电力电缆试验及电缆故障测寻
- 格式:ppt
- 大小:3.03 MB
- 文档页数:54
电缆故障测试方法及技巧随着城市的进展扩大,城市电网的改造,电力电缆获得了越来越广泛的应用。
但另一方面,由于电缆处在地下,消失故障很难发觉其故障点位置所在,这对电网的平平稳定运行以及供电牢靠性都带来很大的困难。
对此,我们首先分析了电力电缆故障常见原因,在此基础上,进一步总结出电力电缆常用故障检测方法。
1.电力电缆故障产生的原因(1)绝缘层老化变质:绝缘电缆长期在风吹日晒,在电的的作用下发生了老化,还要受到伴随电作用而来的化学、热和机械作用,从而使介质发生物理化学变化,使介质的绝缘性能下降。
(2)过热:电缆绝缘内部气隙游离造成局部过热,使绝缘炭化。
另外,电缆过负荷产生过热,安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆,穿于干燥管中的电缆及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。
(3)机械损伤:如挖掘等外力造成的损伤。
(4)护层的腐蚀:因受土壤内酸碱和杂散电流的影响,埋地电缆的铅或铝包将遭到腐蚀而损坏。
(5)绝缘受潮:中心接头或终端头在结构上不密封或安装质量不好而造成绝缘受潮。
(6)过电压:过电压重要指大气过电压和内过电压,很多户外终端接头的故障是由大气过电压引起的,电缆本身的缺陷也会导致在大气过电压的情形下发生故障。
(7)材料缺陷:电缆制造的问题,电缆附件制造上的缺陷和对绝缘材料的维护管理不善等都可能使电缆发生故障。
2.电力电缆故障性质类别的快速判别2.1电力电缆的故障分类电缆故障若按故障发生的直接原因可以分为两大类:一类为试验击穿故障;另一类为在运行中发生的故障。
若按故障性质来分,又可分为开路、低阻、高阻故障等。
开路故障:指电缆的甲端与乙端一相或者三相*断开。
低阻故障:若电缆相间或相对地绝缘电阻在100k以下的故障称为低阻故障。
高阻故障:若电缆相间或相对地故障电阻较大,以致不能接受电桥或低压脉冲法进行粗测的故障,通称为高阻故障。
它包括泄漏性高阻故障和闪络性高阻故障。
在试验过程中发生击穿的故障,其性质比较单纯,一般为一相接地,很少有三相同时在试验中接地或短路的情形,更不行能发生断线故障。
电力电缆常见故障及检测方法分析摘要:电力电缆作为电力系统的重要组成部分,一旦发生故障将直接影响电力系统的安全运行电力电缆供电以其安全、可靠、,得到广泛的应用。
但是电力电缆一般都埋在地下,一旦发生故障,要经过诊断、测距(预定位)、定点(精确定位)个步骤。
采用合适的故障测试方法,尽可能快速、准确地找到故障点,减少因停电造成的损失。
关键词:电缆;故障;方法;技术一、电缆的故障类型分析电力电缆的故障类型造成电力电缆故障的原因有很多,比如:机械损伤、绝缘受潮、绝缘老化变质、过电压、材料缺陷、电缆绝缘物流失、设计和制作工艺不良以及护层腐蚀等。
按照故障出现的部位,通常可将故障类型大致分为断线故障、主绝缘故障和护层故障断线一般是由于故障电流过大而烧断电缆芯线或外界机械破坏等原因造成的,其测试比较简单。
从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。
也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。
电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。
强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。
电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。
