【课件-高等数学】_第二章 一元函数的极限及其连续性_2_
- 格式:pdf
- 大小:3.01 MB
- 文档页数:52
第二章 极限与连续极限是高等数学中最主要的概念之一,也是研究微积分的重要工具,如导数、定积分、重积分等定义都需要用极限来定义,因此,掌握极限的思想和方法是学好微积分学的基本前提.第一节 极限的定义教学目的:1.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
2.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
教学重难点:1.极限的概念和左极限与右极限概念及应用;2.无穷小及无穷小的比较;本节将在中学学习过的数列的极限的基础上学习函数的极限、极限性质、无穷小的定义及性质、无穷大的定义及其与无穷小的关系.一、数列的极限定义 对于数列{}n x ,如果当n 无限增大时)(∞→n ,n x 无限趋近于一个确定的常数A , 则称A 为数列{}n x 的极限.记作=∞→n n x lim A 或 A x n →(n ∞→). 亦称数列{}n x 收敛于A ;如果数列{}n x 没有极限,就称数列{}n x 是发散的.数列极限的运算法则为:如果∞→n lim =n x A , ∞→n lim =n y B ,那么 法则1 ∞→n lim (n x ±n y ) ∞→=n lim n x ±∞→n lim =n y A ±B ;法则2 ∞→n lim (nx n y ) ⋅=∞→n n x lim n n y ∞→lim AB =;法则3 ∞→n lim lim n n n Cx C x →∞==CA (C 是常数); 法则4∞→n lim B A y x y x nn n n n n ==∞→∞→lim lim ()0≠B . 以上法则1,法则2可以推广到有限个数列的和与积的情形.二、函数的极限1.当∞→x 时,函数)(x f 的极限定义 如果当x 的绝对值无限增大(即∞→x )时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当∞→x 时的极限,记为 A x f x =∞→)(lim 或 当∞→x 时,A x f →)(. 如图1-5(b )所示, 函数xx f 1)(=当x 的绝对值无限增大时, 函数xx f 1)(=的图象无限接近于x 轴.也就是,当∞→x 时,)(x f 无限地接近于常数零,即01lim=∞→xx . 在上述定义中,自变量x 的绝对值无限增大指的是既取正值无限增大(记为+∞→x ),同时也取负值而绝对值无限增大(记为-∞→x ).但有时自变量的变化趋势只能或只需取这两种变化的一种情形,为此有下面的定义:定义 如果当+∞→x (或-∞→x )时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当+∞→x (或-∞→x )时的极限,记为 lim ()x f x A →+∞=或当x →+∞时,()f x A →; lim ()x f x A →-∞=或当x →-∞时,()f x A →. 由图1-5(b )可以看出,01lim=+∞→xx 及01lim =-∞→x x ,这两个极限与01lim =∞→x x 相等,都是0.由图1-11(b )可以看出,2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x .由于当+∞→x 和-∞→x 时,函数x y arctan =不是无限趋近于同一个确定的常数,所以x x arctan lim ∞→不存在.由上面的讨论,我们得出下面的定理: 定理 A x f x =∞→)(lim 的充要条件是: )(lim x f x +∞→A x f x ==-∞→)(lim .(证明略)2.当0x x →时,函数)(x f 的极限定义 设函数()y f x =在点0x 的某个近旁(点0x 本身可以除外)内有定义,如果当x 趋于0x (但0x x ≠)时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当0x x →时的极限,记为A x f xx =→)(lim 0或 当0x x →时,A x f →)(.例1 考察极限C x x 0lim → (C 为常数)和x xx 0lim →. 解 因为当0x x →时,)(x f 的值恒为C ,所以=→)(lim 0x f x x C C xx =→0lim . 因为当0x x →时,()x ϕx=的值无限接近于x ,所以lim ()x x x ϕ→=00lim x x xx =→. 3.当0x x →时,)(x f 的左、右极限因为0x x →有左右两种趋势,而当x 仅从某一侧趋于0x 时,只需讨论函数的单边趋势,于是有下面的定义:定义 如果当x 从0x 左侧趋近0x (记为0x x -→)时,函数)(x f 无限趋近于一个确定的常数A ,那末A 称为函数)(x f 当0x x →时的左极限,记为 0lim ()x x f x A -→=.如果当x 从0x 右侧趋近0x (记为0x x +→)时,函数)(x f 无限趋近于一个确定的常数A ,那末A 称为函数)(x f 当0x x →时的右极限,记为 0lim ()x x f x A +→=定理 A x f xx =→)(lim 0的充要条件是: 0lim ()lim ()x x x x f x f x A -+→→==. (证明略)例2 讨论函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩当0→x 时的极限.解 观察图2-1可知:0lim ()x f x -→1)1(lim 0-=-=-→x x ,0lim ()x f x +→1)1(lim 0=+=+→x x .因此,当0→x 时,)(x f 的左右极限存在但不相等,由定理2知,极限 )(lim 0x f x →不存在. 例3 研究当x →0时, x x f =)(的极限.解 观察图2-2可知:⎩⎨⎧≥<-==0)(x x x x x x f 由于)(lim 0x f x -→0)(lim 0=-=-→x x ,=+→)(lim 0x f x 0lim 0=+→x x .所以当x 0→时,)(x f 的左, 右极限都存在且相等.由定理2知x →0时, x x f =)(的极限存在,且等于0.三、无穷小量实际问题中,常有极限为零的变量.例如,电容器放电时,其电压随着时间的增加而逐渐减小并趋近于零.