_湖北省武汉市金银湖片区2018-2019学年七年级下学期数学5月月考试卷(含答案解析)
- 格式:doc
- 大小:578.30 KB
- 文档页数:17
七年级下学期5月份月考数学试题含解析一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②3.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分4.若二元一次方程组,3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为( ) A .3 B .5 C .7 D .95.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )A .4002740034x y x y -=⎧⎪⎨+=⎪⎩ B .4003440027x y x y =+⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 7.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种8.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-19.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩10.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2二、填空题11.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 12.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.13.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.14.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.15.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.17.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 19.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量单位:元/吨(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ;(2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)Pn 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和. 25.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.26.已知12x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点作直线,你有什么发现? x0 13y62【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】分析:方程组利用加减消元法求出解即可. 详解:22x y x y +⎧⎨--⎩=①=②,①+②得:2x=0, 解得:x=0,把x=0代入①得:y=2, 则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A . 【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.3.A解析:A 【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩,32332519x y ∴+=⨯+⨯=分即小颖得分为19分, 故选A . 【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.4.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=,解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.5.B解析:B 【详解】 解:把①22x y ==⎧⎨⎩代入得左边=10=右边; 把②2{1x y ==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.6.C解析:C【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x,乙的支出为47y,根据题意找出等量关系,列出方程中选出正确选项即可.【详解】设甲的年收入为x元,年支出为y元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4,∴乙的收入为23x,乙的支出为47y,根据题意列出方程组得:40024400 37x yx y-=⎧⎪⎨-=⎪⎩.故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.7.C解析:C【分析】设可以兑换m张5元的零钱,n张2元的零钱,根据零钱的总和为50元,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出结论.【详解】设可以兑换m张5元的零钱,n张2元的零钱,依题意,得:5m+2n=50,∴m=10﹣25 n.∵m,n均为非负整数,∴当n=0时,m=10;当n=5时,m=8;当n=10时,m=6;当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.9.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.10.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k,两边同除以3可得x+y=23k+=2,解得k=4,因此k的算术平方根为2.故选D.二、填空题11.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.12.320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。