从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。
当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。
绝缘故障根据故障电阻和击穿间隙的情况,通常将绝缘故障分为低阻、高阻及闪络性故障。
低阻故障与高阻故障的区分界限一般取电缆本身波阻抗的l0倍,但在实际测试工作中并不要求很严格地区分。
闪络性故障的故障点电阻极高,可给故障电缆施加到较高的电压,故障点才闪络击穿。
电力电缆运行、故障及试验综述摘要:在第二次工业革命中,我们人力发明了电力,因此电力的发明与推广应用对我们人类产生了广泛的影响,其改变了我们人类生产、生活条件。
而电力工业经过一个多世纪的发展,人类对其依赖性并没有因为时间而减弱,反而对电力的依赖性越来越强,基本上成为我们人类生产、生活中所必须应用的。
所以,我们今天就以电力为线索,来展开研究与探索。
我们作为与电力工业有关的工作者都知道,电缆是构成电力系统的重要组成部分及不可缺少的一部分,因此,电缆运行的好坏,将直接影响着整个电力系统的运行质量。
下面我们就详细了解下。
关键词:电力工业工业革命电力电缆经济发展故障排除电缆运行前言在上文摘要中,我们已经提高,随着国际社会国内社会经济的不断发展,对电力的需求越来越广泛,尤其是在我国实施改革开放后,社会主义市场经济的不断完善,不断推动了我国电力工业的快速发展,这其中就包括我国国家电网的不断完善。
而,随着电力工业的快速发展,也引发了一系列与电力有关的问题,如空中架线问题等,对于此问题,人类发明了电缆技术,由于电缆受自热环境的影响较小,占用空间较小,而且不占线路走廊空间,而且使用安全可靠等优点,因此在当今电网快速发展中被我们人力广泛应用,而且电缆在供电系统中发挥着越来越广泛的作用。
但是,一项事物尤其良好优点的同时,也必然存在着不可避免的缺点,如,电缆一旦发生故障,就会出现查找困难,修理困难等问题。
因此,为了我国电缆运行安全健康及整个电网的运行安全,我们必须不断创新我们对电缆的诊断方法、修理措施等,这些都对我国整个电力工业的发展具有重要的意义。
本文就是通过对当前我国电缆的现状进行研究与总结,并提出了以下几点建议。
1. 我国电力电缆发展的总体概述1.1 近些年来,我国经济的快速发展,极大的带动了我国电力工业的发展及电力市场的需求,但是也突出了我国电力紧缺的供需矛盾。
因此,在客观上也促进了电力电缆的广泛应用。
在当前经济社会发展中,人民在营造优雅宽松的生存环境和生活环境的城市建设过程中,电力电缆输电配电线路逐步取代架空线路为整洁美丽的市容市貌提供了良好的添加,因此,在当今时代评价一个城市电网技术水平的高低中,城市电力电缆应用的程度是其重要评判标准之一。
关于电力电缆绝缘电阻测量及故障的实验报告一、实验目的本次实验的主要目的是掌握电力电缆绝缘电阻测量的方法,并能够正确地诊断电缆绝缘的故障类型和位置。
二、实验原理电力电缆的绝缘材料通常有橡胶、聚乙烯、交联聚乙烯等。
在正常情况下,电缆绝缘的电阻值应该非常大,几乎是无穷大。
但当电缆绝缘出现故障时,其电阻值会显著下降,从而导致电缆的安全性能下降,轻则引起泄漏、短路等事故,重则引起火灾、爆炸等严重后果。
电力电缆绝缘电阻的测量方法通常采用直流电桥法。
具体地说,我们在电缆两端之间加上一定的电压,然后测量电缆两端的电压和电流大小,根据欧姆定律,就可以计算出电缆的电阻值。
电缆绝缘故障的诊断方法主要有交流绝缘电阻法、直流谐波法、局放测量法、接地测量法等。
其中,交流绝缘电阻法是最常用的方法之一,其基本原理是利用交流信号对电缆绝缘进行诊断,通过测量绝缘电阻的大小来判断绝缘材料的质量,从而确定电缆绝缘是否存在故障,以及故障的类型和位置。
三、实验步骤1. 准备工作(1) 将电缆连接到测试设备上,并确保连接稳定可靠。
