基于模糊灰色关联分析的故障样本集评估方法
- 格式:pdf
- 大小:359.34 KB
- 文档页数:6
文章编号:1001-8360(2001)05-0107-07基于灰色和模糊集理论的铁路方案多目标综合评价方法及模型研究吴小萍, 詹振炎(中南大学土木建筑学院,湖南长沙 410075)摘 要:分析并指出了铁路可行性研究中经济评价的局限性,提出在着手经济评价的同时,应辅之以多目标综合评价以克服经济评价局限性的思想。
根据铁路方案综合评价各类指标对评价方法的实用性的分析结果,将多种方法组合起来,在此基础上提出了一种新的方法——基于灰色和模糊集理论的铁路方案多目标综合评价方法,并建立其决策模型,编制了该模型的应用软件。
最后,以某快速客运通道方案评价为实例进行验证,结果表明本文建立的模型可以辅助经济评价法获得较为全面的综合评价结果,从而克服经济评价的局限性,为铁路方案综合评价和投资组合决策(pr o tfo lio decisio n ma king)提供了一种新的、有效的方法。
关键词:经济评价;方案决策;多目标决策;综合评价中图分类号:U212 文献标识码:AResearch on multiple-objective decision-making method and model for evaluating railway schemes based on Grey and Fuzzy Sets TheoryW U Xiao-ping, ZHAN Zhen-yan(Sch ool of Civil and Architecture Eng.,Central Sou th Univ ersity,Changsh a410075,China)Abstract:In this thesis,the limitatio ns of the economic ev alua tion in th e railway feasibility study are analyzed and proposed.B ased o n the analysis of the limitatio ns of the eco nomic ev alua tion,a new m ethod——the multi-ple-objective decisio n-making m ethod fo r evaluating railway schem es based o n the Grey and Fuzzy Sets Theory is put fo rw ard,w hich mea ns com bining v arious metho ds into o ne,and a co rrespo nding model is set up,accord-ing to the analy tical results from the applicatio n of v arious indexes to evaluatio n m ethods of railway schemes and by applying the principle o f multiple-objectiv e decisio n-making and rev olv ing around the solutio n o f such problem.Also its application softw are is intro duced.Finally,taking the synthetic ev alua tion of line schemes applied to o ne ex press railway passag e for ex ample,the results from such ex perim ent can prov e that the deci-sio n making model put fo rwa rd in this thesis can be a pplied to help eco nomic ev aluatio n to g et a rather compre-hensiv e assessment results so as to ov ercome the limitatio ns of the economic assessment,a nd it is a new and ef-fectiv e method fo r the railway synthetic ev aluatio n and protfo lio decision ma king.Keywords:eco nomic evaluatio n;schem es decision;multiple-objectiv e decisio n making;synthetic evaluatio n 铁路方案比选牵涉到投资决策问题,它是通过可行性研究解决的。
灰色评价方法与模糊综合评价方法
灰色评价与模糊综合评价具有许多共同的特点,它们的评价结果都是集合,都能应用于多层次评价,都可以作区间处理。
并且,灰色评价与模糊综合评价都是以经过加工的评价值作为综合的对象,这些评价值一般位于1,-1]区间内,反映了评价对象该评价指标对评价结果的贡献。
因此,将评价指标实际值转换为评价值的白化度权函数或隶属函数成为一个转换器。
