刀具角度
- 格式:doc
- 大小:104.50 KB
- 文档页数:4
十几把刀的刀锋角度有哪些选择?一、刀锋角度的重要性刀锋角度是影响刀具性能的关键因素之一。
不同的刀锋角度适用于不同的刀具和工作材料,正确选择刀锋角度有助于提高切削效率和刀具寿命。
二、常见的刀锋角度选择1. 锋角小的刀锋角度刀锋角度小于30度的刀具适用于切削硬度较高的工作材料,如金属和硬塑料。
小锋角能够集中切削力,减少切削阻力,提高切削效率。
同时,由于刀具的切削压力集中在小的刀锋区域,刀具磨损也相对较小,延长了刀具的使用寿命。
2. 锋角大的刀锋角度刀锋角度大于30度的刀具适用于切削软性材料,如木材和软塑料。
大锋角能够扩散切削力,减少切削压力,避免材料的过度压缩和变形。
此外,大锋角还能够提供更好的切削质量,减少切削表面的毛刺和破损。
3. 锋角中等的刀锋角度对于一些切削难度适中的工作材料,如一些常见的金属合金和工程塑料,中等大小的刀锋角度是较为合适的选择。
这种刀锋角度可以在保证切削力集中的同时,减少切削阻力和切削热量,并提高切削质量和刀具寿命。
4. 不同材料常用的刀锋角度除了刀具设计和加工要求外,不同工作材料的特性也会影响刀锋角度的选择。
例如,钻削金属时,常用的刀锋角度大约为118度;而钻削木材时,则常用的刀锋角度为90度,这是因为木材的纤维结构不同于金属。
5. 刀锋角度与切削力和切削质量的关系正确选择刀锋角度不仅能够降低切削力,提高切削效率,还能够改善切削质量。
合适的刀锋角度可以减少切削表面的毛刺和破损,提高切削精度和表面质量,适用于精密加工和高精度要求的工作。
总结:刀锋角度的选择是影响刀具性能的关键因素之一。
根据不同的刀具和工作材料,我们可以选择不同锋角大小的刀锋角度。
锋角小的刀锋角度适用于切削硬度较高的工作材料,锋角大的刀锋角度适用于切削软性材料,而中等大小的刀锋角度适用于一些切削难度适中的工作材料。
在选择刀锋角度时,我们也要考虑材料的特性以及刀具的设计和加工要求。
正确选择刀锋角度不仅能够提高切削效率和刀具寿命,还能够改善切削质量,满足精密加工和高精度要求的工作。
金属切削刀具是制造业中常用的工具,正确的切削角度对切削质量有着重要的影响。
在金属加工过程中,常用的五个切削角度包括:刀尖倒角角度、主偏角、副偏角、前角和后角。
一、刀尖倒角角度刀尖倒角角度是指刀具前端倒角的角度,它的大小会影响切削的刀尖强度和耐磨性。
一般来说,刀尖倒角角度越小,刀尖强度越高,耐磨性也越好。
常见的刀尖倒角角度为15度至45度不等,选用合适的刀尖倒角角度能够减小切屑厚度、改进切削刚度和提高刀具寿命。
二、主偏角主偏角又称前角,是指切削刃与工件表面的夹角。
主偏角的大小直接影响着刀具的切削力和切屑的形态。
通常情况下,主偏角越小,切削力越小,切削刚度越大。
然而,主偏角过小也容易导致刀具容易断裂和刀尖易磨损。
在实际加工中需要根据不同的工件材料和加工条件来选择合适的主偏角。
三、副偏角副偏角又称侧倾角,是指刀具刃部与切削面的夹角。
副偏角的大小影响着切屑的流动和刀具的耐磨性。
一般情况下,副偏角越小,切屑流动越顺畅,切屑的形态也更好。
但过小的副偏角容易导致刀具刃部的磨损加剧。
在选择副偏角时需要兼顾切屑形态和刀具的耐磨性。
四、前角前角是刀具刃部与工件表面接触时形成的角度,它的大小直接影响着切削时的切削力和切屑的形态。
一般情况下,前角越大,切削力越小,切屑流动也更加顺畅。
