沪科版八年级数学上册《三角形中的边角关系》教案1
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
三角形中的边角关系教案沪科版(精美教案)
《三角形中的边角关系》第一课时教学案例
一、内容分析:
三角形是最简单的多边形,是研究其他图形的基础。
本节课是在学生已学过了一些三角形的基础上,进一步系统的研究它的概念、分类、性质和应用。
二、学情分析:
虽然学生已在小学阶段及日常生活中了解了不少有关三角形的知识,但却偏重于感性认识,且缺乏系统化。
故教学时应从学生熟悉的事物入手,创设情境,调动学生的学习积极性,积极进行观察、操作、猜想、验证,主动探究解决问题。
三、教学目标:
、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形;
、理解三角形中三边之间的关系,并运用它解决一些简单的问题;
、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动中的创造性,体验探究的乐趣。
四、教学中的重、难点及处理:
、重点:理解三角形三边之间的关系,了解三角形的分类思想。
、难点:探究三角形三边之间的关系。
、处理:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。
五、教学准备:
、教师准备:制作多媒体课件。
、学生准备:笔、刻度尺。
七、教学设计说明:。
沪科版数学学科八年级上册第十三章第一节《13.1三角形中的边角关系(第1课时)》教学设计【教学目标】1. 知识与技能:(1)了解三角形的意义,掌握三角形的表示方法。
(2)了解不等边三角形、等腰三角形和等边三角形,会按边将三角形分类。
(3)掌握三角形中三边之间的关系,并能利用这个关系解决问题。
2.过程与方法:在经历揭示“三角形三边之间的关系”的探究过程中,初步培养学生的逻辑思维能力、动手操作能力和数学活动的经验方法。
3.情感态度与价值观:(1)能积极参与数学学习活动,对数学有好奇心。
(2)在数学学习活动中获得成功的体验,建立对数学学习的自信心。
(3)体验数学的应用价值,感受环保意识、公德意识。
【教学重点】三角形三边之间的关系。
【教学难点】三角形三边之间关系的探究。
【教学方法】情境——自主 、探究——发现。
【教具准备】多媒体课件,三角板。
【教学过程】 一、畅所欲言师板书课题:§13.1三角形中的边角关系(1)。
师:为了能有效的进行学习,请大家分成学习小组,并准备好直尺或三角板、练习本。
二、自主学习1. 阅读课本67面,自主学习。
2. 活动:画一画,标一标,认一认,练一练。
(1)标出三角形的顶点、边、角等,用符号表示三角形。
如图“△ABC ”,读作“三角形ABC ”。
生1:顶点A 、顶点B 、顶点C 。
问题1.姚明是同学们熟悉而喜爱的篮球明星,他高大而帅 气,有人说:“姚明特厉害,他一步就能迈3米”,对 于这个说法,你信不信呢?(背景资料:姚明身高2.36米,体重139kg,腿长约1.30米。
) 生1:相信...... 生2:不相信......师:从这节课开始,我们将一起来研究三角形的相关知识, 来解决这个问题。
ABCcb a生2:边AB 也可用小写字母a 表示...... 生3:∠A 、∠B 、∠C 叫做三角形的内角。
(2)会将三角形按边分类,知道每类三角形的特征。
不等边三角行三角形等腰三角行(等边三角形是等腰三角形的特例。
沪科版数学八年级上册《三角形边角关系》教学设计1一. 教材分析《三角形边角关系》是沪科版数学八年级上册的教学内容,本节课的主要内容是让学生掌握三角形的边角关系,包括三角形的内角和定理、三角形的边长关系等。
教材通过丰富的实例和活动,引导学生探究和发现三角形的边角关系,培养学生的抽象思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和观察能力。
但是,对于三角形的边角关系的理解和运用,还需要进一步的引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生发现规律,提高学生的几何思维能力。
三. 教学目标1.了解三角形的内角和定理,掌握三角形的边长关系。
2.培养学生观察、分析、解决问题的能力。
3.培养学生的合作意识和几何思维能力。
四. 教学重难点1.三角形内角和定理的证明。
2.三角形边长关系的理解和运用。
五. 教学方法1.情境教学法:通过实例和活动,引导学生发现三角形的边角关系。
2.问题驱动法:引导学生提出问题,自主探究,解决问题。
3.合作学习法:分组讨论,共同解决问题,培养合作意识。
六. 教学准备1.准备相关的实例和活动材料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生观察并思考:这些三角形有什么共同的特点?你想到了什么关于三角形的性质?2.呈现(10分钟)教师通过讲解和展示三角形内角和定理的证明过程,让学生理解并掌握三角形的内角和定理。