(2) 将测试设备的电源插头插入电源插座,并开启电源开关。
(3) 调节测试设备的测试参数,包括电压、电流、频率等,并根据需要调节测试时间。
2. 绝缘电阻测量(1) 在测试设备上选择“绝缘电阻测量”功能。
(2) 设置测试参数,并启动测试程序。
(3) 测量结束后,观察测试结果并记录下测量值。
3. 绝缘故障诊断(1) 在测试设备上选择“绝缘故障诊断”功能。
(2) 设置测试参数,并启动测试程序。
(3) 根据测试结果及其变化,判断电缆绝缘是否存在故障以及故障的类型和位置。
四、实验结果分析在本次实验中,我们采用了直流电桥法和交流绝缘电阻法对电力电缆的绝缘电阻进行了测量,并通过测试结果对电缆的绝缘状态进行了诊断。
实验数据表明,我们所使用的测试设备能够精确地测量电缆的绝缘电阻,并能够准确地判断电缆绝缘的故障类型和位置。
五、实验结论本次实验对于加深我们对电力电缆绝缘电阻测量和故障诊断的理解具有重要的意义。
电力电缆故障检测与定位分析摘要:电力电缆工程多为隐蔽工程,在电缆发生故障之后,不易被运行人员发现,因此如何快速、有效、安全地探测到故障电缆的位置,是电缆检修工作中的重中之重。
基于此,本文将在电缆故障产生的原因、故障类型以及故障测距等方面进行分析,以供参考。
关键词:电力电缆;故障测距1电力电缆故障产生的原因电力电缆故障产生的原因是有多种多样的,故障成因复杂也是电力电缆故障的一大特点。
发生故障的原因主要有以下几种:(1)外力损坏多数电缆故障都是由在电缆安装敷设完毕后,由于电缆周围回填土不合格、附近有暴力施工亦或是长期受到车辆、重物冲击力作用所造成的永久性故障。
(2)接头故障主要是由于接头制作过程中,作业人员对接头工艺技术掌握不过关或材料不合格造成的,也有在抢修过程中不满足接头制作环境,未对电缆本体进行除湿便制作接头,以至于水汽进入电缆接头从而造成故障。
(3)长期超负荷运行由于长期超负荷运行,电缆的本体温度会随之升高,使电缆绝缘程度下降,尤其是在夏季的用电高峰期,电缆温度的升高以及运行环境的高温都会使电缆发生故障,故障点多发在电缆薄弱处和接头处。
(4)化学腐蚀电缆敷设路径通过有酸碱性土壤时,往往都会对电缆铠装或铅包进行大面积、长时间的化学腐蚀,从而造成机械性能、绝缘性能下降,从而引发电缆故障。
(5)路面、地基沉降电缆穿越公路、铁路或高层建筑物时,由于路面或地基沉降从而使电缆垂直方向受力产生形变,导致电缆铠装、半导体层等产生严重形变甚至断裂,造成电缆故障。
2电力电缆故障的分类当前电力电缆故障主要有导体故障、主绝缘故障和护套故障,为满足人们日益增长的供电需求,针对不同的需求有很多电力电缆的种类和结构,使得电缆故障的分类方法较多,一般来说按故障位置、电缆结构特性、电缆损坏程度和绝缘阻抗进行分类,本文着重讨论绝缘阻抗分类这一类故障。
电缆的各类故障都是由电缆的绝缘遭到破坏引发的,大体上是由高阻故障、低阻故障和泄露性故障组成。
电力电缆的故障分析及检测方法
电力电缆是输送电能的重要组成部分,若出现故障则会导致供电中断、损失等问题,因此对电力电缆的故障分析及检测十分必要。
下面介绍电力电缆故障的分类及常用的检测方法。
一、故障分类
1.绝缘故障:电缆的绝缘材料损坏或老化,导致电力泄漏、短路等问题。
2.导体故障:电缆中导体损坏、接触不良、电阻过大等问题。
3.接头故障:电缆接头制作不良、防水措施不够、温升过高等问题。
二、常用检测方法
1.局部放电检测:通过检测电缆运行过程中的局部放电信号,判断电缆的绝缘状态,以便及早判断绝缘缺陷的出现。
2.介质损耗测试:通过测试电缆内介质的损耗,判断电缆绝缘状态的好坏。
3.电容测试:通过量取电缆母线、引出线之间的电容值,推算电缆电容率,以判断电缆绝缘状态。
4.高压测试:通过施加高电压测试电缆的绝缘强度,以便检测电缆的耐压性能。
5.电缆局部放电测量:通过检测电缆中存在的局部放电,判断导体两相之间或绝缘层内存在的故障。
