。
此外,当晶体升温时(大于50℃),荧光量子效率显著下降,谱线宽度增大,使激光输出水平下降,甚至停振,故一般应采取冷却措施。