班级____ 姓名_______准考证号_______密封线内不要答题一、选择题(本大题共10小题,每小题3分,共30分.)1.下面四个图形中,∠1=∠2一定成立的是 ( ) A . B . C . D .. 15)2)(3(-+-+mx n x x ,则 A .5,1=-=n m B .5,1-==n m C .5,1-=-=n m D .5,1==n m A .44° B .60°A .18cmB .21cmC .27cmD .30cm9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,则可列方程组为 ( )53第3题图A .如果b a =,那么b a =B .三角形的一个外角大于它的任何一个内角C .一个多边形最多有3个锐角D .互补的两个角一定是一个为锐角,一个为钝角 二、填空题(本大题共8小题,每空2分,共20分)11.若一个多边形的每个外角都是36°,则这个多边形的边数为____________. 12.命题“互为相反数的两个数的和为零”的逆命题_______________________. 13.已知2=+b a ,1-=ab ,则22b a +=______; )3)(3(--b a =________.14.已知6=m x ,3=n x ,则nm x -=____________, n m x x ⋅-2)(=____________.15.若不等式组⎩⎨⎧>-<-ax x 012的解集是21<x ,则a 的取值范围是____________.16.如图,一个长方体的表面展开图中四边形ABCD 是正方形,则原长方体的体积是____________.17.一次生活常识竞赛一共有25道题,答对一题得4分, 不答得0分,答错一题扣2分,小明有2题没答,竞赛 成绩要超过74分,则小明至多答错____________道题. 18.若二元一次方程组⎩⎨⎧=++=+my x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________. 三、解答题(本大题共8小题.共60分) 19.计算与化简:(10分)(1)(4分)0201420131)3(2)21()31(-+⨯+-π(2)(6分)先化简,再求值:)(5)2)(2()(2b a b b a b a b a -+-+--, 其中31-=a ,3=b .D20. 分解因式:(6分)(1)42-y (2)482432-+-x x21.(8分)⑴解方程组:⎩⎨⎧-=+-=-15335y x y x ⑵解不等式组:⎪⎩⎪⎨⎧+≤-+<-2353)1(213xx x x 并写出它的整数解.22.(本题满分6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC 的三个顶点的位置 如图所示,现将△ABC 平移后得△EDF ,使点B 的 对应点为点D ,点A 对应点为点E . (1)画出△EDF ;(2)线段BD 与AE 有何关系?_______________;(3)连接CD 、BD ,则四边形ABDC 的面积为_________.23.(6分)如图,AB ∥CD ,直线EF 分别交AB 、CD 于点G 、H ,P 为CD 上一点,连接 GP ,若∠HPG =50°,∠HGP =70°,求∠AGF 的度数.24.(8分)对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1D(1)[0.5]= ;[-2.5]= ; (2)若 410x +⎡⎤⎢⎥⎣⎦=5,求x 的取值范围25.(8分)某公司经营甲、乙两种商品,每件甲种商品进价12万元售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.26.(8分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E , 求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第_____________________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 参考答案1.B ;2.C ;3.D ;4.A ;5.D ;6.C ;7.C ;8.D ;9.B ;10.C ;11.10;12. 和是0的两个数互为相反数;13.6,()93++-b a ab ;14.2,108;15. 21-≤a ;16.12;17.2;18.2; 19.(1)6(2)ab 3,-3;20.(1)()()22-+y y (2)()243--x ;21.(1)⎪⎩⎪⎨⎧=-=521y x ,(2)31 x ≤-,-1、0、1、222.解:(1)△EDF 如图所示;(2)BD 与AE 平行且相等;(3)四边形ABDC 面积=4×3-21×2×3-21×1×2-21×1×3-21×1×1=12-3-1-23-21=12-6=6. 故答案为:6.23.∵AB ∥CD ,∴∠BGP=∠HPG=50°,∴∠BGH=∠HGP+∠BGP=50°+70°=120°. ∴∠AGF=∠BGH=120°. 24.(1)1,-3(2)根据题意得: 5≤104+x <5+1, 解得:46≤x <56, 25.解:(1)设购进甲种商品x 件,乙种商品(20-x )件,根据题意得 190≤12x+8(20-x )≤200 解得7.5≤x ≤10 ∵x 为非负整数 ∴x 取8,9,10 有三种进货方案:①购甲种商品8件,乙种商品12件;②购甲种商品9件,乙种商品11件;③购甲种商品10件,乙种商品10件。