然而,过大的前角容易导致刀具刃部的磨损加快。
在实际加工中需要根据工件材料和加工条件来选择合适的前角。
五、后角后角是刀具刃部背面与工件表面形成的角度,它的大小影响着刀具刃部的强度和切削力。
一般情况下,后角越大,刀具刃部强度越高,切削力也相对较小。
然而,过大的后角会导致刃部切削过程中的摩擦增大,从而影响切削质量。
在选择后角时需要根据实际情况进行合理的选择。
总结:金属切削刀具的切削角度对切削质量和刀具寿命有着重要的影响。
正确选择刀尖倒角角度、主偏角、副偏角、前角和后角,可以有效地改善切削过程中的刀具性能,提高加工质量,降低成本,增加经济效益。
在实际加工中,需要根据具体的工件材料和加工条件来合理选择切削角度,以达到最佳的加工效果。
.角度名称含义作用应用与选择说明前角γ0 在正交平面Po内,前刀面与基面的之间夹角 1.使刀刃锋利,便于切削加工和切屑流动2.影响刀具的强度1.粗加工:小值精加工:大值2.加工塑性材料或强度、硬度较低:大值加工脆性材料或强度、硬度较高:小值3刀具材料韧性好,如高速钢:大值刀具材料脆性大,如硬质合金:小值前角越大,刀具越锋利,但强度降低,易磨损和崩刃。
前角一般为5°~20°。
后角α0 在正交平面Po内,主后刀面与切削平面之间夹角 1.影响主后刀面与工件之间的摩擦2.影响刀具的强度与前角的选择相同后角越大,车削时刀具与工件之间的摩擦越小,但强度降低,易磨损和崩刃。
后角一般为6°~12°。
主偏角Kr 在基面Pr内,主切削刃与进给运动方向在其上的投影之间夹角1.影响切削加工条件和刀具的寿命2.影响径向力的大小,如图2-10(b)所示Fp径=cos KrFD切水(切削力在水平面内的分力)1.粗加工:小值精加工:大值2.刚性差,易变形,如细长轴(90°):大值刚性好,不易变形:小值1. 主偏角越小,切削加工条件越好,刀具的寿命越长2.车刀常用的主偏角有45°、60°、75°90°,其中75°和90°最常用副偏角Krˊ在基面Pr内,副切削刃与进给运动反方向在其上的投影之间夹角1.主要影响加工表面的粗糙度,如图2-10(c)所示2.影响副切削刃与已加工表面之间的摩擦和刀具的强度1.粗加工:大值(与副?偏角选择相反)精加工:小值1. 副偏角越小,残留面积和振动越小,加工表面的粗糙度越低,表面质量越高。
但过小会增加刀具与工件的摩擦,另外,刀具的强度降低2.副偏角一般为5°~15°刃倾角λs 切削平面Ps内,主切削刃在其上的投影与基面之间夹角 1.主要控制切屑的流动方向2.影响刀尖的强度1.粗加工:λs<0精加工:λs≥0(防止切屑划伤工件)1. λs<0时,刀尖处于主切削刃的最低点,刀尖强度高,切屑流向已加工表面;λs>0时,刀尖处于主切削刃的最高点,刀尖强度低,切屑流向待加工表面2. λs一般为-5°~+5°。
⼑具标注⾓度2)后⾓αo -- 后⼑⾯与切削平⾯之间的夹⾓。
若通过选定点的切削平⾯位于楔形⼑体的实体之外,后⾓为正值;反之为负值。
3)楔⾓βo -- 前⼑⾯与主后⼑⾯之间的夹⾓。
显然有:βo + γo +αo = 90°。
在基⾯P r中测量的⾓度:4)主偏⾓k r -- 主切削刃在基⾯上的投影与假定进给⽅向之间的夹⾓。
5)副偏⾓k'r -- 副切削刃在基⾯上的投影与假定进给反⽅向之间的夹⾓。
6)⼑尖⾓εr -- 主切削刃与副切削刃在基⾯上投影之间的夹⾓。
显然有: k r+k'r +εr = 180°。