6.时域反射法:通过测试电缆上电磁波信号的传输速度,以检测电缆上的绝缘故障的位置。
7.绝缘电阻测量:通过测试电缆的绝缘电阻变化情况,判断电缆的绝缘状况。
总的来说,电力电缆的故障分析及检测需要多种技术手段的综合运用,只有掌握了各种故障的原因和检测方法,才能及时发现问题,保障供电的连续性和稳定性。
10kv电力电缆故障测寻详细步骤
一、确定故障类型
在进行故障测寻之前,首先要确定故障的类型,如开路、短路、断路等。
可以通过测量电缆的绝缘电阻和导体电阻等参数,初步判断故障的性质和程度。
二、预定位
预定位是初步确定故障的大致位置,常用的方法有:
1. 电桥法:通过测量电缆线路的电阻和电容,计算出故障点到测试点的距离。
该方法简单可靠,但精度较低。
2. 脉冲法:通过向电缆发送高压脉冲信号,根据反射回来的脉冲信号时间差,计算出故障点的距离。
该方法精度较高,但需要较高的测试设备和经验。
三、精确定位
精确定位是在预定位的基础上,进一步精确确定故障点的位置。
常用的方法有:
1. 音频法:通过听取电缆中声音的差异,判断故障点的位置。
该方法简单易行,但需要经验丰富的操作人员。
2. 声磁同步法:通过测量电缆中的声音和磁场信号,利用时间差原理确定故障点的位置。
该方法精度较高,但需要特殊的测试设备。
四、修复故障
根据故障的性质和程度,可以采用不同的修复方法。
常用的方法有:1. 直通接法:对于短路、断路等简单故障,可以直接将电缆两头连
接在一起,恢复正常的电气性能。
2. 绕接法:对于损坏较轻的故障点,可以采用绕接的方式进行修复。
3. 替换法:对于损坏严重的电缆段,需要整段替换电缆。
五、测试验收
修复完成后,需要对电缆进行测试验收,确保故障已经完全排除,电缆电气性能恢复正常。
测试内容包括绝缘电阻、导体电阻、耐压试验等。
验收合格后,方可投入使用。
电力电缆检测及方法概述电力电缆是电力传输和分配的重要组成部分。
为了确保电力系统的安全和可靠运行,对电力电缆进行定期的检测是非常重要的。
本文档旨在介绍电力电缆检测的常见方法和步骤。
电力电缆检测方法1. 直流电阻测量直流电阻测量是一种常见的电力电缆检测方法。
通过测量电缆导体的电阻值,可以判断电缆的导体是否完好,并且可以检测是否存在接触不良或电缆绝缘破损等问题。
2. 介电强度测试介电强度测试是对电力电缆绝缘能力的评估。
通过施加高电压并观察电缆是否能够承受该电压而不发生击穿,可以判断电缆绝缘是否良好。
这种测试可以帮助检测电缆绝缘老化、破损或绝缘材料不合格等问题。
3. 局部放电检测局部放电检测可以用于发现电缆终端或接头存在的潜在故障。
通过检测终端或接头周围的局部放电信号,可以判断是否存在电缆绝缘故障或接头材料不良等问题。
4. 热红外检测热红外检测利用红外热像仪来检测电缆故障。
通过检测电缆表面的温度变化,可以找出导体接触不良、绝缘老化或电缆过载等问题。
这种非接触式检测方法可以快速定位电缆故障点,并有效地指导维修工作。
5. 测距技术测距技术可以用于检测电缆损坏和故障的位置。
通过发送电脉冲到电缆上,并根据信号的反射时间计算出电缆上的损坏位置。
这种方法可以帮助快速定位电缆老化、断线或其他物理损坏问题。
结论定期的电力电缆检测是确保电力系统安全运行的关键步骤。
通过采用直流电阻测量、介电强度测试、局部放电检测、热红外检测和测距技术等方法,可以及时发现电力电缆的潜在故障,并采取相应的维修措施,以确保电力系统的可靠性和稳定性。
电力电缆故障检验流程与解决方案电力电缆是输送电力的重要设备,但在使用过程中难免会出现故障。
及时检验电力电缆的故障,找出解决方案是确保电力系统安全运行的重要环节。
本文将介绍电力电缆故障检验的流程和解决方案。
一、电力电缆故障检验流程1. 故障确认:当电力系统出现异常,比如停电、设备故障等,需要首先确认是否与电力电缆相关。