同时,引导学生发现三角形的边长关系,如:三角形的两边之和大于第三边,两边之差小于第三边等。
3.操练(10分钟)学生分组讨论,每组选择一个三角形,用尺子和量角器测量三角形的内角和,并验证三角形的边长关系。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师出示一些关于三角形边角关系的练习题,让学生独立完成,检验学生对知识的掌握情况。
14.1三角形中的边角关系教学目标:知识目标:理解三角形的有关概念,掌握三角形三边的关系。
能力目标:通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。
情感目标:让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。
教学重、难点:教学重点:三角形三边关系的探究和归纳。
教学难点:三角形三边关系的应用。
教学过程:Ⅰ.回顾与思考1.如何表示线段?2.如何表示一个角?Ⅱ.创设现实情景,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)Ⅲ.讲授新课在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:观察下面的屋顶框架图.图5-1(1)你能从图5-1中找出4个不同的三角形吗?与同伴交流各自找的三角形.(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)根据指出的三角形回答下列问题:1.这些三角形有什么共同的特点?(结合小学对三角形的认识回答)2.什么叫做三角形?(通过视频了解三角形定义)(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?3.如何表示三角形?4.三角形的边可以怎么表示?5.如果我说三角形有三要素,你能猜出是哪三要素吗?(通过视频了解三角形的基本元素)练一练:(三角形定义三角形的表示方法)研究三角形的三条边是否相等,有多少种可能的情况?(通过视频掌握三角形按边的分类)1.三条边各不相等的三角形叫做不等边三角形,如图3-9.2.有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角,如图3-10.3.三条边都相等的三角形叫做等边三角形.议一议(1) 元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色彩灯的电线哪根长呢?说明你的理由。
13.1 三角形中的边角关系第1课时三角形中边的关系1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边的性质,并会初步运用这一性质来解决问题.重点三角形的三边关系.难点三角形的三边关系.一、创设情境,导入新课教师出示一个用硬纸板剪好的三角形,并提出问题:小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义?教师出示教具,提出问题.让学生观察教具,然后给出三角形的定义.由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形叫做三角形.【教学说明】通过小学知识,引入新的知识,温故而知新.通过教具观察,引起学生的注意,引发学生的学习兴趣.二、合作交流,探究新知1.探究三角形的有关概念(1)三角形的顶点及符号表示方法.(2)三角形的内角.(3)三角形的边.教师继续利用教具向学生直接指明相关的概念.学生注意记忆相关的概念.然后教师出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.【教学说明】直截了当地向学生指明相关的概念,之后借助练习巩固.2.探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类?教师提出问题,学生举手回答.教师提示,分类的标准是什么?教师进一步提出新的问题,并进一步讲解,等边三角形,等腰三角形的有关概念.然后给出三角形的按边分类方法:三角形错误!之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.【教学说明】在三角形的分类学习过程中,让学生体会分类的思想,即:统一标准,不重不漏.3.探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B→C路线短.然后教师进一步提出问题:这条路径为什么是最短的?学生举手回答:“两点之间,线段最短."然后师生共同归纳得出:AC+BC>AB,AB+AC>BC,AB+BC>AC,即:三角形的两边之和大于第三边.教师出示教材P68例1。
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13章第1节的内容。
本节主要介绍三角形中的边角关系,包括三角形的内角和定理、三角形的边长关系等。
通过本节的学习,学生能够理解三角形的边角关系,并能够运用这些关系解决实际问题。
