数值分析实验三分段线性插值
- 格式:docx
- 大小:47.92 KB
- 文档页数:6
《数值分析》实验报告实验序号:实验五 实验名称: 分段线性插值法1、 实验目的:随着插值节点的增加,插值多项式的插值多项式的次数也增加,而对于高次的插值容易带来剧烈的震荡,带来数值的不稳定(Runge 现象)。
为了既要增加插值的节点,减小插值的区间,以便更好的逼近插值函数,又要不增加插值多项式的次数以减少误差,可采用分段线性插值。
2、 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段线性插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。
设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210与相应的函数值n y y y ,...,,10,求一个插值函数)(x ϕ,满足以下条件:(1)),...,2,1,0()(n j y x j j ==ϕ; (2) )(x ϕ在每一个小区间[1,+j j x x ]上就是线性函数。
对于给定函数11-,2511)(2≤≤+=x x x f 。
在区间[]11-,上画出f (x )与分段线性插值函数)(x ϕ的函数图像。
1. 分段线性插值的算法思想:分段线性插值需要在每个插值节点上构造分段线性插值基函数)(x l j ,然后再作它们的线性组合。
分段线性插值基函数的特点就是在对应的插值节点上函数值取 1,其它节点上函数值取0。
插值基函数如下:⎪⎩⎪⎨⎧≤≤--=其它 ,0,)(101010x x x x x x x x l ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<--≤≤--=+++---其它 ,0,,)(111111j j j j j j j j j j j x x x x x x x x x x x x x x x l⎪⎩⎪⎨⎧≤≤--=---其它 ,0,)(111n n n n n n x x x x x x x x l设在节点a≤x0<x1<…≤b=f(xi),(i=0,1,2,…,n)求折线函数L(x)满足:(1)L(x)∈C[a,b](2)L(x[i]=y[i])(3)L(x)在每个小区间(x[i],x[i+1])上就是线性插值函数¢(x)叫做区间[a,b]上对数据(x[j],y[j])(j=0,1,2,…,n)的分段区间函数。
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。
对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。
《数值分析》实验报告实验序号:实验五 实验名称: 分段线性插值法1、 实验目的:随着插值节点的增加,插值多项式的插值多项式的次数也增加,而对于高次的插值容易带来剧烈的震荡,带来数值的不稳定(Runge 现象)。
为了既要增加插值的节点,减小插值的区间,以便更好的逼近插值函数,又要不增加插值多项式的次数以减少误差,可采用分段线性插值。
2、 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段线性插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。
设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10,求一个插值函数)(x ϕ,满足以下条件:(1)),...,2,1,0()(n j y x j j ==ϕ; (2) )(x ϕ在每一个小区间[1,+j j x x ]上是线性函数。
对于给定函数11-,2511)(2≤≤+=x x x f 。
在区间[]11-,上画出f (x )和分段线性插值函数)(x ϕ的函数图像。
1. 分段线性插值的算法思想:分段线性插值需要在每个插值节点上构造分段线性插值基函数)(x l j ,然后再作它们的线性组合。
分段线性插值基函数的特点是在对应的插值节点上函数值取 1,其它节点上函数值取0。