2019学年湖北省七年级5月联考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在实数,0 ,,,中,无理数有()A、1个B、2个C、3个D、4个2. 下列各点,在第二象限的点是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)3. 下列方程中是二元一次方程的是( )A、 B、 C、 D、4. 若,则的值为()A、12B、19C、-2D、无法确定5. 已知是关于x、y的二元一次方程的一个解,则m的值是()A、2B、-2C、1D、-16. 甲、乙两仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库剩余的粮食比甲仓库剩余的粮食多30吨,若设甲仓库原来存粮吨,乙仓库原来存粮吨,则所列方程组正确的是()A、B、C、D、7. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=2∠2,则∠3的度数是()A、100°B、120°C、130°D、150°8. 如图,一个机器人从O点出发,向正东方向走3m,到达A1点,再向正北走6m到达A2点,再向正西走9m到达A3点,再向正南走12m,到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是()A.(9,12) B.(9,9) C.(9,6) D.(9,3)9. 一条进村公路修到湖边时需拐弯绕湖而过,如图,如果第一次拐弯∠A=100°,第二次拐弯∠B=160°,第三次拐弯的角是∠C,要使第三次拐弯后道路恰好与第一次拐弯之前道路平行,则∠C度数是()A.110° B.120° C.135° D.155°10. m为正整数,已知二元一次方程组有整数解,则m2的值为()A、4B、49C、4或49D、1或49二、填空题11. = ;= ;= .12. 的与7的差不小于3,用不等式表示为:.13. 已知、满足方程组,则的值为.14. 在平面直角系中,已知直线与坐标轴交于A、B (0,-5)两点,且直线与坐标轴围成的图形面积为 10,则点A的坐标为.15. 如图,在矩形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=16cm,FG=4cm,则图中阴影部分的总面积是.16. 购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需元。
2018-2019第二学期第一次月考七年级数学试题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019第二学期第一次月考七年级数学试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019第二学期第一次月考七年级数学试题(word版可编辑修改)的全部内容。
2018—2019第二学期第一次月考七年级数学试题一 选择题(1~10题每题3分,11~16题每题2分,共42分)1。
观察下面A 、B 、C 、D 四幅图案,能通过左边图案平移得到的是( )2。
下列说法不正确的是( )A 0的立方根是0 B 0的平方根是0 C 1的立方根是±1 D 4的平方根是±23。
如图,∠1和∠2是对顶角的是( )4.若∠1和∠2是同旁内角,∠1=300,则( )A ∠2=1500 B ∠2=300 C ∠2=1500或300D ∠2的大小不能确定5.如图,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=1800;④∠4=∠7.其中能判定a ∥b 的条件序号是( )A ①② B ①③ C ①④ D ③6.下列说法正确的是( )A 垂直于同一直线的两直线平行 B 过一点一定可以做一条直线的平行线 C 同位角相等 D 在同一平面内,过一点有且只有一条直线与这条直线垂直 7。
如图,PO ⊥OR ,OQ ⊥PR ,则点O 到PR 所在直线的距离是线段( )的长 A PO B RO C OQ D PQ8。
实数22,38,0,—π,16,31,0.1010010001……,无理数有( )个 A 1 B 2 C3 D 49。
2019学年七年级(下)月考数学试卷(5月份)一、选择题(每小题2分,共12分)1.下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a32.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b3.不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.4.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个5.如图,直线l1∥l2,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°6.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°二、填空题(每小题2分,共20分)7.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000003cm,这个数量用科学记数法可表示为3×10﹣n cm,则n=.8.若a x=2,a y=3,则a3x﹣2y=.9.已知:x+y=5,xy=6,则(x﹣4)(y﹣4)的值是.10.如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A =°.11.若(m﹣3)x<3﹣m的解集为x>﹣1,则m=.12.若x2+(m﹣2)x+9是一个完全平方式,则m的值是.13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.14.已知:a>b>0,且a2+b2=ab,那么的值为.15.如图,周长为a的圆上有仅一点A在数轴上,点A所表示的数为1.该圆沿着数轴向右滚动一周后A对应的点为B,且滚动中恰好经过3个整数点(不包括A、B两点),则a的取值范围为.16.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x的值或取值范围是.三、解答题:(本题满分68分)17.(12分)计算、化简:(1)﹣32+(﹣2016)0+()﹣3(2)(﹣x)8÷x3+2x3•x2﹣(﹣x2)3(3)(2x﹣3y)2﹣(y+3x)(3x﹣y)(4)(m+2n﹣1)(m﹣2n﹣1)18.