计数资料的统计描述与卡方检验
- 格式:ppt
- 大小:639.00 KB
- 文档页数:82
1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)不同点:t分布是一簇分布曲线,t 分布的曲线的形状是随自由度的变化而变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。
3、简述直线回归与直线相关的区别。
1资料要求上不同:直线回归分析适用于应变量是服从正态分布的随机变量,自变量是选定变量;直线相关分析适用于服从双变量正态分布的资料。
2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。
第一章医学统计中的基本概念2、抽样中要求每一个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。
(1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。
(2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。
(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度。
由于个体之间存在差异, 只有观察一定数量的个体方能体现出其客观规律性。
每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准。
需要作“样本例数估计”。
3、什么是两个样本之间的可比性?可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
实习一统计研究工作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科统计学:是研究数据的收集、整理、分析与推断的科学。
卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。
统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
统计学资料背诵版一、单选题:第二章:计量资料的统计描述1、描述一组偏态分布资料的变异度,以四分位数间距指标较好。
2、用均数和标准差可以全面描述正态分布资料的特征。
3、各观察值均加(或减)同一数后标准差不变。
4、比较某地1~2岁和5~5.5岁儿童身高的变异程度,宜用变异系数。
5、偏态分布宜用中位数描述其分布的集中趋势。
6、各观察值同乘以一个不等于0的常数后,变异系数不变。
7、正态分布的资料,均数等于中位数。
8、对数正态分布是一种右偏态分布(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?)9、横轴上,标准正态曲线下从0到2.58的面积为49.5%10、当各观察值呈倍数变化(等比关系)时,平均数宜用几何均数。
第三章:总体均数的估计与假设检验1、均数的标准误反映了样本均数与总体均数的差异。
2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明越有理由认为两总体均数不同。
3、甲乙两人分别从同一随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S 12、X2和S22,则理论上由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,丨X-μ丨≥t0.05/2,vS X的概率为5%5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围为74±1.96×46、关于以0为中心的t分布,叙述错误的是相同时,丨t丨越大,P越大。
7、在两样本均数比较的t检验中,无效假设为两总体均数相等。
8、两样本均数比较作t检验时,分别取以下检验水准,犯第二类错误概率最小的是α=0.309、正态性检验,按α=0.10水准,认为总体服从正态分布,此时若推断有错,其错误的概率等于β,而β未知。
10、关于假设检验,说法正确的是采用配对t检验还是两样本t检验是由试验设计方案所决定的。
1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)不同点:t分布是一簇分布曲线,t 分布的曲线的形状是随自由度的变化而变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。
3、简述直线回归与直线相关的区别。
1资料要求上不同:直线回归分析适用于应变量是服从正态分布的随机变量,自变量是选定变量;直线相关分析适用于服从双变量正态分布的资料。
2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。
第一章医学统计中的基本概念2、抽样中要求每一个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。
(1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。
(2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。
(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度。
由于个体之间存在差异, 只有观察一定数量的个体方能体现出其客观规律性。
每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准。
需要作“样本例数估计”。
3、什么是两个样本之间的可比性?可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
实习一统计研究工作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科统计学:是研究数据的收集、整理、分析与推断的科学。
卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。