二. 学情分析八年级的学生已经学习了三角形的性质和角的度量,对于三角形的基本概念和性质有一定的了解。
但是,学生对于三角形边角关系的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,需要注重学生的参与和实践,通过操作和思考,引导学生理解和掌握三角形的边角关系。
三. 教学目标1.知识与技能:学生能够理解和运用三角形的内角和定理,掌握三角形的边长关系。
2.过程与方法:学生能够通过观察、操作和思考,探索三角形的边角关系,培养解决问题的能力。
3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。
四. 教学重难点1.教学重点:三角形的内角和定理,三角形的边长关系。
2.教学难点:三角形边角关系的运用和解决实际问题。
五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生探索三角形的边角关系。
2.实践操作法:让学生通过实际操作,观察和分析三角形的边角关系,加深理解。
3.合作学习法:学生分组合作,共同解决问题,培养合作精神和沟通能力。
六. 教学准备1.教学课件:制作教学课件,包括三角形的内角和定理和边长关系的图片和示例。
2.教学用具:准备一些三角形模型和测量工具,供学生实践操作使用。
3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一些实际问题,引导学生思考三角形中的边角关系,激发学生的学习兴趣。
2.呈现(10分钟)利用课件呈现三角形的内角和定理和边长关系的图片和示例,引导学生观察和分析,探索三角形的边角关系。
3.操练(10分钟)学生分组合作,利用准备好的三角形模型和测量工具,进行实际操作,观察和分析三角形的边角关系。
《三角形中的边角关系》教学设计教学目标:(一)知识与技能1、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形。
2、理解三角形中三边之间的关系,并运用它解决一些简单的问题。
(二)过程与方法1、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动充满着探索性和创造性,体验探究的乐趣。
2、通过对三角形三边关系的发展及应用培养学生的分类讨论思想和方程思想。
(三)情感态度价值观1、感知数学与生活的密切联系,体会生活中的数学美、图形美。
2、激发学生的勇于探究精神,让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。
教学重点:理解三角形三边之间的关系并能灵活应用。
教学难点:探究三角形三边之间的关系。
设计理念:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。
教学方法:情境导入法、实验比较法教学准备:1、教师准备:制作多媒体课件。
2、学生准备:小木棒、刻度尺。
教学过程:一、创设情境,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)教师叙述:我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。
三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。
(设计说明:数学来源于生活,感受生活中的数学美,培养学生善于观察生活,洞悉生活中数学常识的能力。
)二、合作交流,初探新知活动一:师生动手任意画一三角形并通过刚才看过的图形中的三角形,讨论它们有什么共同点呢?引出三角形的定义。
教师总结三角形的定义:由不在同一条直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
活动二:请同学们对照提纲阅读教科书第67页◆阅读提纲:1、会用几何符号表示一个三角形。
2、知道三角形的顶点、角、边等概念,并会用几何符号表示。
3、会把三角形按边进行分类,知道每类三角形的特征。
《三角形中的边角关系(第1课时)》教学设计教材分析:“三角形中的边角关系”是义务教育课程标准实验教科书《数学》(沪科版)八年级上册第十四章《三角形中的边角关系》中的第13.1节(第1课时)的内容。
本节课主要内容是了解三角形的概念、认识三角形的组成元素、会用符号语言表示三角形并按边对三角形分类以及三角形三边的关系。
在平面图形里,三角形是最简单也是最基本的多边形,它是由三条线段围成,但不是任意三条线段都能围成三角形。
所以学好本课内容,不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,可以在动手操作、探索实验和联系生活、应用数学方面拓展学生的知识视野,发展学生的思维和解决问题的能力,同时也为顺利学习其他平面图形积累知识经验,打下坚实基础。