(6分)因式分解:(1)x3﹣4x(2)(2m﹣n)2﹣6n(2m﹣n)+9n219.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.20.(5分)已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)221.(5分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.22.(8分)看图填空,并在括号内说明理由:∵BD平分∠ABC(已知)∴∠ABD=∠CBD()又∠CBD=∠D(已知)∴=()∴∥()∴∠ABC+=180°()又∠ABC=55°(已知)∴∠BCD=.23.(6分)如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD 相交于点H,如果∠GFH与∠BHC互补.(1)求证:∠1=∠2.(2)若∠A=80°,FG⊥AC,求∠ACB的度数.24.(8分)为了更好治理西太湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元.(1)求a、b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过47万元,并且该月要求处理西太湖的污水量不低于1860吨,则有哪几种购买方案?请指出最省钱的一种购买方案,并指出相应的费用.25.(10分)已知:如图,直线MN⊥PQ于点C,△ACB是直角三角形,且∠ACB=90°,斜边AB交直线PQ于点D,CE平分∠ACN,∠BDC的平分线交EC的延长线于点F,∠A=(1)如图1,当AB∥MN时,求∠F的度数.(2)如图2,当△ACB绕C点旋转一定的角度(即AB与MN不平行),其他条件不变,问∠F的度数是否发生改变?请说明理由.2019学年七年级(下)月考数学试卷(5月份)参考答案与试题解析一、选择题(每小题2分,共12分)1.下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a3【分析】分别利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则分别化简求出答案.【解答】解:A、2m+3n,无法计算,故此选项符合题意;B、a6÷a2=a4,正确,故此选项不符合题意;C、(a2)3=a6,正确,故此选项不符合题意;D、a•a2=a3,正确,故此选项不符合题意;故选:A.【点评】此题主要考查了同底数幂的乘除运算法则以及幂的乘方运算等知识,正确掌握运算法则是解题关键.2.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.3.不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x≥1,由②得,x>3,故不等式组的解集为:x>3.在数轴上表示为:.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【分析】先写出命题的逆命题,再对逆命题的真假进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.如图,直线l1∥l2,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°【分析】根据平行线的性质进行判断即可.【解答】解:因为l1∥l2,所以∠1=(180°﹣∠2)+∠3,可得:∠1+∠2﹣∠3=180°,故选:D.【点评】此题考查平行线的性质,关键是根据平行线的性质得出∠1=(180°﹣∠2)+∠3.6.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【分析】根据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【解答】解:正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故选:B.【点评】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.二、填空题(每小题2分,共20分)7.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000003cm,这个数量用科学记数法可表示为3×10﹣n cm,则n=7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.0000003=3×10﹣7=3×10﹣n;∴n=7,故答案为:7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.若a x=2,a y=3,则a3x﹣2y=.【分析】根据同底数幂的除法及幂的乘法与积的乘方法则,进行计算即可.【解答】解:a3x﹣2y=(a x)3÷(a y)2=8÷9=.故答案为:.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减,属于基础题,掌握运算法则是关键.9.已知:x+y=5,xy=6,则(x﹣4)(y﹣4)的值是2.【分析】根据多项式乘以多项式的法则即可求出答案.【解答】解:∵x+y=5,xy=6,∴原式=xy﹣4x﹣4y+16=xy﹣4(x+y)+16=6﹣20+16=2.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=54°.【分析】由∠ACB=90°,∠ECD=36°,求得∠ACE的度数,又由CE∥AB,即可求得∠A的度数.【解答】解:∵∠ECD=36°,∠ACB=90°,∴∠ACD=90°,∴∠ACE=∠ACD﹣∠ECD=90°﹣36°=54°,∵CE∥AB,∴∠A=∠ACE=54°.故答案为:54°.【点评】此题考查了平行线的性质.解题的关键是注意数形结合思想的应用.11.若(m﹣3)x<3﹣m的解集为x>﹣1,则m=小于3.【分析】根据已知得出m﹣3<0,求出不等式的解集即可.【解答】解:∵(m﹣3)x<3﹣m的解集为x>﹣1,∴m﹣3<0,解得:m<3,故答案为:小于3.【点评】本题考查了解一元一次不等式,能根据已知得出关于m的不等式是解此题的关键.12.