对于这样的变量,有下面的定义:1.无穷小量的定义定义 极限为零的变量称为无穷小量,简称为无穷小. 如果0lim ()0x x x α→=,则变量()x α是0x x →时的无穷小,如果lim ()0x x β→∞=,则称()x β是x →∞时的无穷小,类似的还有0x x +→,0x x -→,x →+∞,x →-∞等情形下的无穷小.根据定义可知,无穷小是一种变化状态,而不是一个量的大小,无论多么小的一个数都不是无穷小,只有零是唯一的一个可作为无穷小的常数,无穷小是有极限变量中最简单而最重要的一类,在数学史上,很多数学家都致力于“无穷小分析”.2.无穷小量的性质定理 有限个无穷小的代数和为无穷小.(证明略)注意,无穷个无穷小之和未必是无穷小,如n →∞时,21n ,22n ,2nn 都是无穷小,但是222212(1)2n n n n n n n +++⋅⋅⋅+=,当n →∞时2(1)122n n n +→,所以不是无穷小.定理 有界函数与无穷小的积为无穷小. (证明略) 推论1 常数与无穷小的乘积是无穷小. (证明略)图2-1图2-2推论2 有限个无穷小的积为无穷小.(证明略) 例4 求极限01lim sin x x x→. 解 因为x 是当0→x 时的无穷小,而x1sin 是一个有界函数,所以1lim sin0x x x→=. 3.函数极限与无穷小的关系 设A x f xx =→)(lim 0,即0x x →时()f x 无限接近于常数A ,有()f x A -就接近于零,即()f x A -是0x x →时的无穷小,若记()()x f x A α=-,于是有 定理 3 (极限与无穷小的关系)A x f xx =→)(lim 0的充分必要条件是()()f x A x α=+,其中()x α是0x x →的无穷小.例如11x x +→当()x →∞时,有111x x x +=+,其中1x就是()x →∞时的无穷小.四、 无穷大量 1.无穷大的定义定义 6 若当0x x →(x →∞)时,函数()f x 的绝对值无限增大,则称函数()f x 为当0x x →(或x →∞)时的无穷大.函数()f x 当0x x →(或x →∞)时为无穷大,它的极限是不存在的,但为了便于描述函数的这种变化趋势,我们也说“函数的极限为无穷大”,并记为lim ()x x f x →=∞ 或 lim ()x f x →∞=∞. 例如,当0→x 时,x1是一个无穷大,又例如, 当x →+∞时,x e 是一个无穷大.注意,说一个函数()f x 是无穷大,必须指明自变量x 的变化趋向;无穷大是一个函数,而不是一个绝对值很大的常数.2.无穷大与无穷小的关系我们知道,当2x →时,2x -是无穷小,12x -是无穷大;当x →∞时,x 是无穷大,1x是无穷小.一般地,在自变量的同一变化过程中,如果)(x f 为无穷大,则)(1x f 是无穷小;反之,如果)(x f 为无穷小,且)(x f 0≠,则)(1x f 是无穷大. 利用这个关系,可以求一些函数的极限.例5 求极限13lim1-+→x x x . 解 因为031lim1=+-→x x x ,由无穷大与无穷小的关系,所以∞=-+→13lim 1x x x .五、无穷小量比较 由无穷小的性质,我们知道两个无穷小的和、差及乘积仍是无穷小.但两个无穷小的商却会出现不同的情况.例如,当0x →时, x 2、2x 、x sin 均为无穷小,而02lim 20=→x x x ,∞=→202lim x x x ,1sin lim 0=→xx x .两个无穷小之比的极限的不同情况,反映了不同的无穷小趋向于零的“快慢”程度.一般地,对于两个无穷小之比有下面定义:定义 设α和β都是同一过程的两个无穷小量,即lim 0α=,lim 0β=,1.若lim0αβ=,则称α是β的高阶无穷小量;记作()o αβ=,此时也称β是α的低阶无穷小量.2.若lim 0C αβ=≠,则称α与β是同阶的无穷小量.记作()O αβ=.3.若lim 1αβ=,则称α与β是等价无穷小量.记作βα~.例16 当1x →时,比较无穷小1x -与31x -的阶. 解 由于 0)1(lim 1=-→x x ,0)1(lim 31=-→x x ,且 3111limx x x --→3111lim 21=++=→x x x , 所以当1x →时,1x -与31x -是同阶无穷小.例17 当0→x 时,证明x cos 1-与22x 等价.解 由于 0)cos 1(lim 0=-→x x ,02lim20=→x x ,且=-→2cos 1lim 20xx x 122sin 2lim 220=→x xx .所以,当0→x 时,x cos 1-与22x 为等价无穷小.习题训练1.利用函数图像,观察函数的变化趋势,并写出其极限: (1)21limx x →∞; (2)lim 2x x →-∞; (3)1lim ()10x x →+∞; (4)1lim(2)x x→∞+;(5)2lim(45)x x →-; (6)2lim sin x x π→. 2.设2,1()1,1x x f x x ⎧≥-=⎨<-⎩,作出它的图象,求出当1-→x 时,()f x 的左极限、右极限,并判断当1-→x 时,()f x 的极限是否存在?3.设1()1x f x x -=-,求(10)f -和 (10)f +,并判断()f x 在1→x 时的极限是否存在?4.设21()1x f x x-=-,求0lim ()x f x →,1lim ()x f x →. 5.下列函数在自变量怎样变化时是无穷小?无穷大? (1)31y x = ; (2)211y x=+;(3) ln y x =;(4)y =6.求下列函数的极限:(1) sin limx x x →∞; (2)01lim cos x x x→; (3) 1lim1x xx →-; (4)32222lim (2)x x x x →+-.第二节 极限的运算教学目的:1.掌握极限的性质及四则运算法则;2.掌握利用两个重要极限求极限的方法。