所确定的白化权函数或隶属函数是否真实,主要是看它是否能够正确反映评价指标实际值对评价结果的贡献。
灰色评价中白化权函数特征值反映了特定灰类的特征,是该灰类的核心值。
由于白化权函数采用“半降梯形”函数,不会因为特征值的微小变化而引起聚类值的较大变化。
相反,如果在模糊综合评价中采用构造模糊子集法来确定隶属关系矩阵,那么则会出现由于指标等级临界值的微小变化将引起隶属度的骤降骤升。
灰色模糊综合评价方法在项目投资决策分析中的应用本文在归纳分析多种灰色模糊综合评价方法的基础上,选择基于灰色关联分析的模糊综合评价法应用于项目投资分析,方法简便,易于操作,效果较好。
标签:灰色模糊评价项目投资决策分析项目投资决策需要考虑很多不确定的影响因素,选用单项财务指标进行评价,其本身都有一定的片面性,根据不同的指标值来决策有可能会得出不同的结果。
综合考虑财务因素和非财务因素,对项目进行综合评价能够选择那些最优的项目方案。
本文尝试应用灰色模糊综合评价方法进行项目投资决策分析。
一、灰色模糊综合评价的特点和方法综述项目投资决策领域中普遍存在不确定性决策问题,不确定性主要有:一个是主观不确定性,即人的思维模糊性;另一个是信息不完全、不充分所造成的客观不确定性,即灰性。
在一个信息不完全的问题中,往往存在许多模糊的因素;具有模糊因素的一个问题可能不具备完全充分的数据与信息。
灰色是量的概念,模糊是质的范畴。
因此用灰色模糊概念来探讨项目投资决策问题,能够更好地构建具有柔性的决策模型,且使决策结果更加接近实际。
许多学者对灰色模糊综合评价进行了研究,笔者归纳分析主要有以下几种方法:(1)用灰色关联分析选定评定因素,确定权重集,进行模糊综合评判;(2)运用灰色系统理论确定评估灰类,计算灰色评估系数,得出灰色评估权向量和矩阵,依据模糊数学理论形成评判矩阵,进行模糊评价;(3)将评价对象的模糊综合评判结果矩阵视为比较数列,计算各个比较数列和各参考数列的灰色关联度,根据关联度大小对评价对象进行优劣排序;(4)使用模糊综合评判和灰色关联综合评价法,分别进行评判,然后再将结果进行综合集成;(5)用模糊数学中的广义距离来表示参考序列和比较序列的差异程度,然后用灰色关联分析法进行综合评判;(6)根据灰色理论的差异信息原理,构造灰色隶属度算子,形成新的模糊隶属度矩阵,然后进行模糊综合评判;(7)以灰色模糊关系为基础,将隶属度和灰度综合到评判过程中,进行灰色模糊综合评判;(8)根据灰色模糊数学理论,用区间数来表示隶属度,并将隶属度和灰度综合起来,建立区间数灰色模糊综合评判数学模型,进行评价;(9)使用灰色关联系数法构建模糊评判矩阵,然后再进行模糊综合评判。
281视界观.2020.5社科文化基于灰色关联度分析的居民健康水平模糊综合评价研究——以深圳市为例蒋佳欣(西南大学,重庆 400715)摘 要:对居民健康水平进行综合评价,可以让居民在健康环境里获得适宜、连续的综合型健康服务。
本文分析了国内外关于居民健康水平评价的研究现状,构建了基于灰色关联度的居民健康水平模糊综合评价模型,对居民健康发展水平进行综合评价。
关键词:模糊综合评价; GRA;最大隶属度;密度函数;居民健康水平一、 构建居民健康水平评价指标体系依据评价指标选取原则[1]和题目中提及的影响“健康深圳”的因素,并且参考了《深圳市统计年鉴》,我们选取了4个一级指标和12个二级指标来反映居民健康水平,见下表二、灰色关联度综合评价模型的建立与求解接着建立关于等级制度的隶属度函数,基于该函数得到隶属矩阵。
隶属度与隶属度矩阵是模糊综合评价的关键性概念。
因此,要构建模糊综合评价法评定居民的健康水平,还需要进一步求得模糊关系矩阵,用隶属度函数进行分析。
[2]设定各项指标的评价集V 由优秀、良好、中等、合格、较差5个部分组成,对各指标进行评级,分数分别是5、4、3、2、1。
以2012年~2017年各个指标的数据的平均值为标准,、得到了2017年各项指标对应于不同评价等级的隶属度,进而确定了A、B、C、D 的判断矩阵。
接着我们根据各指标所确定的权重,可以计算得到A、B、C、D 的评价结果为可以得到一级指标的隶属矩阵为得到模糊综合评价结果为B=(0.11 0.7 0.03 0.03 0.01).从而得到2017年居民健康水平的模糊综合评价结果最大值为0.11,根据最大隶属度原则,我们得到评价结果为2017年居民健康水平较高。
[3]结语本文将在前人的研究基础之上,重点阐述借助灰色关联度与模糊综合评价法进行居民健康水平量化评价的实现过程。
本文建立的居民健康水平评价模型在其他城市具有一定的推广与应用价值,可以服务于其他城市的提升健康水平的行动规划的制定。
基于灰色关联分析的几种决策方法及其应用一、本文概述本文旨在深入探讨基于灰色关联分析的几种决策方法及其应用。
灰色关联分析,作为一种有效的系统分析方法,已广泛应用于多个领域,尤其在处理信息不完全、不确定、不精确的复杂系统问题时表现出色。
本文首先概述了灰色关联分析的基本理论,包括其起源、基本原理和计算步骤。
随后,本文详细介绍了几种基于灰色关联分析的决策方法,包括灰色关联决策、灰色聚类决策和灰色动态规划决策等。
这些方法不仅为决策者提供了新的视角和工具,而且在实践中得到了广泛的应用。
在应用领域方面,本文重点介绍了灰色关联分析在经济管理、生态环境、工程技术等领域的应用案例。
这些案例不仅展示了灰色关联分析在实际问题中的有效性和实用性,同时也为其他领域的研究者提供了有益的参考和启示。