若x2+(m﹣2)x+9是一个完全平方式,则m的值是8或﹣4.【分析】根据完全平方公式得到x2+(m﹣2)x+9=(x±3)2,而(x±3)2═x2±6x+9,则m﹣2=±6,然后解两个方程即可得到m的值.【解答】解:∵x2+(m﹣2)x+9是一个完全平方式,∴x2+(m﹣2)x+9=(x±3)2,而(x±3)2═x2±6x+9,∴m﹣2=±6,∴m=8或m=﹣4.故答案为8或﹣4.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体代入的思想运用.13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.【分析】设诗句中谈到的鸦为x只,树为y棵,利用“三只栖一树,五只没去处,五只栖一树,闲了一棵树”分别得出方程:x=3y+5,x=5(y﹣1)进而求出即可.【解答】解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,据题意列出等量关系式是完成本题的关键.14.已知:a>b>0,且a2+b2=ab,那么的值为﹣2.【分析】条件a2+b2=ab可转化为3a2﹣10ab+3b2=0,分解因式可得到a和b之间的倍数关系,再代入求值即可.【解答】解:∵a2+b2=ab,∴3a2﹣10ab+3b2=0,∴(a﹣3b)(3a﹣b)=0,∴a=3b或b=3a(舍),当a=3b时,===﹣2,故答案为:﹣2.【点评】本题主要考查因式分解的应用,由条件得出a、b之间的倍数关系是解题的关键.15.如图,周长为a的圆上有仅一点A在数轴上,点A所表示的数为1.该圆沿着数轴向右滚动一周后A对应的点为B,且滚动中恰好经过3个整数点(不包括A、B两点),则a的取值范围为3<a≤4.【分析】由于圆的周长为a,点A所表示的数为1,根据数轴的性质,可得该圆沿着数轴向右滚动一周后A对应的点B表示的实数为a+1,由滚动中恰好经过3个整数点(不包括A、B两点),可知4<a+1≤5,据此求出a的取值范围.【解答】解:∵圆的周长为a,点A所表示的数为1,该圆沿着数轴向右滚动一周后A对应的点为B,∴点B到原点的距离为a+1,∵滚动中恰好经过3个整数点(不包括A、B两点),∴4<a+1≤5,∴3<a≤4.故答案为3<a≤4.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.16.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x的值或取值范围是0<x≤或x=2.【分析】由题意可得当0<x≤△AQM是直角三角形,当<x<2时△AQM是锐角三角形,当x =2时,△AQM是直角三角形,当2<x<3时△AQM是钝角三角形.【解答】解:当点P在AB上时,点Q在AD上时,此时△APQ为直角三角形,则0<x≤;当点P在BC上时,点Q在AD上时,此时△APQ为锐角三角形,则<x<2;当点P在C处,此时点Q在D处,此时△APQ为直角三角形,则x=2时;当点P在CD上时,点Q在DC上时,此时△APQ为钝角三角形,则2<x<3.故答案是:0<x≤或x=2.【点评】本题主要考查矩形的性质和列代数式的知识点,解答本题的关键是熟练掌握矩形的性质,还要熟练掌握三角形形状的判断,此题难度一般.三、解答题:(本题满分68分)17.(12分)计算、化简:(1)﹣32+(﹣2016)0+()﹣3(2)(﹣x)8÷x3+2x3•x2﹣(﹣x2)3(3)(2x﹣3y)2﹣(y+3x)(3x﹣y)(4)(m+2n﹣1)(m﹣2n﹣1)【分析】(1)先计算乘方,零指数幂和负整数指数幂,再计算加减可得;(2)根据整式的混合运算顺序和运算法则计算可得;(3)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=﹣9+1+8=0;(2)原式=x8÷x3+2x5+x6=x5+2x5+x6=3x5+x6;(3)原式=4x2﹣12xy+9y2﹣(9x2﹣y2)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2;(4)原式=[(m﹣1)+2n][(m﹣1)﹣2n]=(m﹣1)2﹣4n2=m2﹣2m+1﹣4n2.【点评】本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式及实数的有关运算法则.18.(6分)因式分解:(1)x3﹣4x(2)(2m﹣n)2﹣6n(2m﹣n)+9n2【分析】(1)先提取公因式,再利用平方差公式;(2)先利用完全平方公式,再提取公因式.【解答】解:(1)原式=x(x2﹣4)=x(x+2)(x﹣2);(2)原式=[(2m﹣n)﹣3n]2=(2m﹣4n)2=4(m﹣2n)2.【点评】本题考查了多项式的因式分解.掌握因式分解的完全平方公式和平方差公式是解决本题的关键.19.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.【分析】(1)整理后①+②得出3x=7,求出x,把x的值代入①求出y即可;(2)先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:(1)整理得:,①+②得:3x=7,解得:x=,把x=代入①得:+5y=0,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<3,解不等式②得:x≥1,∴不等式组的解集为1≤x<3,∴不等式组的整数解为1,2.【点评】本题考查了解二元一次方程组,解一元一次不等式组,不等式组的整数解的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(5分)已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)2【分析】(1)先根据多项式乘以多项式法则展开,再合并同类项,最后求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)(x2+mx+1)(x2﹣2x+n)=x4﹣2x3+nx2+mx3﹣2mx2+mnx+x2﹣2x+n=x4+(﹣2+m)x3+(n﹣2m+1)x2+(mn﹣2)x+n,∵(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项,∴﹣2+m=0,n﹣2m+1=0,解得:m=2,n=3;(2)2n2+(2m+n)(m﹣n)﹣(m﹣n)2=2n2+2m2﹣2mn+mn﹣n2﹣m2+2mn﹣n2=m2+mn,当m=2,n=3时,原式=4+6=10.