第二章 一元函数的连续性一.基本内容1.函数)(x f 在点0x 处连续的定义:)1(极限形式:)()(lim 00x f x f x x =→)2(增量形式:0lim 0=∆→∆y x)3(“δε-”语言:0>∀ε,0>∃δ,当δ<-0x x 时,有ε<-)()(0x f x f )4(左右连续性:)()0()0(000x f x f x f =-=+2.函数)(x f 在区间I 上连续的定义 3.间断点及其类型间断点(不连续点):第一类间断点(左右极限均存在);第二类间断点(左右极限中至少有一个不存在)4.)(x f 在区间I 上一致连续:0>∀ε,0>∃δ,∀1x ,2x I ∈,当δ<-21x x 时, 总有ε<-)()(21x f x f ,则称)(x f 在I 上一致连续. 5.)(x f 在点0x 处连续的局部性质局部有界性,局部保号性,四则运算保持连续性和复合保持连续性. 6.闭区间上连续函数的整体性质)1(反函数的存在连续性:若函数)(x f 在[]b a ,上严格单调且连续,则其反函数在以)(a f ,)(b f 为端 点的闭区间上也是严格单调并且连续.)2(有界性:若函数)(x f 在闭区间[]b a ,上连续,则)(x f 在[]b a ,上有界.)3(取最值性若函数)(x f 在闭区间[]b a ,上连续,则)(x f 在[]b a ,上能取到最大,最小值.)4(根的存在性若函数)(x f 在闭区间[]b a ,上连续,且0)()(<⋅b f a f ,则),(b a c ∈∃,使0)(=c f .)5(界值性设函数)(x f 在闭区间[]b a ,上连续,μ介于)(a f 与)(b f 之间,则),(b a c ∈∃使得μ=)(c f .)6(若函数)(x f 在闭区间[]b a ,上连续,则在[]b a ,上一致连续.7.一切初等函数在其定义区间上连续 二.难点解析与重要结果1.函数)(x f 在点0x 处连续的归结原则任一趋于0x 的数列{n x }其对应的函数值组成的数列均收敛.【注】函数极限的归结原则中要求→n x 0x ,这是由于与函数极限中)(x f 有可能没定义,而在连续的定义中要求函数)(x f 于0x 的某邻域内有定义,在0x 处必有定义,特别地{0x }即为趋于0x 的一个数列. 2. 0x 为)(x f 的间断点的正面刻画∃00>ε,∀δ0>, ∃δx , 满足δδ<-0x x ,但有)()(0x f x f -δ≥0ε.特别地,取δ=n 1,则得数列{n x }⊂)(0x U ,使n x x n 10<-,但)()(0x f x f n -≥0ε.3. 函数)(x f 在区间I 上连续∀0x ∈I ,∀0>ε, ∃0>δ,当δ<-0x x 时, 有ε<-)()(0x f x f .函数)(x f 在区间I 上一致连续:∀0>ε, ∃0>δ, ∀0x I ∈, 当δ<-0x x 时, 有ε<-)()(0x f x f .这两者的区别在于,对同一个ε,前者对于不同的0x ,可找到不同的δ,δ既依赖于0x ,又依赖于ε.事实上,δ对0x 的依赖程度更高(为什么?),后者对同一个ε,总可找到一个δ,该δ对所有的0x 均适用. 4. 一致连续与一致收敛之间的区别与联系⇒)(x f n )(x f )(D x ∈,可看成是给定一批极限{∞→n lim )(x f n ︱D x ∈}.对每个数列极限而言,对给定的0>ε,由不同的数列可找到不一定相同的N ,当N n >时,有ε<-)()(x f x f n 是否一致收敛.就看是否有共用的N 的问题.)(x f 在I 上一致连续可看成是给了一批函数极限{)()(lim x f y f xy =→︱x ∈I}.对每一个函数的极限而言,对给定的0>ε,由不同的函数极限可找到不一定相同的δ.当δ<-x y 时,有ε<-)()(x f y f 是否一致连续,就看是否有共用的δ的问题.5.一致连续的判定与性质)1( 设)(x f 在有限开区间),(b a 内连续,则)(x f 在),(b a 内一致连续的充分必要条件是)(lim x f ax +→与)(lim x f bx -→均存在且有限.)2( 设)(x f 在),[+∞a 上连续,且)(lim x f x +∞→存在,则)(x f 在),[+∞a 上一致连续.)3(设)(x f 在),[+∞a 上连续,)(x ϕ在),[+∞a 上一致连续,且0))()((lim =-+∞→x x f x ϕ,则)(x f 在),[+∞a 上一致连续,此结论在)(x f 有斜渐近线时很有用.)4(若)(x f ,)(x g 均在有限开区间),(b a 上一致连续,则)(x f )(x g ±,⋅)(x f )(x g 均在),(b a 上一致连续,若),(b a 为无限开区间,则⋅)(x f )(x g 不一定一致连续.如=)(x f x x g =)(,在),(+∞-∞上.)5( 若)(x f 导数)(x f '在I 上有界,则)(x f 在I 上一致连续.)6(若)(x f 在],(b a 与),[c b 上均一致连续,则)(x f 在),(c a 上一致连续.)7(若)(u f y =在R 上一致连续,)(x g u =在I 上一致连续,则))((x g f y =在I 上一致连续.6. )(x f 在I 上非一致连续的肯定刻画I x x ∈'''∃>∀>∃δδδε,,0,00,且δδδ<''-'x x ,但有0)()(εδδ≥''-'x f x f .特别地,取n1=δ,则设两点列I x x n n⊆'''}{},{,满足)(0∞→→''-'n x x n n ,但有0)()(ε≥''-'n nx f x f . 三.基本题型与方法 1.证明连续性和一致连续性要证明一个函数在某点或某个范围内连续,绝大部分是通过连续性的定义直接证明.例1.按定义证明:)1(⎪⎩⎪⎨⎧=∈==+内的无理数和,互质)1,0(1,00),,,(,1)(x q p N q p q p x qx R 在所有的无理点处连续.在)1,0(中的有理点处不连续.)2(xx x x f 1sin 12)(⋅++=在),1[+∞上一致连续,在)1,0(上非一致连续. 证明:)1(]1,0[0∈∀x ,0>∀ε,ε≤-0)(x R . 显然当x 为)1,0(中的无理数时,不等式成立.当q p x =时,ε<=q x R 1)(,即ε1>q . 而ε1≤q 的正整数只有有限个,这些数为分母构成的]1,0[中的有理数也仅为有限个,设为n x x x ,,,21 ,取}}0{\},,min{{001x x x x n --= δ,则n x x x ,,,21 均落在),(00δx U 之外,即当δ<-<00x x 时.若x 为有理数,则将其表示成既约分数时的分母必大于ε1.此时ε>>qx R 1)(.若x 为无理数则ε<=0)(x R . 即当δ<-<00x x 时,总有ε<-0)(x R ,所以0)(lim 0=→x R x x .