可以通过检查电缆本体的情况、与电缆相关的设备和系统等进行初步判断。
2. 检查电缆的表面:检查电缆表面是否有明显的破损或腐蚀,如有则可能是故障原因之一。
同时检查电缆的周围环境是否符合要求,比如有无液体泄漏等。
3. 检测电缆的绝缘电阻:使用绝缘电阻测试仪,分别测量电缆的各相绝缘电阻值。
如果出现较低的绝缘电阻,则说明电缆绝缘可能被破坏。
4. 检测电缆的局部放电:使用局部放电检测仪,对电缆进行局部放电测试。
如果检测到局部放电信号,说明电缆存在故障。
5. 检测电缆的绝缘耐压:使用绝缘耐压试验仪,对电缆进行绝缘耐压试验。
如果发现有击穿现象,则说明电缆绝缘已被严重破坏。
6. 检测电缆的接地情况:检查电缆的接地电阻是否符合要求,如果接地电阻过高,则可能导致电缆的故障。
7. 分析故障原因:根据检验结果,对电缆的故障原因进行分析,包括绝缘破损、接地故障、环境影响等。
8. 制定解决方案:根据故障原因,制定相应的解决方案。
可以包括更换电缆、修复绝缘、加强接地等。
9. 实施解决方案:根据制定的解决方案,进行相应的处理。
可能需要更换电缆、进行绝缘修复、加强接地等。
10. 故障排除验证:在解决方案实施后,进行故障排除验证,确认故障是否得到解决。
二、电力电缆故障解决方案1. 绝缘破损:如果发现电缆绝缘破损,可以根据破损情况进行修复或更换。
小范围破损可以使用绝缘胶带等进行修复,大范围破损需要更换电缆。
2. 接地故障:如果发现电缆接地电阻过高,可以加强接地,增加接地电极数量或改善接地电极材料的导电性能。
3. 环境影响:如果发现环境对电缆造成影响,可以采取相应的防护措施,比如加装外护套、增加绝缘层厚度等。
电力电缆的故障分析及检测方法电力电缆作为电力传输和分配重要的组成部分,在运行过程中由于各种原因可能会出现各种故障,如导体断线、短路、漏电、绝缘老化,这些故障如果不及时发现和处理将会对电力系统的运行造成很大的影响,甚至会对人身安全构成威胁。
为了提高电力系统的可靠性和安全性,必须采取有效的故障检测和维护方法。
一、电力电缆故障的原因及表现1.导体断线故障导体断线是一种常见的电力电缆故障,其主要原因是导体材料的疲劳破裂和外力的损伤。
导体断线故障的表现主要有两种情况:(1)开路故障:电缆无法传输电力信号,导线电阻变大,电压下降,表现为电缆故障段附近的负荷失去供电。
(2)闪断故障:电缆的电路断开后又自行复位,导致电缆的电阻变化,使得电力系统的电压波动,可能引起灯泡闪烁或设备频繁重启。
2.电缆绝缘老化故障电缆绝缘老化故障是由于长期使用和环境因素等原因导致绝缘材料失效,绝缘性能下降,电场强度大,发生局部放电而造成的故障。
电缆绝缘老化故障的表现主要有:(1)漏电:因绝缘材料的老化和损伤导致电缆表面或内部出现漏电现象,可能引起安全事故。
(2)局部放电:由于绝缘材料老化,导致电场强度集中,局部电阻变大,电容增加,导致局部放电,可能会产生较高的电压和热量,对电缆绝缘材料造成损害。
3.电缆短路故障电缆短路故障是由于电线之间的接触或缠绕引起的,其表现为电路出现短路故障,会引起电源线路短路保护器动作断电。
电缆短路故障可以分为一次短路和二次短路两种情况。
电缆漏水故障通常是由电缆保护层的损伤和绝缘层内部结构被破坏导致的,如果不及时处理,有可能会导致绝缘层失效,产生较大的电气火灾隐患。
1.绝缘电阻测试绝缘电阻是指导线和导体之间的电阻值,可以反映电缆的绝缘状况。
绝缘电阻越大,绝缘性能越好。
绝缘电阻测试可以使用万用表等测试设备进行,当绝缘电阻低于一定值时,意味着电缆出现了绝缘老化或损伤。
此时需要对电缆进行维修或更换。
2.局部放电检测局部放电检测是指通过传感器采集电缆内部的局部放电信号,并通过信号分析来判断电缆绝缘状况的检测方法。