在切削平⾯P s中测量的⾓度:7)刃倾⾓λs -- 主切削刃与基⾯之间的夹⾓。
当⼑尖是主切削刃上最低点时,刃倾⾓定为负值;当⼑尖是主切削刃上最⾼点时,则刃倾⾓为正值,如图2-62 所⽰。
图2-62 刃倾⾓当λs = 0°时,主切削刃与切削速度垂直,称之为直⾓切削或正切削。
⽽λs≠ 0°的切削称为斜⾓切削或斜切削。
λs的正或负会改变切屑流出的⽅向。
在副正交平⾯中测量的⾓度8)副后⾓α'o -- 副后⼑⾯与切削平⾯之间的夹⾓;9)副前⾓γ'o -- 前⼑⾯与基⾯之间的夹⾓。
实际上,当γo、λs 、k r及k'r为已定值,且主、副切削刃处于共同的前⼑⾯时,γ'o也已被确定了。
另外,βo及εr是派⽣⾓。
因此,外圆车⼑的标注⾓度只有六个是独⽴的:γo、αo、k r、 k'r、λs与α'o,外圆表⾯的加⼯路线1粗车→半精车→精车:应⽤最⼴,满⾜IT≥IT7,▽≥0.8外圆可以加⼯2粗车→半精车→粗磨→精磨:⽤于有淬⽕要求IT≥IT6,▽≥0.16 的⿊⾊⾦属。
3粗车→半精车→精车→⾦刚⽯车:⽤于有⾊⾦属、不宜采⽤磨削加⼯的外⽤表⾯。
4.粗车→半精车→粗磨→精磨→研磨、超精加⼯、砂带磨、镜⾯磨、或抛光在2的基础上进⼀步精加⼯。
刀具的标注角度1.前角:当前面与切削平面夹角小于90度时,前角为正值,大于90度时为负值.2.后角; 当后面与基面夹角小于90度时,后角为正值,大于90度时,后角为负值。
车切基本知识一、车刀材料在切削过程中,刀具的切削部分要承受很大的压力、摩擦、冲击和很高的温度。
因此,刀具材料必须具备高硬度、高耐磨性、足够的强度和韧性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。
常用车刀材料主要有高速钢和硬质合金。
1.高速钢高速钢又称锋钢、是以钨、铬、钒、钼为主要合金元素的高合金工具钢。
高速钢淬火后的硬度为HRC63~67,其红硬温度550℃~600℃,允许的切削速度为25~30m/min。
高速钢有较高的抗弯强度和冲击韧性,可以进行铸造、锻造、焊接、热处理和切削加工,有良好的磨削性能,刃磨质量较高,故多用来制造形状复杂的刀具,如钻头、铰刀、铣刀等,亦常用作低速精加工车刀和成形车刀。
常用的高速钢牌号为W18Cr4V和W6Mo5Cr4V2两种。
2.硬质合金硬质合金是用高耐磨性和高耐热性的WC(碳化钨)、TiC(碳化钛)和Co(钴)的粉末经高压成形后再进行高温烧结而制成的,其中Co起粘结作用,硬质合金的硬度为HRA89~94(约相当于HRC74~82),有很高的红硬温度。
在800~1000℃的高温下仍能保持切削所需的硬度,硬质合金刀具切削一般钢件的切削速度可达100~300m/min,可用这种刀具进行高速切削,其缺点是韧性较差,较脆,不耐冲击,硬质合金一般制成各种形状的刀片,焊接或夹固在刀体上使用。
常用的硬质合金有钨钴和钨钛钴两大类:(1)钨钴类(YG)由碳化钨和钴组成,适用于加工铸铁、青铜等脆性材料。
常用牌号有YG3、YG6、YG8等,后面的数字表示含钴量的百分比,含钴量愈高,其承受冲击的性能就愈好。
因此,YG8常用于粗加工,YG6和YG3常用于半精加工和精加工。
(2)钨钛钴类(YT)由碳化钨、碳化钛和钴组成,加入碳化钛可以增加合金的耐磨性,可以提高合金与塑性材料的粘结温度,减少刀具磨损,也可以提高硬度;但韧性差,更脆、承受冲击的性能也较差,一般用来加工塑性材料,如各种钢材。