故)(x R 在)1,0(中的无理点处连续,有理点处不连续.)2(),1(,,0+∞∈'''∀>∀x x ε,由于 x x x x x x x f x f ''⋅+''+''-'⋅+'+'=''-'1sin 121sin 12)()(x x x x x x x x x x x x ''⋅+''+''-''⋅+'+'+''⋅+'+'-'⋅+'+'=1sin 121sin 121sin 121sin 12 12121sin 1sin 1sin 12+''+''-+'+'''+''-'+'+'≤x x x x x x x x x x x x x x x x x x x x x x x ''-'≤+''+'''-'+'''''-'⋅'''''+'≤2)1)(1(2222,故可取=δ2ε,当x x ''',∈),1[+∞且δ<''-'x x 时,有ε<''-')()(x f x f ,所以)(x f 在),1[+∞上一致连续.取221ππ-='n x n,221ππ+='n x n, ,2,1=n , 显然nx 'n x '')1,0(∈,则 )(0441442222∞→→-=-=''-'n n n x x n nπππππ,但2122222)1(122222)()(>++++--+-+-=''-'ππππππππn n n n x f x f n n, 所以)(x f 在)1,0(上非一致连续.[注])1(Riemann 函数是一个重要的反例,其解法与一般的求解不等式ε<-A x f )(不同,它解的是其互补不等式ε≥-A x f )(.)2(第二小题的解法上,有一定的代表性,当遇到由两种不同的基本初等函 数一起构成的某一初等函数时,常用到此插项方法. )3(狄立克雷函数在构造反例中的作用. )4(第2小题中由于∞→A lim12++x x x1sin =0,且)(x f 在),1(+∞上连续,据前面的结论即证一致连续性.例2 设)(x f 为),(+∞-∞上的单调函数,令)(lim )(0y f x g x y +→=,证明:)(x g 在),(+∞-∞上右连续.证明:),(0+∞-∞∈∀x ,由于)0()(lim )(000+==+→x f y f x g x y ,故0>∀ε, 0>∃δ, 当δ+<<00x x x 时有ε<-)()(0x g y f .由于)(x f 在R 上单调,故在任一点处的左、右极限均存在, 所以,),(00δ+∈∀x x x ,令+→x y ,有ε≤-+→)()(lim 00x g y f x y ,即ε≤-)()(0x g x g ,所以,)()(lim 00x g x g x x =+→.故)(x g 在0x 右连续,由0x 的任意性,即)(x g 在),(+∞-∞上右连续.例3 设)(x f 在),a +∞⎡⎣上连续,lim ()x f x →+∞存在,则)(x f 在),a +∞⎡⎣上一致连续.证明:由于lim ()x f x →+∞存在,故ε∀0>,∃M ,当M x x >''',时,有ε<''-')()(x f x f . 又)(x f 在),a +∞⎡⎣上连续,所以在]1,[+M a 上连续,故)(x f 在]1,[+M a 上一致连续.所以对上述0>ε,01>∃δ,当]1,[,+∈'''M a x x 且1δ<''-'x x 时,有ε<''-')()(x f x f .取11min ,2δδ⎧⎫=⎨⎬⎩⎭,当],[,+∞∈'''a x x 且1δ<''-'x x 时,()i 若21+≤'M x ,则21+≤+'<''M x x δ,即]1,[,+∈'''M a x x ,且δ<''-'x x 1δ≤,故有ε<''-')()(x f x f .()ii 若21+>'Mx ,则M M x x =-+≥-'>''2121δ,即M x x >''',,故有ε<''-')()(x f x f .即当δ<''-'x x 时,总有ε<''-')()(x f x f .所以)(x f 在),a +∞⎡⎣上一致连续. 【注】此题的方法具有很强的代表性,望注意体会掌握,特别是将区间叠起的一段的技巧.2.连续函数性质的证明一般地,连续函数性质的证明特别是闭区间上连续函数性质的证明,与实数的完备性理论是紧密联系的.例4 试分别用闭区间套定理、聚点定理、和有限覆盖定理证明闭区间上连续函数的有界性定理.证明 设)(x f 在闭区间],[b a 上连续,证明)(x f 在闭区间],[b a 上有界. (1) 用闭区间套定理假设)(x f 在闭区间],[b a 上无界,中分],[b a 为两个子闭区间,则)(x f 至少在其中的一个子闭区间上无界,记其为],[11b a ;中分],[11b a 为两个子闭区间,则)(x f 至少在其中的一个子闭区间上无界,记其为],[22b a ;如此下去则得一闭区间列]},{[n n b a 满足:① ],[],[11++⊇n n n n b a b a , ,3,2,1=n ② )(,02∞→→-=-n ab a b nn n ③)(x f 在闭区间],[n n b a 上无界, ,2,1=n .由①, ②及闭区间套定理知 ,2,1],,[!=∈∃n b a n n ξ.又)(x f 在ξ连续,故)(x f 在ξ的某邻域),(δξU 内有界.由闭区间套定理的推论知,存在N ,当N n >时,有),(],[δξU b a n n ⊂,而)(x f 在],[n n b a 上无界,故)(x f 在),(δξU 上无界,矛盾.所以)(x f 在闭区间],[b a 上有界.(2)用聚点定理假设)(x f 在闭区间],[b a 上无界,则],[,0b a x M M ∈∃>∀,使得M x f M >)(. 取],,[,11b a x M ∈∃=使得1)(1>x f ;],,[,22b a x M ∈∃=使得2)(2>x f ;,],,[,b a x n M n ∈∃=使得n x f n >)(;如此下去则得数列}{n x ],[b a ⊆,使得 ,2,1,)(=>n n x f n .由于}{n x 有界,由致密性定理, }{n x 由收敛子列}{k n x ,设)(,0∞→→k x x k n ,由于)(x f 在0x 连续,所以)(),()(0∞→→k x f x f k n ,而由}{n x 的选取知)(,)(∞→∞→k x f k n ,矛盾. 所以)(x f 在闭区间],[b a 上有界.(3) 用有限覆盖定理由于)(x f 在闭区间],[b a 上连续,即],[0b a x ∈∀,)(x f 在0x 连续,故在0x 处局部有界,即0,0],,[000>∃>∃∈∀x x M b a x δ,使得当),(00x x U x δ∈时,0|)(|x M x f <. 