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.(5分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.【分析】(1)根据方程组,可以用关于a的代数式表示出x、y,然后根据x<y<0,可以求得a的取值范围;(2)根据(1)中a的取值范围可以对|a|﹣|a+3|进行化简.【解答】解:(1)解得,,∵x<y<0,∴解得,a<﹣3,即a的取值范围是a<﹣3;(2)∵a<﹣3,∴a+3<0,∴|a|﹣|a+3|=﹣a+a+3=3.【点评】本题考查二元一次方程组组的解,解题的关键是明确题意,找出所求问题需要的条件.22.(8分)看图填空,并在括号内说明理由:∵BD平分∠ABC(已知)∴∠ABD=∠CBD(角平分线定义)又∠CBD=∠D(已知)∴∠ABD=∠D(等量代换)∴AB∥CD(内错角相等两直线平行)∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)又∠ABC=55°(已知)∴∠BCD=125°.【分析】由BD为角平分线,利用角平分线定义得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与CD平行,利用两直线平行同旁内角互补即可求出所求角的度数.【解答】解:∵BD平分∠ABC(已知)∴∠ABD=∠CBD(角平分线定义)又∠CBD=∠D(已知)∴∠ABD=∠D(等量代换)∴AB∥CD(内错角相等两直线平行)∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)又∠ABC=55°(已知)∴∠BCD=125°.故答案为:角平分线定义;∠ABD;∠D;等量代换;AB;CD;内错角相等两直线平行;∠BCD;两直线平行同旁内角互补;125°.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(6分)如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD 相交于点H,如果∠GFH与∠BHC互补.(1)求证:∠1=∠2.(2)若∠A=80°,FG⊥AC,求∠ACB的度数.【分析】(1)根据已知条件得到∠GFH+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,求出∠2=∠ABD,等量代换即可得到结论;(2)根据三角形的内角和和角平分线的定义即可得到结论.【解答】(1)证明:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;(2)∵∠A=80°,FG⊥AC,∴∠1=90°﹣80°=10°,∴∠2=∠1=10°,∵BD平分∠ABC,∴∠ABC=20°,∴∠ACB=180°﹣∠A﹣∠ABC=80°.【点评】本题考查了平行线的性质和判定,角平分线定义,对顶角相等的应用,三角形内角和,熟练掌握平行线的判定和性质是解题的关键.24.(8分)为了更好治理西太湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元.(1)求a、b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过47万元,并且该月要求处理西太湖的污水量不低于1860吨,则有哪几种购买方案?请指出最省钱的一种购买方案,并指出相应的费用.【分析】(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元可列方程组求解.(2)设购买A型号设备x台,则B型为(10﹣x)台,根据使治污公司购买污水处理设备的资金不超过47万元,利用每月要求处理污水量不低于1860吨,可列不等式组求解.【解答】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,解得:1≤x≤3.5∴x为1、2,3.购买方案:①A型设备1台,B型设备9台;②A型设备2台,B型设备8台;③A型设备3台,B型设备7台∴为了节约资金,应选购A型设备1台,B型设备9台,其费用=6+4×9=42万.【点评】本题考查了一元一次不等式组的应用,根据题意列出方程组或不等式是解题的关键.25.(10分)已知:如图,直线MN⊥PQ于点C,△ACB是直角三角形,且∠ACB=90°,斜边AB交直线PQ于点D,CE平分∠ACN,∠BDC的平分线交EC的延长线于点F,∠A=36°.(1)如图1,当AB ∥MN 时,求∠F 的度数.(2)如图2,当△ACB 绕C 点旋转一定的角度(即AB 与MN 不平行),其他条件不变,问∠F 的度数是否发生改变?请说明理由.【分析】(1)由AB ∥MN ,直线MN ⊥PQ ,CE 平分∠ACN ,DF 平分∠CDB ,易求得∠DCE 与∠CDF 的度数,然后利用三角形外角的性质,求得∠F 的度数.(2)由题意可得∠DCE =∠ACD +∠ACE =∠ACD +∠ACN ,∠CDF =∠BDC =∠A +∠ACD ,则可得∠F =∠DCE ﹣∠CDF =∠ACD +∠ACN ﹣∠A ﹣∠ACD =(∠ACN +∠ACD )﹣∠A ,继而求得答案.【解答】解:(1)∵AB ∥MN ,直线MN ⊥PQ ,∴PQ ⊥AB ,∴∠BDC =∠DCN =90°,∵∠ACN =∠A =36°,CE 平分∠ACN ,∴∠ACE =18°,∠ACD =90°﹣∠A =54°,∴∠DCE =∠ACD +○ACE =72°,∵DF 平分∠CDB ,∴∠CDF =45°,∴∠F =∠DCE ﹣∠CDF =27°;(2)不发生改变.理由:∵CE 是∠ACN 的平分线,∴∠ACE =∠ACN ,∴∠DCE =∠ACD +∠ACE =∠ACD +∠ACN ,∵∠BDC=∠A+∠ACD,DF平分∠BDC,∴∠CDF=∠BDC=∠A+∠ACD,∴∠F=∠DCE﹣∠CDF=∠ACD+∠ACN﹣∠A﹣∠ACD=(∠ACN+∠ACD)﹣∠A=×90°﹣×36°=27°.【点评】此题考查了平行线的性质、角平分线的定义以及三角形外角的性质.此题难度适中,注意掌握数形结合思想的应用.。