相贯线切割机刀具角度怎么来计算?1. 背景相贯线切割机是一种常见的金属切割设备,其刀具角度的准确计算对于保证切割质量和效率非常重要。
本文将介绍相贯线切割机刀具角度的计算方法。
2. 刀具角度定义刀具角度是指刀具切入物体的角度,通常用正切函数来表示,计算角度的基本公式为:刀具角度 = arctan(切割线长度 / 刀具高度)其中,切割线长度是指刀具在物体上切割的真实长度,刀具高度是指刀具的有效切割高度。
3. 刀具角度计算步骤以下是计算相贯线切割机刀具角度的步骤:1. 确定切割线长度:根据需要切割的形状和尺寸,在物体上标出切割的线段长度。
2. 测量刀具高度:使用测量仪器测量刀具的有效切割高度,确保准确可靠。
3. 使用计算器或计算软件,输入切割线长度和刀具高度。
4. 应用刀具角度计算公式:使用公式 `刀具角度 = arctan(切割线长度 / 刀具高度)` 计算刀具角度。
5. 获取刀具角度结果:根据计算结果,得到刀具角度的数值。
4. 注意事项在进行相贯线切割机刀具角度计算时,需要注意以下几点:- 确定切割线长度时,应根据实际需要和切割形状来确定,避免过长或过短导致切割质量下降或无法完成。
- 测量刀具高度时,应采用准确的测量方法和工具,以保证计算的准确性。
- 在计算刀具角度时,使用计算器或计算软件可以提高计算的准确性和效率。
5. 结论通过以上步骤和注意事项,我们可以准确计算出相贯线切割机刀具角度。
合理的刀具角度的选择和准确的计算,可以提高切割质量和效率,进而提升工作效果。
希望本文的介绍对于相贯线切割机刀具角度的计算有所帮助,如果有任何疑问或需要进一步了解,请随时与我们联系。
刀具角度刀尖刀具刀具工作角度是刀具在工作参考系中定义的一组角度。
在切削过程中,由于刀具安装位置和进给因素的影响,使刀具在工作角度(即刀具的实际切削角度)不同于其在静止参考系中的角度。
表2-4列出了各种不同影响因素下,车到工作角度的修正计算。
刀具几何角度与刃部参数的选择刀具切削部分的几何参数,对切削过程中的金属变形、切削力、切削温度、工件的加工质量都有显著影响。
选择合理的刀具几何参数,就是要在保证工件加工质量和刀具经济耐用度的前提下,达到提高生产率、降低生产成本的目的。
影响刀具合理几何参数选择的主要因素是工件材料、刀具材料及类型、切削用量、工艺系统钢度以及机床功率等。
图2-3 外圆车刀刀具角度刀具(1)定义刀具角度的参考系:为了定义刀具切削部分的几何角度,需选定适当组合的基准坐标平面作为参考系。
其中用于规定刀具设计、制造、刃磨和测量时几何参数的参考系称为刀具静止参考系,如图2-2所示。
规定刀具进行切削加工时几何参数的参考系称为刀具工作参考系。
刀具静止参考系的各平面名称、表示符号及定义见表2-1。
图2-2 刀具静止参考系(2)刀具角度的定义:刀具角度是刀具在静止参考系中的一组角度,其名称,表示符号及定义见表2-2。
外圆车刀刀具角度见图2-3。
表2-2 刀具角度定义角加一撇“′”以示区别,例如车刀副偏为k′r,副后角为a′o。
(3)刀具角度的换算:制造或刃磨刀具时常需在不同坐标平面间进行刀具角度换算。
各坐标平面间刀具角度的换算关系见表2 -3表2-3 刀具角度的换算关系刀具图2-1 车刀切削部分的结构要素外圆车刀的切削部分可以看作是各类刀具切削部分的基本形态。
图2-1所示是外圆车刀的切削部分,其结构要素及其定义如下:1)前刀面Ay—切下的切屑沿其流出的表面。