显然,]},[|),({b a x x U x ∈δ覆盖],[b a ,由有限覆盖定理,必可从中选出有限个它们也能覆盖],[b a ,设为),(11δx U ,,),,(22 δx U ),(n n x U δ. 取},,,m ax {21n M M M M =,则],[b a x ∈∀,有M x f <|)(|. 所以)(x f 在闭区间],[b a 上有界.3.连续函数性质的应用)1(连续性在有界和最值性方面的应用例5 设函数)(x f 在有有限或无穷区间(),a b 内连续,且lim ()lim ()x ax bf x f x A +-→→==, (A 为有限数,+∞或-∞).证明)(x f 在(),a b 内能取到最大或最小值. 证明:若A 为有限数,且(),x a b ∀∈均有A x f =)(.则结论显然成立.若0x ∃(),a b ∈,使0()f x A ≠,若0()f x A >,由于lim ()lim ()x ax bf x f x A +-→→==,由极限的保号性,故δ∃0>,当δ+<<a x a 或b x b <<-δ时,有)()(0x f x f <,又)(x f 在[],a b δδ+-上连续,所以)(x f 在[],a b δδ+-上有最大值M 存在,且≥M 0()f x ,此时最大值M 显然也是)(x f 在(),a b 上的最大值.若0()f x A <,则有最小值存在.若+∞=A ,任取0x (),a b ∈,由于lim ()lim ()x ax bf x f x +-→→==+∞,故∃δ0>,当δ+<<a x a 或b x b <<-δ时有)()(0x f x f >,又)(x f 在[],a b δδ+-上连续,故有最小值m 存在,且)(0x f m ≤,显然m 为)(x f 在(),a b 上的最小值.当-∞=A 时有最大值存在.当(),a b 为无穷区间,类似地可证.例6 设)(x f 在],[b a 上连续,且有唯一的最值点],[0b a x ∈.若数列],[}{b a x n ⊆且)()(lim 0x f x f n n =∞→,证明:0lim x x n n =∞→.证明:假设0lim x x n n ≠∞→.则N ∀,N n N >∃使00ε≥-x x n .取11=N 则11>∃n 使001ε≥-x x n .取12n N =,则12n n >,使002ε≥-x x n .如此下去,则设}{n x 的子列}{i n x 使得ε≥-0x x i n .由],[}{b a x i n ⊆,由致密性定理,}{i n x ∃的收敛子列}{ki n x ,设)(∞→→k c x ki n ,则0x c ≠.又由f 的连续性,知)()(lim c f x f ki n k =∞→.而由子列的性质知,)()(lim )(lim 0x f x f x f n n n k k i ==∞→∞→.所以)()(0x f c f =为f 的最值点矛盾.)2(连续性介值方面的应用例7 设)(x f 在],[b a 上连续,且有反函数存在.证明)(x f 在],[b a 上严格单调. 证明:假设)(x f 在],[b a 上非严格单调,则321x x x <<,使得)()()(321x f x f x f ≥≤或)()(21x f x f ≥且)()(32x f x f ≤.由于)(x f 有反函数存在,故上不等式中的等号不能成立.即有)()()(321x f x f x f ><.取M 介于)(2x f 与)}(),(m ax {31x f x f 之间,由)(x f 在],[21x x 上连续,),(21x x ∈∃ξ 使M f =)(ξ.又)(x f 在],[32x x 上连续, ),(32x x ∈∃η使M f =)(η.且ηξ≠,这与)(x f 有反函数矛盾). 【注】有反函数存在.则对应必为一对一的,反过来一对一再加上介值性,必可推出严格单调和连续性.例8 设函数],[],[:)(b a b a x f →是连续函数.证明:],[b a ∈∃ξ,使ξξ=)(f . 证明:若a a f =)(或b b f =)(,则结论成立.否则有a a f >)(,b b f <)(. 令x x f x F -=)()(,则)(x F 在],[b a 上连续,且0)(,0)(<>b F a F ,由介值性定理即得.【注】此题即为不动点定理.例9 设函数)(x f 在]1,0[上连续,且0)1()0(==f f ,证明:+∈∀Z n ,]1,0[∈∃ξ,有)()1(ξξf nf =+.证明: 当1=n 时,取0=ξ,则结论成立.否则令)()1()(x f nx f x F -+=,则有)1()1()0(nn F n F F -+++)1()1()1()2()0()1(nn f f n f n f f n f --++-+-=0)0()1(=-=f f .若上式中的每一项均为0,则结论成立.若不全为0,则必既有正项,又有负项出现,由介值性定理,在正负项之间0)(=ξF ,即)()1(ξξf nf =+.【注】上面的两例给出了用介值性定理或根的存在定理的一般方法.引入辅助函数,将待证的等式转化为考察辅助函数的根的存在性问题,最后,只要找到辅助函数的两个点处的函数值异号.)3(一致连续的性质的应用例10设函数)(x f 在),(+∞a 上一致连续,且无穷积分⎰∞+adx x f )(收敛.证明:0)(lim =∞→x f x .证明:假设0)(lim ≠∞→x f x ,即00>∃ε,M ∀,M x M >∃,但有0)(ε≥x f .又)(x f 在[)0,+∞上一致连续,故对上述0ε0>,∃δ0>,当12x x -≤δ时,有12()()f x f x -<2ε. 故对0ε,δ0>,M ∀,∃A '=M x ,A ''=M x +δM >,但有δεδδ0)()(≥=⎰⎰++M MM Mx x x x dx x f dx x f .由Cauchy 收敛准则知⎰∞→AaA dx x f )(lim 不存在,矛盾. 四.综合举例例11 设函数)(x f 在[],a b 上连续,],[b a x ∈∀,记)(sup )(],[t f x M x a t ∈=,证明:)(x M 在[],a b 上连续.证明:由于)(x f 在[],a b 上连续,则在[],a b 上一致连续,即0ε∀>,0δ∃>, 当1x ,2x ∈[],a b ,且12x x -≤δ时有12()()f x f x -<ε.