计数资料的统计描述
- 格式:ppt
- 大小:290.50 KB
- 文档页数:39
统计描述与统计推断统计的主要工作就是对统计数据进行统计描述和统计推断。
统计描述是统计分析的最基本内容,是指应用统计指标、统计表、统计图等方法,对资料的数量特征及其分布规律进行测定和描述;而统计推断是指通过抽样等方式进行样本估计总体特征的过程,包括参数估计和假设检验两项内容。
(一)统计描述1.计量资料的统计描述计量资料的统计描述主要通过编制频数分布表、计算集中趋势指标和离散趁势指标以及统计图表来进行。
(1)集中趋势。
指频数表中频数分布表现为频数向某一位置集中的趋势。
集中趋势的描述指标:1)算术平均数。
直接法:x为观察值,n为个数加权法又称频数表法,适用于频数表资料,当观察例数较多时用。
f为各组段的频数。
2)几何平均数(geometric mean)。
几何平均数用符号G表示。
用于反映一组经对数转换后呈对称分布的变量值在数学上的平均水平。
直接法:加权法又称频数表法,当观察例数n较大时,可先编制频数分布表,用此法算几何平均数:3)百分位数(percentile )与中位数(median )。
百分位数是一种位置坐标,用符号x P 表示常用的百分位数有 2.5P 、5P 、50P 、75P 、95P 、97.5P 等,其中25P 、50P 、75P 又称为四分位数。
百分位数常用于描述一组观察值在某百分位置上的水平,多个百分位结合使用,可更全面地描述资料的分布特征。
中位数是一个特定的百分位数即50P ,用符号M 表示。
把一组观察值按从小到大(或从大到小)的次序排列,位置居于最中央的那个数据就是中位数。
中位数也是反映频数分布集中位置的统计指标,但它只由所处中间位置的部分变量值计算所得,不能反映所有数值的变化,故中位数缺乏敏感性。
中位数理论上可以用于任何分布类型的资料,但实践中常用于偏态分布资料和分布两端无确定值的资料。
其计算方法有直接法和频数表法两种。
直接法:当观察例数n 不大时,此法常用,先将观察值按大小次序排列,选用下列公式求M 。
医学统计学计数资料的统计描述(一)医学统计学计数资料的统计描述计数资料是医学研究中常见的数据类型,例如统计某种疾病的患病人数、治愈人数等。
如何对这些数据进行科学统计描述,成为了医学研究不可避免的问题。
一、计数资料的基本概念计数资料是指由离散数据组成的一种数据类型,这些数据仅取有限个数值,如某类疾病的患病人数(自然数)或治愈人数(非负整数)。
计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述极为重要。
二、计数资料的统计描述1. 频数频数是指计数资料中各取值出现的次数,常以小写字母n表示。
例如患病人数为0的样本数为n0,患病人数为1的样本数为n1,以此类推。
2. 频率频率是指频数与总样本数的比值,常以小写字母f表示。
例如患病人数为0的频率为f0=n0/n,患病人数为1的频率为f1=n1/n,以此类推。
频率可以体现每个取值在样本中的分布情况,是比较常用的统计指标,其和为1。
3. 百分比百分比是指频数与总样本数的比值乘以100,常以百分号表示。
例如患病人数为0的百分比为f0×100%,患病人数为1的百分比为f1×100%,以此类推。
4. 累计频率累计频率是指某一取值及其以下所有取值的频率之和,常以小写字母F 表示。
例如患病人数小于等于3的累计频率为F3=f0+f1+f2+f3。
累计频率可以体现小于等于某个取值的样本在总样本中所占比例。
三、总结计数资料是医学研究中常见的数据类型,对于这些数据的科学统计描述有益于研究者更加深入地了解样本的分布情况,进而提出相应的研究假设。
频数、频率、百分比和累计频率是计数资料的常用统计指标,可分析每个取值在样本中的分布情况和各个取值间的差异。
在实际研究中,研究者应根据实际情况选择合适的统计方法进行分析,以期得到更为科学的结论。
计数资料的统计描述第一节常用相对数一、绝对数定义:计数资料各类别的频数,即各分类事物的合计数。
如某病的出院人数、治愈人数、死亡人数等。
意义:绝对数反映出事物在某时、某地出现的实际水平,即实际发生的规模大小。
缺点:绝对数往往不便于互相比较。
例1:某乡两个村的调查结果为,甲村钩虫感染有150人,乙村钩虫感染有100人。
据此,我们只能说甲村钩虫感染较乙村多50人,但不能肯定甲村较乙村钩虫感染程度更为严重。
例2:甲、乙两个医院某病出院人数不同时,比较两医院该病的死亡人数没有意义。
例3:如04级七年制一、二大班学生人数不同时,比较两班医学统计学的及格人数没有意义。
二、相对数定义:两个有关的绝对数之比,统称为相对数。
意义:1.消除基数影响,便于事物间的比较。
2.给出事物发生频率(强度)的估计。
3.相对数是工作决策的依据。
常用的相对数指标•例5-1 某医院1998年在某城区随机调查了8589例60岁及以上老人,体检发现高血压患者为2823例。
高血压患病率为:(2823 / 8589 ) 100% = 32.87% 。
在实际工作中,“率”的应用非常广泛,如:发病率、死亡率、发生率、阳性率、患病率等。
当“率”的分母足够大时,常用“率”的大小表示某现象发生的概率。
第二节应用相对数的注意事项1. 计算相对数应有足够数量即分母不宜太小。
如果例数较少会使相对数波动较大。
如某种疗法治疗5例病人,5例全部治愈,则计算治愈率为5/5×100% =100%,若4例治愈,则治愈率为4/5×100% =80%,由100%至80%波动幅度较大,但实际上只有1例的变化。
•在临床试验或流行病调查中,各种偶然因素都可能导致计算结果的较大变化,因此例数很少的情况下最好用绝对数直接表示•但动物实验时,可以通过周密设计,严格控制实验条件,如毒理实验,每组用10只纯种小鼠也可以•分母到底多大才可以呢?要根据研究目的、研究指标而定2.不能以构成比代替率构成比是用以说明事物内部某种构成所占比重或分布,并不说明某现象发生的频率或强度,在实际工作中经常会出现将构成比指标按率的概念去解释的错误。