2)主后刀面Aa—与工件上过渡表面相对的表面。
3)副后刀面A'a—与工件上已加工表面相对的的表面。
4)主切削刀S—前刀面与主后刀面的交线,它承担主要切削工作。
前角yo作用增大前角可以减小切屑变形和摩擦阻力,使切削力、切削功率及切削时产生的热量减小。
前角过大将导致切削刃强度降低,刀头散热体积减小,致使刀具寿命降低选择时应考虑的主要因素加工一般灰铸铁时,可选yo-=5°~15°;加工铝合金时,选yo=30°~35°;用硬质合金刀具加工一般钢料时,选yo=10°~20° 1)刀具材料的抗弯强度及韧性较高时,可取较大前角。
2)工件材料的强度、硬度较低、塑性较好时,应取较大前角;加工硬脆材料应取较小前角,甚至取负前角。
3)继续切削或粗加工有硬皮的铸锻时,应取叫小前角,精加工时宜取叫大前角。
4)工艺系统刚性较差或机床功率不足时,应取较大前角。
5)成形刀具和齿轮刀具全减小齿形误差,应取小前角甚至零前角。
后角ao作用后角的主要作用是减小刀具后刀面与工件之间的摩擦。
后角过大会使到刃强度降低,并使散热条件变差,使刀具耐用度降低选择时应考虑的主要因素车刀合理后角f≤0.25mm/r时,可选ao=10°~12°;在f>0.25mm/r时,取ao=5°~8° 1)工件材料强度、硬度较高时,应取较小后角;工件材料软、粘时应取较大后角;加工脆性材料时,宜取较小后角。
2)精加工及切削厚度较小的刀具,应采用较大的后角;粗加工、强力切削、宜取较小后角。
3)工艺系统刚性较差时,应适当尖小后角。
4)定尺寸刀具,如拉刀、铰刀等,为避免重磨后刀具尺寸变化过大,宜取较小的后角。
主偏角kr作用主偏角减小,可使刀尖处强度增大且作用切削刃长度增加,有利于散热和减轻单位刀刃长度的负荷,提高刀具的寿命。
减小主偏叫4还可使工件表面残留面积高度减小。
增大主偏角,可使背向力Fp减小,进给力Ff增加,因而可降低工艺系统的变形与振动选择时应考虑的主要因素1)在工艺系统刚性允许的条件下,应采用较小的主偏角。
如系统刚性较好时(Lw/dw<6),可取kr=30°~45°;当系统刚性较差时(Lw/dw=6~12),取kr=60°~75°;车削细长轴时(Lw/dw>12),取kr90°~93°2)加工很硬的材料时,应取较小的主偏角。
1.75°内孔车刀几何角度:主偏角Kr二75。
,副偏角Kr'二15。
,前角丫0二10。
后角a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
2. 75°外圆车刀几何角度:主偏角K T二75°,副偏角KJ二15°,前角丫o二10.,后角a o二8,副后角a o二8,刃倾角入S二—5°
答案:
3.60°内孔车刀几何角度:主偏角Kr二60,副偏角Kr'二15°,前角丫0二10。
后角
a 0二8,副后角a 0'二8,刃倾角入s = — 5
答案:
4. 90°外圆车刀几何角度:主偏角Kr二90°,副偏角Kr - 15°,前角丫0二10。
后角a 0二8,副后角a 0'二8,刃倾角入s二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。
,
前角丫o二10°,后角日o二10°,副后角曰o二10°,刃倾角入S二-5°答案:
F O-P D
6. 45°端面车刀几何角度:主偏角Kr二45°,副偏角Kr'二45°,前角丫0二5后角