配网10KV电缆试验方法、故障与解决方案【摘要】本文介绍了电力电缆的试验方法,电缆故障测寻方法并结合电缆头故障检修实例对10kV电缆头常见故障与防范措施进行探讨分析。
【关键词】电缆线路试验;故障测寻;检修实例电力电缆作为电网中输送和分配电能的主要方式之一,起着架空线路所无法替代的重要作用;因此对电缆的接头制作工艺和检测试验要求很高。
本文详细介绍了电缆试验方法、并结合实例对故障测寻方法与防范措施进行探讨分析。
1 电力电缆的试验1.1 绝缘电阻表选择测量0.6/1kV电缆,用1000V绝缘电阻表;测量10kV及以上电缆用2500V 绝缘电阻表也可用5000V绝缘电阻表。
橡塑电缆外护套、内衬层的测量选用500V 绝缘电阻表。
1.2 电缆的试验1.2.1 检查电缆两端的相位;电缆两端的对应相相位应一致;1.2.2 电缆的绝缘电阻测试:各相间、相对地及金属屏蔽层间测量;做耐压前后均应测量电缆的绝缘电阻,前后的绝缘电阻应无明显变化1.2.3 电缆的直流电阻测试:各相间、相对金属屏蔽层间测量1.2.4 直流耐压试验和泄漏电流测试:(目前10KV电缆不做):分别在每一相上进行,对一相试验时,其他两相、屏蔽层、铠装层一起接地;试验电压可分4段均匀升压,每段停留1分钟,并读取泄漏电流,升至试验电压值后维持15分钟,读取1分钟和15分钟时的泄漏电流。
1.2.5 交流耐压试验被试品参数及试验条件:(1)试品的电容量:10kV 300mm?XLPE 5kM电缆电容量1.85uF;35kV 300mm?XLPE 1kM电缆电容量为0.19uF;(2)10kV电缆试验电压:2.5U0=22kV(国标GB50150-2006规定:10kV电缆在做交流耐压试验时,试验电压为2.5U0=21.75kV,此时的试验时间为5min或60min);35kV 电缆试验电压为52kV;(3)连续试验时间:60min ④频率调节范围:30~300Hz。
电力电缆的故障分析及检测方法电力电缆是输送电能的重要设备,但在运行中难免会出现故障。
电力电缆的故障一般分为三类:绝缘故障、电缆接头故障和电缆外包层故障。
处理故障需要实施合适的检测方法,据此本文将就电力电缆故障的检测方法进行探讨。
一、绝缘故障检测方法1、绝缘电阻测试法绝缘电阻测试法是比较常用的一种绝缘故障检测法。
它主要是利用高压直流放电器将试验电缆的一端接地,另一端接通500V或1000V直流电压(也可以根据实际情况对电压进行调整),并记录电流与电压。
如果读书在在50MΩ以上,说明绝缘没有问题。
此法的优点是简单易行,缺点在于只能检测到大面积的绝缘故障,不能检测到局部绝缘故障。
2、局部放电检测法局部放电检测法是一种常用的局部绝缘故障检测方法。
它的原理是利用放电电流产生信号,通过放大和滤波等处理得到故障信号,然后再通过分析断层发生的时间、位置、大小等综合条件来定位故障。
局部放电检测法主要适用于高压交流电缆及其附件的检测,检测结果更为可靠,但仪器昂贵,操作比较麻烦。
二、电缆接头故障检测方法电缆接头故障比较常见,如果及时发现故障,不仅可以延长电缆的使用寿命,而且可以提高电缆系统的可靠性。
电缆接头故障的检测方法包括如下:1、分接箱可视检查法通过检查分接箱外观,连接方式、接线端子、连接盘上的引线及连接板上的引线等情况来判断电缆接头的质量。
2、分接箱绝缘电阻测试法通过对接头进行高压试验,测量其绝缘阻值,从而判断接头质量。
3、分接箱局部放电检测法通过检测接头所产生的局部放电信号,来定位接头故障位置。
三、电缆外包层故障检测方法电缆外包层故障往往不易发现,如果长期不修复,很容易引起电缆系统故障。
这类故障的检测方法有以下几种:1、有线检测法通过检测电极间导通状态的变化来定位电缆外包层故障点的位置。
该方法精度高,定位准确,但是在大功率电缆上的实用性不足。
2、雷电冲击测试法利用冲击波法产生的电磁场,通过定位电缆故障处反射回来的信号来寻找故障点。