2018-2019学年第二学期七年级月考数学试题一、选择题(每题3分,共30分) 1、方程23=-ay x 的一个解是⎩⎨⎧==12y x ,那么a 的值为( )A.3B .4C .5D .62.下列命题中,是公理的是( )A. 同角的补角相等B. 过直线外一点有且只有一条直线与已知直线平行C. 内错角相等,两直线平行D. 三角形的内角和等于180º3、已知方程组则的值为( )A .-1B .2C .3D .94、下列图形中,由AB ∥CD 能得到∠1=∠2的是( )5、二元一次方程1532=+y x 的非负整数解的个数是( ) A .1个 B .2个 C .3个 D .4个6、若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程632=+y x 的解,则k 的值为( ) A .34- B .43- C .34 D .4324,25,x y x y +=⎧⎨+=⎩x y +7、甲、乙、丙、丁四位同学猜测自己的数学成绩, 甲说:“如果我得优,那么乙也得优”; 乙说:“如果我得优,那么丙也得优”; 丙说:“如果我得优,那么丁也得优”;大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优( ) A. 甲 B. 乙 C. 丙 D. 丁8、如图,用12块相同的小长方形瓷砖拼成一个大长方形,则每个小长方形瓷砖的面积是( )A .175 cm 2B .300 cm 2C .375 cm 2D .336 cm 29、如图,直线,的交点坐标可以看做下列方程组的解的是( )A 、⎩⎨⎧=-=+2262y x y x B 、C 、⎩⎨⎧=+-=-6222y x y xD 、⎩⎨⎧=--=-2222y x y x10、如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( ) A 、︒=∠+∠+∠180γβα B 、︒=∠+∠-∠180γβαC 、︒=∠-∠+∠180γβαD 、︒=∠+∠+∠270γβα1l 2l ⎩⎨⎧-=+-=221x y xy二、填空题(每题3分,共15分)11、把命题“直角三角形的两锐角互余”可以改写成“如果_______________________,那么_______________________.12、已知二元一次方程532=-y x ,用含x 的式子表示y ,则y =____________ 13、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在'D 、'C 位置,若︒=∠65EFB ,则'AED ∠ ___________第13题 第14题14、如图,︒=∠98BDC ,︒=∠38C ,︒=∠23B ,则A ∠的度数是__________15、解方程组⎩⎨⎧=--=+872y cx by ax 时,甲正确解得⎩⎨⎧-==23y x ,乙因把c 写错解得⎩⎨⎧=-=22y x ,则=+-c b a三、解答题(共8题,总计55分) 16、(6分)解下列方程组:(1)⎩⎨⎧-=+=-23442y x y x (2)⎪⎩⎪⎨⎧=-+-=-13213241y x x y17、(5分)补全下列证明:A DB C已知:如图,AD ∥BC ,AB ∥CD. 求证:∠A =∠C ,∠B =∠D证明:∵AD ∥BC ,AB ∥CD ( )∴_________________,∠B +∠C =180°( ) ∴∠A =180°-∠B ,∠C =180°-∠B ( ) ∴∠A =∠C ( ) 同理,可证∠B =∠D18、(6分)某商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?19、(6分)已知:如图,在△ABC 中,BD 平分∠ABC ,交AC 于点D ,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,求∠AED 的度数.20、(6分)如右图所示,︒=∠+∠180APD BAP ,21∠=∠. 求证:F E ∠=∠.EDA21、(10分)慢车和一快车沿相同路线从A 地到相距120千米的B 地,所行地路程与时间的函数图象如图所示.试根据图象,回答下列问题:(1)慢车比快车早出发 小时,快车比慢车少用 小时到达B 地; (2)根据图象分别求出慢车和快车路程与时间的函数表达式. (3)快车用了多少时间追上慢车?此时相距A 地多少千米?22、(7分)阅读理解:解方程组⎪⎪⎩⎪⎪⎨⎧=-=+1412723yxy x 时,如果设m x =1,n y =1,则原方程组可变形为关于m ,n 的方程组⎩⎨⎧=-=+142723n m n m ,解这个方程组得到它的解为⎩⎨⎧-==45n m ,由51=x,41-=y ,求得原方程组的解为⎪⎪⎩⎪⎪⎨⎧-==4151y x ,利用上述方法解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+13231125yxyx23、(9分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图1所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系?请写出解答过程.(2)合作交流,“创新小组”受此问题的启发:如图2所示,分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F ,那么∠A 与∠F 之间有何数量关系?请写出解答过程.(3)新知应用,利用上述结论,解决下列问题:如图2,在ABC ∆中,BF 和CF 分别是外角∠CBD 和∠BCE 的平分线,交于点F ,当︒=∠30A 时,=∠F _________ABDEC 图1ABDEC 图2 F。