本文总结了基于灰色关联分析的决策方法的主要优点和局限性,并对未来的研究方向进行了展望。
随着科技的进步和研究的深入,相信灰色关联分析将在更多领域发挥重要作用,为决策者提供更加科学、合理的决策支持。
二、灰色关联分析理论基础灰色关联分析是一种基于灰色系统理论的决策分析方法,它通过对系统内部因素之间发展趋势的相似或相异程度进行量化描述,揭示系统内部因素间的关联性和主导因素。
这种方法尤其适用于数据样本少、信息不完全的复杂系统。
灰色关联分析的理论基础主要包括灰色关联度、灰色关联矩阵和灰色关联模型。
灰色关联度是描述系统内部因素之间关联性强弱的量化指标,它反映了因素间发展趋势的相似程度。
灰色关联矩阵则是一个由灰色关联度组成的矩阵,用于全面描述系统内部各因素之间的关联性。
灰色关联模型则是基于灰色关联度和灰色关联矩阵建立的数学模型,用于分析系统内部因素间的动态关联关系。
在灰色关联分析中,常用的计算灰色关联度的方法有绝对值关联度、斜率关联度和综合关联度等。
绝对值关联度通过比较因素间绝对值差异的大小来量化关联性;斜率关联度则通过比较因素间变化趋势的斜率来量化关联性;综合关联度则是综合考虑绝对值差异和斜率差异来量化关联性。
】】 】 】 】 】 】第1章 基于层次分析法的灰色关联度综合评价模型灵活型公共交通系统是一个复杂的综合性系统,单一的常规评价方法不能够准确对系统进行全面评价【39 ,这就要求在进行灵活型公共交通系统评价时,结合系统固有特点,根 据各种评价方法的优缺点,构建适合该系统的综合评价模型。
本章以灵活型公共交通系统评 价指标体系为基础,参考常规型公共交通系统评价方法,建立了基于层次分析法的灰色关联 度综合评价模型。
1.1评价方法适应性分析灰色关联度分析法基于灰色系统理论,是一种多指标、多因素分析方法 ,通过对系统的动态发展情况进行定量化分析,考察系统各个要素之间的差异性和关联性,当比较序列与 参考序列曲线相似时,认为两者有较高关联度,反之则认为它们之间关联度较低,从而给出 各因素之间关系的强弱和排序【50】。
与传统的其它多因素分析法相比【80】【81】【82】,灰色关联度 分析法对数据量要求较低,样本量要求较少,计算量较小,可以利用各指标相对最优值作为 参考序列,为最终综合评价等级的确定提供依据 ,而不必对大量实践数据有过高要求,能 够较好解决灵活型公共交通系统作为新型辅助式公系统没有足够的经验数据支撑其模型参 数的问题。
此外,灵活型公共交通系统评价体系是基于乘客、公交企业、政府三方主体的综 合评价体系,涉及因素较多,指标较为复杂,部分指标之间存在关联性和重复性,信息相对 不完全,而灰色系统的差异信息原理以及解的非唯一性原理,可以很好的解决这一问题【79 。
综上所述,认为灰色关联度分析法比较 适合于灵活型公共交通系统的综合评价 。
然而灰色 关联度分析法将所有指标对于总目标的影响因素大小视作等同,没有考虑指标权重的影响, 评价值可信度较低,应当通过科学的方法,确定指标权重,将其与关联度系数相结合,增加 评价结果的科学性和有效性【83 。
常见的权重确定方法包括,专家打分法、等权重法、统计试验法、熵值法等。
产品用户体验质量的模糊评价—灰色关联分析灰色关联分析是一种多指标决策方法,可以用于评估产品用户体验质量。
该方法通过将模糊评价问题转化为灰色关联度分析问题,可以确定其关联程度,进而对用户体验质量进行评价和改进。
首先,灰色关联度分析是一种基于关联度的模糊评价方法。
在评价产品用户体验质量时,通常会考虑多个指标,如产品功能、界面设计、操作便捷性等。
这些指标之间存在一定的相关性和权重,而灰色关联度分析可以通过建立灰色关联度模型,量化不同指标之间的关联程度,从而对用户体验质量进行评价。
其次,灰色关联度分析使用了灰色关联度函数。
该函数计算了不同指标之间的相关度,以及它们对用户体验质量的影响程度。
通过将各指标的数据进行标准化处理,得到灰色关联度值,进而确定各指标对用户体验质量的相对重要性。
基于这些相关性和重要性,可以制定用户体验质量的改进方案。
同时,灰色关联度分析还可以综合考虑不同参考系的灰色关联度值,以及不同发展程度的产品在不同指标下的发展状态。
通过对这些指标进行比较和分析,可以确定较优的改进方案,从而提升产品的用户体验质量。
要进行灰色关联度分析,首先需要确定评价指标和其权重。
通常可以通过问卷调查、用户反馈等方式获取相关数据,然后根据这些数据进行标准化处理,并计算灰色关联度值。
在计算过程中,需要注意选择适当的灰色关联度函数,以及合理的参数设置。
最后,通过综合考虑灰色关联度值,可以得出产品的用户体验质量评价结果,并提出相应的改进方案。
总之,灰色关联度分析是一种基于关联度的模糊评价方法,可以用于评估产品用户体验质量。
通过建立灰色关联度模型,量化不同指标之间的关联程度,并综合考虑不同参考系的灰色关联度值,可以确定用户体验质量的改进方案,从而提升产品的市场竞争力。
灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。
它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。
在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。
一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。
灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。
具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。
2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。
3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。
关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。
4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。
二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。
下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。
2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。
通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。
3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。
通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。
4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。
灰色关联度分析法
灰色关联度分析法(Grey Relational Analysis,GRA)是一种多属性
决策分析的统计方法,是一个在变量未知情况下实现系统模型和控制
不确定性的有用工具。
灰色关联度分析法主要用于研究和分析影响多
维度多属性数据测量结果的各种因素之间的相关关系。
它对模糊数据
进行综合处理,可以把多维评价分解成基本的准则来实现。
灰色关联度分析法的原理是利用灰色关联度的基本定义来衡量某种系
统的相关程度,灰色关联度通过确定系统的相似度和差异度来计算相
关程度,以此作为最终判断结果。
首先,将所有系统样本的信息表示
成一维度序列,并计算各时间点的灰色关联度。
其次,将灰色关联度
转化成定量指标,以此确定每一种系统的相关程度。
最后,根据定量
指标的值,把每一种系统分成几个类,以便于进一步分析和研究。
灰色关联度分析法可以应用于多种领域,例如工程设计、产品设计、
资源调配等。
例如,当进行工程设计时,可以利用灰色关联度分析法,通过灰色关联度来考虑多种参数和因素,以便最大限度地满足工程项
目的要求。
总之,灰色关联度分析法是一种有效的多属性决策分析方法,在许多
领域得到了广泛的应用,对于多维度和多属性问题具有显著优势。
有
效地利用灰色关联度分析法,能够更好地实现系统模型和控制不确定性,有助于优化效率和提高决策水平。
模糊综合评判和灰⾊评价法的应⽤实例分析模糊综合评判和灰⾊评价法的应⽤实例分析⼀、在物流中⼼选址中的应⽤物流中⼼作为商品周转、分拣、保管、在库管理和流通加⼯的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发⽣的时间和空间障碍。
在物流系统中,物流中⼼的选址是物流系统优化中⼀个具有战略意义的问题,⾮常重要。
基于物流中⼼位置的重要作⽤,⽬前已建⽴了⼀系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1)即使简单的问题也需要⼤量的约束条件和变量。
(2)约束条件和变量多使问题的难度呈指数增长。
模糊综合评价⽅法是⼀种适合于物流中⼼选址的建模⽅法。
它是⼀种定性与定量相结合的⽅法,有良好的理论基础。
特别是多层次模糊综合评判⽅法,其通过研究各因素之间的关系,可以得到合理的物流中⼼位置。
1.模型⑴单级评判模型①将因素集U 按属性的类型划分为k 个⼦集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满⾜:1, ki ij i U U U U φ===②权重A 的确定⽅法很多,在实际运⽤中常⽤的⽅法有:Delphi 法、专家调查法和层次分析法。
③通过专家打分或实测数据,对数据进⾏适当的处理,求得归⼀化指标关于等级的⾪属度,从⽽得到单因素评判矩阵。
④单级综合评判B A R =⑵多层次综合评判模型⼀般来说,在考虑的因素较多时会带来两个问题:⼀⽅⾯,权重分配很难确定;另⼀⽅⾯,即使确定了权重分配,由于要满⾜归⼀性,每⼀因素分得的权重必然很⼩。
⽆论采⽤哪种算⼦,经过模糊运算后都会“淹没”许多信息,有时甚⾄得不出任何结果。
所以,需采⽤分层的办法来解决问题。
2.应⽤运⽤现代物流学原理,在物流规划过程中,物流中⼼选址要考虑许多因素。
根据因素特点划分层次模块,各因素⼜可由下⼀级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中⼼选址的三级模型因素集U 分为三层:第⼀层为 {}12345,,,,U u u u u u =第⼆层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进⾏处理后得到诸因素的模糊综合评判如表3-8所⽰。