a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。
,。
刀具角度的基本概念:1、前角:基面和前刀面的夹角.是刀具的锋利程度.我们把铁屑流经过的面成为前刀面.2、后角:切削平面和后刀面的夹角.主要影响摩擦和刀具强度.3、主偏角:主切削刃和刀具进给方向的夹角.影响刀具的强度,和影响背向力,主偏角减小,背向力越大,机床的消耗率也越大,并且主偏角还会影响表面粗糙度.4、副偏角、副切削刃与进给方向的反方向的夹角即为副偏角.同样影响强度,摩擦,以及表面粗糙度.5、刃倾角:是控制流屑的方向.主切削刃和基面的夹角.。
第一章金属切削加工的基础知识第二节金属切削刀具1.2.1 刀具切削部分的基本定*刀具结构及其几何形状刀具分类:按工种:车刀、铣刀、刨刀、滚刀等按功能:车刀、切断刀、螺纹刀、偏刀、尖刀、镗孔刀、成形刀等刀具的形式:整体式、焊接式、机械安装式(压板压紧)切削部分在金属切削加工中,刀具虽然种类繁多,形状各不相间,但它们切削部分的几何形状与要素总是以普通外圆车刀切削部分的几何形状为基本形态。
无论刀具结构如何复杂,都是由普通外圆车刀切削部分演变或组合而成的。
(1)前刀面(Aγ),直接作用于被切金属层,并控制切屑经过时流出方向的刃面,简称前面。
(2)主后刀面(Aα)同工件的加工表面相互作用和相对着的刀面,简称后面,(3)副后刀面(Aα′)同工件已加工表面相互作用和相对着的刀面,简称副后面,(4)主切削刃(S) 前刀面与主后刀面的交线,简称主刃。
它担负着主要切削工作。
(5)副切削刃(S′) 前刀面与副后刀面的交线,简称副刃。
它配合主刃完成切削工作,并最终形成已加工表面。
(6)刀尖主切削刃与副切削刃的联接部位,或者是切削刃(刃段)之间转折的尖角过渡部分。
它是切削负荷最重、条件最恶劣的地方。
为了增加刀尖的强度与耐磨性,多数刀具都在刀尖处磨出直线或圆孤形过渡刃。
*刀具的静止参考系( Pr — Ps — Po 系—正交平面参照系)(1)静止参照系的假设条件:假定运动条件:进给量 f=0假定安装条件:刀尖与工件回转中心等高;刀杆方向与进给方向垂直。
(2)辅助平面:切削平面 Ps :过切削刃上一点,与加工表面相切的平面。
基面 Pr :过切削刃上同一点,与切削速度相垂直的平面。
正交平面 Po (主剖面):过切削刃上同一点,与切削平面和基面相垂直的平面。
辅助平面*刀具标角度的定义:刀具的标注角度是指静止状态下,在工程图上标注的刀具角度。
(下面以车刀为例介绍刀具的标注角度)1. 刀具标注前角γ0:在正交平面内测量的,前刀面与基面的夹角。
刀具几何角度的作用及选择原则答:1是前角; 2是后角; 3是副偏角; 4是刀尖角;5是主偏角; 6是副后角; 7是副前角; 8是刃倾角名称:前角作用:加大前角,刀具锋利,切削层的变形及前面摩擦阻力小,切削力和切削温度可减低,可抑制或消除积屑瘤,但前角过大,刀尖强度降低;选择原则:(1)工件材料的强度、硬度低,塑性好时,应取较大的前角;反之应取较小的前角;加工特硬材料(如淬硬钢、冷硬铸铁等)甚至可取负的前角(2)刀具材料的抗弯强度及韧性高时,可取较大的前角(3)断续切削或精加工时,应取较小的前角,但如果此时有较大的副刃倾角配合,仍可取较大的前角,以减小径向切削力(4)高速切削时,前角对切屑变形及切削力的影响较小,可取较小前角(5)工艺系统钢性差时,应取较大的前角名称:后角作用:减少刀具后面与工件的切削表面和已加工表面之间的摩擦。