所以0x ∀∈[],a b ,当δ<∆<x 0, 0x x ∆+∈[],a b 时,有)0[][]0000,,()()sup ()sup ()t a x x t a x M x x M x f t f t ∈∆+∈≤∆+-=-))()((sup )()(sup0],[0],[00x f t f x f t f x a t x x a t ---=∈+∆∈))()((sup )))()((sup )),()((sup m ax (0],[0],[0],[000x f t f x f t f x f t f x a t x x a t x a t ----=∈+∆∈∈ε<.同理,当0<∆<-x δ时,有ε-00()()M x x M x ≤∆+-,故)(x M 在[],a b 上连续. 例12 设函数)(x f 在),(b a 内每一点的左,右极限都存在,且),(,b a y x ∈∀,都有2)()()2(y f x f y x f +≤+.证明)(x f 在),(b a 内连续. 证明:),(0b a x ∈∀,则),(b a y ∈∀,有2)()()2(00y f x f y x f +≤+, 令i x y +→0,)0(21)(21)0(000++≤+x f x f x f ,即有)()0(00x f x f ≤+. 令0x y →,有))0(21)((21)0(000-+≤-x f x f x f ,即有)()0(00x f x f ≤-.在2)()()2(y f x f y x f +≤+中 令h x x +=0,h y y -=0,且令i h +→0, ))0()0((21)(000-++≤x f x f x f ,所以有))0()0(()(000--+≤x f x f x f ,即)(x f 连续.由0x 的任意性即有)(x f 在),(b a 内连续.【注】要证明函数的连续性,绝大部分情况下均直接从连续的定义出发. 例13 证明:非常值的连续周期函数必有最小正周期.证明:设}{的正周期为f t t S =.下证S 的下确界S T inf =属于S ,即证:T 仍为f 的周期,且0>T ,显然0T ≥.由于S T inf =,故由定义,S t n ⊆∃}{,使得T t n n =∞→lim .又由)(x f 的连续性,有R x ∈∀,)()(lim )(x f t x f T x f n n =+=+∞→,即T 为一个周期.假设S T ∉=0,则存在严格递减数列S T ∉=0,且)(0∞→→n t n .则R x ∈∀,N n ∈∀,Z k n ∈∃使n t k x n n +=0,其中n n t k <≤0,故)(0∞→→n k n .所以,))(0()()()(∞→→=+=n f n f n t k f x f n n ,即)0()(f x f =.这与)(x f 非常数矛盾.所以0≠T ,即0>T ,故S S T ∈=inf . 例14 设)(x f 对R 上一切x 均有)()(2x f x f =,且)(x f 在0=x 处连续.证明:)(x f 在R 上为常数.证明:由于)()())(()(22x f x f x f x f ==-=-,即)(x f 为偶函数,故可仅考察0≥x 这一侧.当0>x 时,由已知,有:=====)()()()(214121nx f x f x f x f ,由于)(121∞→→n xn及f 在1=x 处的连续性,故有()=x f ()1lim 21f x f nn =⎪⎪⎭⎫⎝⎛∞→, 又()+→=0lim 0x f ()()1f x f =.即当0≥x 时,有()()1f x f =.所以,R x ∈∀,有()f x f ≡()1.例15 设)(x f 在),0[+∞上连续且有界,又设R l ∈∀方程l x f =)(在),0[+∞至多只有有限个解,证明)(lim x f x ∞→存在.证明 由于)(x f 在),0[+∞上有界,设M x f M <<-)(,对0=l ,由于方程l x f =)(在),0[+∞至多只有有限个解,设其最大解为1M ,则当1M x >时, )(x f 全落在],0[M 或]0,[M -中,记其为],[b a ;对2ba l +=,由于方程l x f =)(在),0[+∞至多只有有限个解,设其最大解为2M ,则当2M x >时, )(x f 全落在]2,[b a a +或],2[b ba +中,记其为],[11b a ; , 如此下去,则得一闭区间列]},{[n n b a 满足: ① ],[],[11++⊇n n n n b a b a , ,3,2,1=n ② )(,02∞→→-=-n ab a b nn n③ 0,>∃∀n M n ,当n M x >时,有 ,2,1],,[)(11=∈--n b a x f n n由①, ②及闭区间套定理知 ,2,1],,[!=∈∃n b a n n ξ.由闭区间套定理的推论知,,,0N ∃>∀ε当N n >时,),(],[εξU b a n n ⊆.故可取1+=N M G ,当G x >时,有),(],[)(11εξU b a x f N N ⊆∈++.所以ξ=∞→)(lim x f x .例16 设)(),(x g x f 在],[b a 上连续,],[}{b a x n ⊆,满足 ,2,1),()(1==+n x f x g n n 证明 存在],[0b a x ∈,使得)()(00x g x f =. 证明 令)()()(x g x f x h -=,则)(x h 在],[b a 上连续.若)}({n x h 中有零项或异号的项,由根的存在性定理,0x 的存在性显然. 若若)}({n x h 中所有项均为正项或负项,不妨设0)(>n x h ,于是,,,2,1,0)()()()()(1 =>=-=-+n x h x g x f x f x f n n n n n即数列)}({n x f 为单调递减有界数列,故收敛,设)(,)(∞→→n x f n ξ,又,2,1),()(1==+n x f x g n n ,故)(,)(∞→→n x g n ξ.注意到}{n x 有界,由致密性定理}{n x 有收敛子列}{k n x ,设)(,0∞→→k x x k n ,由)(),(x g x f 在0x 的连续性知,)(),()(0∞→→k x f x f k n ,)(),()(0∞→→k x g x g k n ,而)(,)(∞→→k x f k n ξ,,由极限的唯一性有ξ==)()(00x g x f .例14 设定义在R 上的函数()x f 满足:)1(()x f 在0=x 处连续.)2(R y x ∈∀.,有()()()y f x f y x f +=+.