学生分析:在认知方面,学生在小学已经对三角形有了一定的认识和了解,具有了相应的知识基础(如两点之间线段最短),具有了相应的生活经验,具有一定的几何直觉,但应用知识的能力有待提高,抽象、概括的能力较弱,推理的能力有待提高。
在情感方面,大多数学生对动手活动感兴趣,能够积极参与数学探究活动,感受到数学与生活的联系。
但可能少数学生活动的目的不明确,合作交流的意识和水平不平衡,数学的价值感受不深刻,教师要注意引导、鼓励。
设计思路:从学生熟悉的风车图案引入课题,通过展示实际生活有关的三角形实物图片,让学生在体验数学来源于生活的感受中激发学习的兴趣。
学生在小学学习的三角形知识的基础上,通过观察、交流、讨论、归纳,从而得出三角形的准确定义。
为了培养学生的自主学习能力,设计阅读提纲让学生独立学习和三角形有关的概念、表示方法及分类相关的教材内容。
通过创设学生探究活动,引导学生动手实践、大胆猜想、推理归纳,逐层深入地揭示三角形三边关系的同时,也让学生在自主参与、合作交流、尽情发挥表现的过程中充分体验知识的获得过程。
最后,通过对一生活实例的解释,培养学生的数学应用意识。
同时也有助于培养学生的公德意识、环保意识,提高学生的数学素养和道德品质。
13.1 三角形中的边角关系(1)教学目标1.理解三角形的概念及基本元素,会按边对三角形进行分类,并会用符号语言表示三角形;2.理解三角形中三边之间的关系,会用三边关系判断三条线段能否构成三角形;3.经历三角形按边分类的过程,感受分类讨论思想的基本原则。
难点:三角形三边关系的探究及应用教学过程:(一)创设情境,概念形成问题1:动手画一个三角形,并用自己的语言描述什么是三角形?1.三角形定义:由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形。
2.基本元素如图所示,A ,B ,C 是三角形的顶点;两个顶点的连线,即线段AB ,BC ,CA 叫做这个三角形的边;两边形成的夹角,即∠A ,∠B ,∠C 叫做这个三角形的内角,简称三角形的角. 这个三角形记作“△ABC ”,读作“三角形ABC ”.三角形的三边有时用它所对角的小写字母表示:如边BC 对着 ∠A ,记作aB C教学重难点重点:三角形三边之间的关系练一练:如图所示,(1)图中有____个三角形;(2)∠1是哪个三角形的角?(3)以AB为一条边的三角形有____________________.3.三角形的分类问题2:三角形按边如何分类?有两条边相等的三角形叫做等腰三角形.如图,在等腰三角形ABC,AB=AC,它的各边与各角的名称如图所示;三边都相等的三角形叫做等边三角形,也叫正三角形.三角形三边都不相等的三角形叫不等边三角形;问题2-1:等腰三角形与等边三角形有什么关系?故等边三角形是特殊的等腰三角形三角形按边长关系可分为:不等边三角形三角形等腰三角形(包括等边三角形)(二)深入探究,再现新知问题3:已知在△ABC中,AC=6cm,BC=8cm,求第三边AB的长.(动手画一画)(学生动手操作,发现AB的值不唯一,但也是有取值范围的,老师借助几何画板进行演示,引出研究三角形的三边关系)问题情境:如图所示,其中B点代表小明的家,C点代表学校,A点代小胖家,现在小明要从家出发去学校,他有几条路线可选择?哪种最短呢?为什么?2条路线:路线1:B A C,即BA+AC路线2:B C,即BC其中路线2最短,因为两点之间线段最短,所以AB+AC>BC小胖要从家出发去学校,他有几条路线可选择?哪种最短呢?可得AC+AB>BC那小明要从学校出发去家,他有几条路线可选择?哪种最短呢?同理可得: AB+BC>AC由此得到三角形的三边关系:三角形任意两边之和大于第三边.根据不等式的性质得BC>AC -AB同理可得:AC>BC-AB, AB>AC-BC即三角形任意两边之差小于第三边.练一练:判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、4cm、8cm(2)5cm、11cm 、6cm(3)5cm、0.6dm、10cm问题解决:已知在△ABC中,AC=6cm,BC=8cm,则第三边AB的取值范围是____________________.分析:由三角形的三边关系得BC -AC < AB <BC+AC 即8 - 6 < AB < 8+ 6 所以2cm < AB < 14cm小结:两边之差<第三边<两边之和字母表示: |a-b| < x < a+b(三)例题变式,巩固新知例1.例1 用一条长为18cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm 的等腰三角形吗?为什么 ?能力提升:已知a ,b ,c 是△ABC 的三条边, 化简|a-b-c|+|b-c-a|+|c+a-b|(四)课堂总结,课下作业通过这堂课的学习, 你学到了哪些知识?涉及到哪些数学思想?还有哪些疑惑?课下作业:1. 课本69页练习1-3题.(选做)思考三角形的中的角有哪些关系?如何得到?BC A。
《三角形边的关系》教案1
教学内容分析
三角形是最简单的多边形,是研究其他图形的基础.本节课是在学生已学过的一些三角形基础上,进一步系统的研究它的概念、分类、性质和应用.