前角一定时,后角愈锋利,但会减小楔角,影响刀具强度和散热面积。
选择原则:(1)精加工时,切削厚度薄,磨损主要发生在后刀面,宜取较大后角;粗加工时,切削厚度大,负荷重,前、后面均要发生磨损、宜取较小后角(2)多刃刀具切削厚度较薄,应取较大后角(3)被加工工件和刀具钢性差时,应取较小后角,以增大后刀面与工件的接触面积,减少或消除振动(4)工件材料的强度、硬度低、塑性好时,应取较大的后角,反之应取较小的后角;但对加工硬材料的负前角刀具,后角应稍大些,以便刀刃易于切入工件;(5)定尺寸刀具(如内拉刀、铰刀等)应取较小后角,以免重磨后刀具尺寸变化太大;(6)对进给运动速度较大的刀具(如螺纹车刀、铲齿车刀等),后角的选择应充分考虑到工作后角与标注后角之间的差异;(7)铲齿刀具(如成形铣刀、滚刀等)的后角要受到铲背量的限制,不能太大,但要保证侧刃后角不小于2°。
名称:主偏角作用:(1)改变主偏角的大小可以调整径向切削分力和轴向切削分力之间的比例,主偏角增大时,径向切削分力减小,轴向切削分力增大;(2)减小主偏角可减小削厚度和切削刃单位长度上的负荷;同时主切削刃工作长度和刀尖角增大,刀具的散热得到改善,但主偏角过小会使径向切削分力增加,容易引起振动。
精心整理
1.2.1刀具切削部分的基本定
*刀具结构及其几何形状
刀具分类:按工种:车刀、铣刀、刨刀、滚刀等
按功能:车刀、切断刀、螺纹刀、偏刀、尖刀、镗孔刀、成形刀等
刀具的形式:整体式、焊接式、机械安装式(压板压紧)
切削部分
????在金属切削加工中,刀具虽然种类繁多,形状各不相间,但它们切削部分的几何形状与要素总是以普通外圆车刀切削部分的
几何形状为基本形态。
无论刀具结构如何复杂,都是由普通外圆车刀切削部分演变或组合而成的。
(1)前刀面(Aγ),直接作用于被切金属层,并控制切屑经过时流出方向的刃面,简称前面。
(2)主后刀面(Aα)同工件的加工表面相互作用和相对着的刀面,简称后面,
(3)副后刀面(Aα′)同工件已加工表面相互作用和相对着的刀面,简称副后面,
(4)主切削刃(S)前刀面与主后刀面的交线,简称主刃。
它担负着主要切削工作。
(5)副切削刃(S′)前刀面与副后刀面的交线,简称副刃。
它配合主刃完成切削工作,并最终形成已加工表面。
(6)刀尖主切削刃与副切削刃的联接部位,或者是切削刃(刃段)之间转折的尖角过渡部分。
它是切削负荷最重、条件最恶劣的地方。
为了增加刀尖的强度与耐磨性,多数刀具都在刀尖处磨出直线或圆孤形过渡刃。
*刀具的静止参考系(Pr—Ps—Po系—正交平面参照系)
(1)静止参照系的假设条件:
假定运动条件:进给量f=0
假定安装条件:刀尖与工件回转中心等高;
刀杆方向与进给方向垂直。
(2)辅助平面:
切削平面Ps:过切削刃上一点,与加工表面相切的平面。
基面Pr:过切削刃上同一点,与切削速度相垂直的平面。
正交平面Po(主剖面):过切削刃上同一点,与切削平面和基面相垂直的平面。
辅助平面
*刀具标角度的定义:刀具的标注角度是指静止状态下,在工程图上标注的刀具角度。
(下面以车刀为例介绍刀具的标注角度)1.刀具标注前角γ0:在正交平面内测量的,前刀面与基面的夹角。
前角的标注
*前角的作用:前角↑切屑变形↓切削力↓刃口强度↓前刀面磨损↓导热体积↓
*刀具前角的选用:加工塑性材料选大前角
加工脆性材料、断续切削选小前角
加工硬材料选用负前角