证明:()ax x f =.证明:由f ()()()()()0000000=⇒+==+f f f f .又()x f 在0=x 处连续, 故有()()00lim 0==→f x f x .所以,R x ∈∀,有()()()()()x f x f x f x x f x x =∆+=∆+→∆→∆0lim lim ,即()x f 在R 上连续.由已知,有()()()21112⋅=+=f f f , ()()()n f f n f ⋅=+++=1111 , 又()()()0=+=+-n n f n f n f ,故有()()()n f f n f -⋅=-1. 即对一切整数x 有()()x f x f ⋅=1.又由 ()()2112121212121⋅=⎪⎭⎫⎝⎛⇒⎪⎭⎫ ⎝⎛⋅==⎪⎭⎫ ⎝⎛+f f f f f ,()⎪⎭⎫ ⎝⎛⋅==⎪⎭⎫ ⎝⎛+n f n f n nf 1111, ()n f n f 111⋅=⎪⎭⎫⎝⎛,故有, ()n m f n mf n m f ⋅=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛11 , N m n ∈..所以, ()⎪⎭⎫⎝⎛-⋅=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-n m f n m f n m f 1,即对一切有理数x ,有()()x f x f ⋅=1.R x ∈∀,{Q r n ⊆∃}使得()∞→→n x r n .由f 在R 上的连续性,有()()()()x f r f r f x f n n n n ⋅=⋅==∞→∞→11lim lim .例15 设()x f 在[)b a ,上连续且无上界,()[)b a d c ,,⊂∀,()x f 在()d c ,上不取最小值,证明()x f 在[)b a ,上严格递增(陕师大).证明:由()x f 在[)b a ,上连续,且无上界,知()x f 只能在b 的左邻域内无上界. 假设[)b a x x ,,21∈∃,且<1x 2x ,但有()()21x f x f ≥.由于()x f 在b 的左邻域内无上界.故b x x x <<∃323,.使()()23x f x f >.由于()x f 在[]31,x x 上连续,故有最小值()0x f 存在.又()312,x x x ∈且()()()()3212,x f x f x f x f <≤,故最小值点()310,x x x ∈.即()x f 在()[)b a x x ,,31⊂内取到最小值()0x f .矛盾.例16 设()x f 在[]1,0上非负连续,且()()010==f f ,则[]1,0∈∀l ,[]1,00∈∃x ,使得()()l x f x f +=00.(上海交大)证明:[]1,0∈∀l 作辅助函数()()()x f l x f x F -+=.则()x F 在[]l -1,0上连续,且()()()000≥-=f l f F ,()()().0111≤--=-l f f l F由F 的连续性,知[]l x -∈∃1,00,使得()00=x F ,即()()00x f l x f =+. 例17 设() 3,2,2=+++=n x x x x f n n ,证明:)1(方程()1=x f n 在[)+∞,0上有唯一实根n x ,)2(数列{}n x 有极限存在,并求n n x ∞→lim .(北师大)证明:)1(2≥∀n ,令()()[)+∞∈-+++=-=-,0,111x x x x x f x F n n n ,则(),10-=F 当1≥x 时,有()0>x F .从而在[]1,0上至少有一个实根,又()()1121++-+='-- n n x n nx x F ,当0≥x 时,有()0>'x F ,即()x F 在[)+∞,0上严格递增.所以()x F 在[)+∞,0上有且仅有一个实根n x .即()1=x f n 在[)+∞,0上有唯一实根n x .)2(2≥∀n .由于n x 与1+n x 分别满足:n n n n x x x ++2=1, 1111211=+++++++++n n n n n n x x x x .若01>>+n n x x ,则1=1111+++++++n n nn n x x x >1111112>+=++++++++n n n n n n n n x x x x x ,矛盾,所以1+≤n n x x .即数列{}n x 单调递减且有下界0,所以数列{}n x 收敛,设()∞→→n l x n ,由()111=--=++nnn nnnn x x x x x ,在上式中令∞→n ,得()1101=--ee . 即,21-1=⇒=e e e . 例18 设函数()x f 在[)+∞,0上连续,在()∞+,0内可导,且()A x f x ='+∞→lim .证明:当 且仅当+∞<A 时,()x f 在()∞+,0上一致连续. 证明:)1(若()0lim ,>∃='+∞<+∞→M A x f A x ,故则由,当M x >时,有()M x f ≤',所以当M x x >2,时,有()()()121212x x M x x f x f x f -≤-'=-ξ.即()x f 在[)+∞,M 上满足李普斯基条件,故)(x f 在[)∞+,M 上一致连续,又f 在[]M ,0上连续,故()x f 在上[]M ,0一致连续,所以()x f 在[)+∞,0上一致连续.)2(设()x f 在[)+∞,0上一致连续,假设+∞=A .则对0,0>∀>δε,由()+∞=='∞→A x f x lim ,知0>∃M ,当M x >时,有()δ1>'x f ,取21,121δ++=+=M x M x ,则δδ<=-221x x ,但有()()()21211212=⋅>-⋅'=-δδξx x f x f x f .这与)(x f 在[)+∞,0上一致连续矛盾.例19:设)(x f 在),[+∞a 上连续,)(x ϕ在),[+∞a 上一致连续,且0))()((lim =-∞→x x f x ϕ,则)(x f 在),[+∞a 上一致连续.证明:由于)(x ϕ在),[+∞a 上一致连续,故0>∀ε,01>∃δ,当x x ''',∈),[+∞a ,且1δ<''-'x x 时,有εϕϕ<''-')()(x x .又0))()((lim=-+∞→x x f x ϕ,故0>∃M ,当M x >时,有εϕ<-)()(x x f .