插值基函数如下:⎪⎩⎪⎨⎧≤≤--=其它 ,0,)(101010x x x x x x x x l ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<--≤≤--=+++---其它 ,0,,)(111111j j j j j j j j j j j x x x x x x x x x x x x x x x l⎪⎩⎪⎨⎧≤≤--=---其它 ,0,)(111n n n n n n x x x x x x x x l 设在节点a ≤x0<x1<…≤b=f(xi),(i=0,1,2,…,n)求折线函数L (x )满足:(1) L(x)∈C[a,b](2) L(x[i]=y[i])(3) L(x)在每个小区间(x[i],x[i+1])上是线性插值函数¢(x )叫做区间[a,b]上对数据(x[j],y[j])(j=0,1,2,…,n)的分段区间函数。
计算方法分段线性_三次样条插值分段线性和三次样条插值是两种常用的插值方法,在数值分析和插值问题中广泛使用。
1.分段线性插值分段线性插值是一种简单直观的插值方法,将插值区间划分为若干个子区间,在每个子区间上用线性函数进行插值。
假设给定的插值节点有n+1 个,节点为 (x0, y0), (x1, y1), ..., (xn, yn),并且满足 x0 <x1 < ... < xn。
则对于任意 xx 使得 x 在 [xi, xi+1] 之间,可以通过线性插值得到其函数值 yy,即:yy = yi + (xx - xi) * (yi+1 - yi) / (xi+1 - xi)分段线性插值方法简单易懂,适用于一些较简单的插值问题。
但是由于插值函数在节点之间是线性的,可能不能准确地反映出数据的特征,因此不适用于一些需要高精度的插值问题。
三次样条插值是一种更复杂、更精确的插值方法,将插值区间划分为若干个子区间,在每个子区间上用三次多项式进行插值。
三次样条插值方法的基本思想是找到一组三次多项式,满足在每个子区间内插值点的函数值和一阶导数值相等,并且两个相邻多项式在节点处的二阶导数值也相等。
具体的求解步骤如下:(1) 假设有 n+1 个插值节点 (x0, y0), (x1, y1), ..., (xn, yn),构造 n 个三次多项式,即每个多项式在 [xi, xi+1] 之间插值。
(2) 对每个子区间内的多项式进行插值,设第 i 个子区间的多项式为 Si(x) = ai + bi(x-xi) + ci(x-xi)^2 + di(x-xi)^3、将插值节点的函数值和一阶导数值代入多项式中,可以得到 n 个线性方程,利用这 n 个线性方程可以求解出 n 个子区间的系数。
(3)由于n个子区间的多项式必须在节点处一阶导数值相等,因此再设立n-1个方程,利用这些方程可以求解出n-1个子区间的二阶导数值。
(4)将求解得到的系数和二阶导数值代入每个子区间的多项式中,得到完整的三次样条插值函数。
数值分析课程实验报告——插值逼近题目一.Runge 函数的插值1. Runge 函数Runge 函数的表达式为:21()125R x x =+ 其在[-1,1]区间上的函数图像如图1.1。
在课程学习中我们知道,对Runge 函数进行高次插值时有可能在两端出现不收敛的情况,即Runge 现象。
下面将分别用四种不同的插值方法在[-1,1]区间上对Runge 函数进行插值,并分析是否产生Runge 现象,比较插值效果。
图1.1.Runge 函数在[-1,1]区间的函数图像2.Newton 插值首先根据课本上的Newton 插值算法进行编程(代码略)。
核心思想就是用符号变量进行中间运算,以便将最终的插值函数用符号表达式表示出来,并进一步生成图像。
此处插值节点选择为等距插值节点,即:0.1(0,1,2,,)i x ih i =-+= (20)其中h=0.1。
插值曲线与原曲线的对比如图1.2(蓝色为原曲线,红色为插值曲线)。
从图中看出,在区间中部,二者吻合较好;但在区间两端二者则产生了明显偏差,甚至可以达到一个非常大的数值(e20量级)。
因此,在等距节点的20次Newton 插值下,产生了明显的Runge 现象。
图1.2.Newton 插值曲线与原曲线对比3. Lagrange 插值此处同样是根据Lagrange 插值的具体算法进行编程。
但插值节点不再是等距分布,而是如下形式:21cos()(0,1,2,,)42i i x i π+==…20 插值曲线与原曲线的对比如图1.3(蓝色为原曲线,红色为插值曲线)。
从图中看出,插值曲线与原曲线吻合的很好,没有产生明显的Runge 现象。
对比产生了明显Runge 现象的20次Newton 插值,Lagrange 插值的最高次数虽然也是20,但由于此处的插值节点不是等距分布的(事实上,此处采用的插值节点正是Chebyshev 多项式的零点),而是中间疏两边密,因此两侧较密的节点很好地抑制了Runge 现象。