教学目标分析
(一)知识技能
理解三角形中三边之间的关系,并运用它解决一些简单的问题.
(二)过程与方法
1、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动充满着探索性和创造性,体验探究的乐趣.
2、通过对三角形三边关系的发展及应用培养学生的分类讨论思想和方程思想.
(三)情感态度价值观
1、感知数学与生活的密切联系,体会生活中的数学美、图形美.
2、激发学生的勇于探究精神以及文明环保意识.
教学中的重、难点及处理
1、重点:理解三角形三边之间的关系并能灵活应用.
2、难点:探究三角形三边之间的关系.
3、处理:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想.
教学方法
情境导入法、实验比较法.
教学准备
1、教师准备:制作多媒体课件.
2、学生准备:笔、刻度尺.
教学过程
一、情境激趣,悬念探路
1、提出问题:看NBA姚明赛场,姚明的身高是2.26米腿长约1.2米左右,他在赛场上能一步走3米吗?
2、抽象问题:人的体型可以模拟成三角形.(投影展示生活中具有三角形状的实物.)
3、揭示问题:进入三角形的世界探究虚实,板书课题:三角形的边角关系.
(设计说明:数学来源于生活,感受生活中的数学美,培养学生善于观察生活,洞悉生
活中数学常识的能力.)
二、感知实物,提升认识
在小学阶段我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:
图1
1、共性特征方面:
从图1中找出两个不同的三角形吗?与同伴交流各自找的三角形.
(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)
根据指出的三角形回答下列问题:
(1)这些三角形有什么共同的特点?(结合小学对三角形的认识回答)
(2)什么叫做三角形?(通过视频了解三角形定义)
(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?)
(3)如何表示三角形?
(4)三角形的边可以怎么表示?
(5)如果我说三角形有三要素,你能猜出是哪三要素吗?(通过多媒体课件了解三角形的基本元素).
2、个性特征方面:
研究三角形的三条边是否相等,有多少种可能的情况? (通过视频掌握三角形按边的分类)
(1)三条边各不相等的三角形叫做不等边三角形.
(2)有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
(3)三条边都相等的三角形叫做等边三角形.
三、实践探究,形成性质
1、议一议C
观察:蚂蚁从A到B的路线有那些?走那条路线最近呢?为什么?
路线1:从A到C再到B路线走
路线2:沿线段AB走
理论依据:两点之间,线段最短. A B
转化:(用数学符号表示)
在△ABC中,AC+CB>AB
猜想:三角形任意两边之和大于第三边.
(即:在△ABC中,AC+CB>AB,AC+AB>CB,AB+CB>AC,)
2、做一做:
画图测量:任意画一个三角形,量出它的三边长度并填空:
a=______;b=_______;c=______;
计算比较:a+b__>__c;b+c__>__a;c+a__>__b
a-b___<_c;b-c___<_a;c-a__<__b
通过以上的计算你认为三角形的三边存在怎样的关系?
验证结论:(三角形任意两边之和大于第三边)
(三角形任意两边之差小于第三边)
即:在△ABC中,AC+CB>AB,AC+AB>CB,AB+CB>AC
AC-CB<AB,AC-AB<CB,AB-CB<AC
3、想一想:(投影出示)
解释姚明一步能走3米是子虚乌有的说法,不可能的事情.
四、例题解析
在等腰三角形中,周长为18cm(1)、如果腰长是底边长的2倍,求各边的长;(2)、如果一边长为4cm,求另两边的长.
解:(1)设等腰三角形的底边长为xcm,则腰长为2xcm,
根据题意,得x+2x+2x=18
解方程,得x=3.6
所以三角形的三条边长分别为7.2cm、7.2cm、3.6cm
(2)若底边长为4cm,设腰长为xcm,则有:
2x+4=18
解方程,得x=7
若一条腰长为4cm,设底边长为xcm,则有
2×4+x=18
解方程,得x=10
因为4+4<10,所以4cm为一腰不能构成三角形.
所以,三角形的另两边长都是7cm.
教师强调说明:方程思想及分类讨论思想的应用价值.
五、小结
1.三角形的概念;
2.三角形的三要素;
3.三角形的表示方法.
4.三角形按边分类
5.三角形三边之间的关系六、课后作业
P69练习1,2,3题。