2.刀具标注注后角α0:在正交平面内测量的,后刀面与切削面的夹角。
后角的标注
后角的作用:后角↑后刀面与加工表面间的摩擦↓后刀面磨损↓刃口强度↓导热体积↓
刀具后角的选用:粗加工选小后角
精加工选大后角
选大前角时选小后角以增大刃口强度
3.主偏角Kr:在基面内测量的,主切削刃与进给方向的夹角。
主偏角标注
4.副偏角Kr':在基面内测量的,副切削刃与进给反方向的夹角。
副偏角标注
主偏角的作用:主偏角↑切削刃工作长度↓刀尖强度↓导热体积↓径向分力↓
刀具主偏角的选用:一般为30~75°,加工细长工件采用90~93°
副偏角的作用:副偏角↑副后面与工件已加工表面摩擦↓刀尖强度↓表面粗糙度↑
刀具副偏角的选用:一般为5~20°,特殊要求可采用Kr'=0°的修光刃
5.刃倾角λS:在切削平面内测量的,主切削刃与基面的夹角。
刃倾角的标注
刃倾角的作用:
(1)影响排屑方向:λS>0°(刀尖最高)排向待加工表面;
λS<0°(刀尖最低)排向已加工表面;
λS=0°前刀面上卷曲;
(2)影响切入切出的稳定性
(3)影响背向分力大小:
刀具刃倾角的选用:精加工取λS≥0°
粗加工取λS<0°
时可适当减小前角γ0;加工高硬度难加工材料时,采用负前角(γ0<0°)。
加工细长工件
采用λS>0°
*刀具角度的选择原则:
1)粗加工塑性材料时,选择大前角γ0,小后角α0,小主偏角Kr,较小或负的刃倾角λs;加工脆性材料时可适当减小前角γ0;加工高硬度难加工材料时,采用负前角(γ0<0°)。
2)精加工时,一般选择较大后角α0,较小的前角γ0,非负的刃倾角(λs≥0°),加工细长轴时选择大主偏角Kr。
例题:
下图为外圆车削示意图,在图上标注:
(1)主运动、进给运动和背吃刀量;
(2)已加工表面、加工(过渡)表面和待加工表面;
(3)基面、主剖面和切削平面;
(4)刀具角度γ0=15°、α0=6°、Kr=55°、Kr'=45°、λS=-10°。
内圆车刀角度标注:
端面车刀角度标注:前角有正、负、零之分,前刀面到基面上方,刃口增后,如图示γo=-5°。
切断车刀角度标注:
*刀具工作角度:刀具工作参考系(Pre—Pse—Poe)刀具工作角度又称刀具切削角度:刀具实际切削条件下的实际角度。
工作参考系与静止参考系的差别:工作条件下,合成切削速度为主运动与进给运动的合成速度;而静止条件下合
成速度与切削速度是一致的。
通常情况下Vf<<Vc工作角与标注角近似相等。
如普通车削、镗孔、铣削等。
当Vf
较大时或安装误差较大时必须考虑其影响。
如:车螺纹、铲背、钻孔等。
刀具的安装条件变化也引起了参考系的
变化。
*对工作角度的影响:(1)进给对工作角度的影响
横向进给和纵向进给时:γ0e=γ0+μ,α0e=α0-μ。
工作前角增大,工作后角减小。
横向进给工作角度
纵向进给工作角度:
(2)刀尖安装高低对工作角度的影响:
车外圆刀尖安装偏高(低):工作前角增大(小),工作后角减小(大);
镗内孔刀尖安装偏高(低):工作前角减小(大),工作后角增大(小)。
可根据轴向剖面图定性判断工作角度的变化规律。
(3)刀杆中心线与进给方向不垂直时工作角度变化
1.2.2刀具材料
*刀具材料的基本性能:
1)高硬度
2)高耐热性
3)足够的强度和韧性
4)高耐磨性
5)良好的工艺性
???五个基本性能相互联系,又相互制约,应根据具体加工条件,抓主要性能,兼顾其它。
常用刀具材料的种类及应用。