所以,当M x x >''',,且1δ<''-'x x 时,有εϕϕϕϕ3)()()()()()()()(<''-''+''-'+'-'<''-'x f x x x x x f x f x f .又)(x f 在]1,[+M a 上连续,故一致连续.对上述0>ε,02>∃δ,当]1,[,+∈'''M a x x 且2δ<''-'x x 时,有ε<''-')()(x f x f .取}21,,min{21δδδ=,则当],[,b a x x ∈'''且δ<''-'x x 时,总有ε<''-')()(x f x f .例20设函数()[)+∞,0在x f 上一致连续,且0>∀x 有()0lim =++∞→n x f n ,证明:()0lim =+∞→x f x .证明:由于()[)+∞,0在x f 上一致连续,故0,0>∃>∀δε,[)+∞∈∀,,21a x x ,当δ<-21x x 时,有()()ε<-21x f x f .取δ1>k ,将[]k 10,等分,记分点为k i kix i ...2,1,==,则每个小区间的长度均小于δ,对每个i x ,由于()0lim =++∞→n x f i n ,故i N ∃,i N n >时,有()k i n x f i ...2,1,=<+ε.取{}K N N N N ,...,m ax 21=,则当N n >时,有()k i n x f i ...2,1,=<+ε.取1+=N M ,当M x >时,则[]N N x n >+≥=1,[)1,0∈-n x .故{}k i ,...2,1∈∃,使得 ()()δ<+-=--i i x n x x n x ,故有, ()()ε<+-n x f x f i .从而有, ()()()()εεε2=+<+++-≤n x f n x f x f x f i i , 所以()0lim =+∞→x f x .例21设函数()()+∞∞-,在x f 上一致连续,则存在正数B A ,,使得x ∀有()B x A x f +≤.证明:由于()x f 在R 上一致连续,故0,0>∃>∀δε,R x x ∈'''∀,且δ≤-'''x x 时,有 ()()ε<''-'x f x f .固定δε,,则Z n R x ∈∃∈∀,,0x n x +=δ,其中()δδ,0-∈x ,由于()(]δδ,-在x f 上连续,故有界,即0>∃M ,当()δδ,-∈x 时,有()M x f ≤. 又()()()()()()()()()0000211x n f x n f x n f x n f x f +--+-++--+=δδδδ()()()000...x f x f x f +-+++δ.故有, ()()()()()M n x f x k f x k f x f nk +⋅≤++--+≤∑=εδδ01001⎪⎭⎫ ⎝⎛++≤+-=00x M x M x x δεδεδε ()εδε++≤M x . 取εδε+==M B A ,,则有()B x A x f R x +≤∈∀,. 练习题1. 用“δε-”定义证明()2sin x x f =在R 上连续,但不一致连续.2. 证明:xx y 1sin ⋅=在()+∞,0内一致连续.3. 设()y x f ,在[]b a ,上连续,定义()()[]{}b a y y x f x g ,|,m ax ∈=,证明()x g 在[]b a , 上连续.4.设函数()x f 在[]b a ,上单调,且值域充满区间()()[]b f a f ,或()()[]a f b f ,,则()x f 在[]b a ,上连续.5.设函数()x f 在[)+∞,a 上连续,且有斜渐近线b ax y +=,则()x f 在[)+∞,a 上一致连续.6.设()x f 在(]b a ,可导,且()x f ax '+→lim 存在,证明)1(()x f ax +→lim 存在.)2(()x f 在(]b a ,上一致连续.7.证明:设()x f 在R 上一致连续,()t g 在区间I 上一致连续,则复合函数()()t g f 在区间I 上一致连续.8.设函数()x f 在[)+∞,1上可导,且()+∞=+∞→x f x lim ,证明()x f 在[)+∞,1上非一致连续.9.设()x f 在()+∞∞-,内连续,且()+∞∞-∈∀,,y x ,都有()()22y f x f y x f +=⎪⎭⎫ ⎝⎛+,则()R x x f ∈+=βαβα,,.10.设()x f 在()+∞∞-,上非负连续,()+∞∞-∈∀,,y x ,都有()()()y f x f y x f ⋅=+, 求()x f .11.设()x f 在()b a ,内连续,()x f 2在()b a ,内一致连续,证明()x f 在()b a ,内一致连续.12.设()x f 在区间I 上有定义,则()x f 在I 上一致连续,()0lim 0=⋅+→δωδf iff ,其中()()()x f x f x x fx x f ''-'=<''-'∈'''',sup χδω称为f 的连续模.13.设函数()x f 在()1,0上有定义,且函数()x f e x 和()x f e -在()1,0都单调不减,证明()x f 在()1,0连续.14.设()x f 为R 上的周期函数,其周期小于任意小的正数,证明若()x f 在R 上连续,则()x f 为常值函数.15.设I 为有限区间,()x f 在其上有定义,证明()x f 在I 上一致连续的充要条件是函数()x f 把柯西列映成柯西列. 16.若函数()x f 在[)+∞,1上一致连续,求证()xx f 在[)+∞,1上有界. 17.证明()x f 在R 上连续的充要条件是任何开集的原像是开集.21 18.设函数()x f 在R 上连续,且()()x f f =x ,证明:在R 内至少存在一点0x 使()00x x f =.19.设()x f 在R 上连续,()x g 在R 一致连续且有界,证明()()x g f 在R 上一致连续.20.设()x f 在R 上连续,且()()∞=∞→x f f x lim ,证明()∞=∞→x f x lim . 21.设函数()x f ,()x g 均在[]b a ,上连续,{}[]b a x n ,⊆且对N n ∈∀有()()1+=n n x f x g ,证明至少存在一点[]b a x ,0∈,使()()00x g x f =.22.设()x f 在[)+∞,0上具有二阶连续导数,且()()()0,00,00<''<'>x f f f ,[)()+∞∈,0x ,则()()⎥⎦⎤ ⎝⎛'-∈∃00,0f f ξ,使得()0=ξf .。