2018-2019学年湖北省武汉市华中师大一附中七年级(下)月考数学试卷(5月份)一、选择题(共10小题,每小题3分,共30分)1.的平方根是()A.B.C.D.2.点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,则点C坐标是()A.(2,2)B.(2,﹣2)C.(﹣2,2)D.(﹣2,﹣2)3.在平面直角坐标系中,P(,﹣)在第()象限.A.一B.二C.三D.四4.已知关于x、y的二元一次方程组中x=﹣4,则k的值为()A.﹣12B.12C.﹣3D.35.若实数a、b满足b=+4,则a+的值为()A.1或3B.3C.1D.56.下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是()A.(1)B.(2)(3)C.(4)D.(1)(4)7.如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D.∠BOQ =30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有()A.4个B.5个C.6个D.7个8.若的方程组的解,则关于x、y的方程组的解为()A.B.C.D.9.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)10.如图,直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(5,3)的点的个数是()A.2B.3C.4D.5二、填空题(本大题共6个小题,每小题3分,共18分)11.如果(x﹣2)2=9,则x=.12.三个实数2、、从小到大的顺序是(用“<”连接)13.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC 为度.14.如图,平面直角坐标系中的图案是由五个边长为1的正方形组成的.A(a,0),B(3,3),连接AB的线段将图案的面积分成相等的两部分,则a的值是.。
南湖中学2018~2019学年度下学期七年级数学五月月考数学试题一、选择题(共10小题,每小题3分,共30分) 1.-8的立方根是( ) A .2B .±2C .-2D .-4 2.点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0B .y >0C .y ≥0D .y ≤03.下列结论正确的是( ) A .无限小数都是无理数B .实数可以分为正实数和负实数C .无理数包括正无理数、零和负无理数D .正实数包括正有理数和正无理数 4.如图,直线AB 与CD 相交于点O ,∠COE =2∠BOE .若∠AOC =120°,则∠DOE ( )A .135°B .140°C .145°D .150°5.如图是童威画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼”,请问嘴的位置用坐标表示为( ) A .(2,1)B .(1,2)C .(3,1)D .(2,2)6.若a >b ,则下列不等式变形一定正确的是( ) A .ac 2>bc 2B .1>ba C .2a -c >2b -c D .-ca <-cb7.一元一次不等式组⎪⎩⎪⎨⎧≥-+->+04)3(2131x x x 的最小整数解是( )A .-1B .0C .1D .28.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .⎩⎨⎧=+=-9018x y x yB .⎩⎨⎧=+=-90218x y x yC .⎩⎨⎧==-x y x y 218D .⎩⎨⎧=+=-90218x y y x9.联欢会上,墙上挂着两串礼物,A 、B 、C 、D 、E 如图所示,每次从某一串的最下面摘一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有( )种不同的摘法 A .6种B .8种C .10种D .15种10.关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧++>++>++a x a x x x )1(343150312有四个整数解,则a 的取值范围是( )A .273<<a B .273<≤a C .273≤<a D .273≤≤a 二、填空题(本大题共6个小题,每小题3分,共18分) 11.174-_________0(填“>”“<”或“=”)12.若03)1(2≤-+m x m 是关于x 的一元一次不等式,则m 的值为___________13.若方程组⎩⎨⎧=++=+3212y x my x 中,若未知数x 、y 满足x +y >0,则m 的取值范围是___________14.点O 在直线AB 上,射线OC 垂直于射线OD .若∠AOC =35°,则∠BOD 的度数是_____ 15.已知点A (3a -6,a +4)、B (-3,2),且AB ∥y 轴,点P 为直线AB 上一点,且P A =4PB ,则点P 的坐标为___________________16.若x +y +z =15,-3x -y +z =-25,x 、y 、z 皆为非负数.若N =5x +4y +2z ,则N 的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)(1) 计算:32825)3(-+- (2) 解方程:(x -1)2-121=018.(本题8分)(1) 用代入法解方程组:⎩⎨⎧=-=-14833y x y x(2) 解不等式组,并把解集分别表示在数轴上:⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(31519.(本题8分)如图,点D 、E 、F 分别在线段AB 、BC 、AC 上,连接DE 、EF 、DM 平分ADE 交EF 于点M ,∠1+∠2=180°,求证:∠B =∠BED 证明:∵∠1+∠2=180°(已知) 又∵∠1+∠BEM =180°(邻补角的定义) ∴∠2=∠BEM ( ) ∴DM ∥________(同位角相等,两直线平行) ∴∠ADM =∠B (两直线平行,同位角相等)∠MDE =∠BED ( ) 又∵DM 平分∠ADE (已知) ∴∠ADM =∠MDE (角平分线定义)∴∠B =∠BED ( )20.(本题8分)已知关于x 、y 的方程组⎩⎨⎧+=+=-5732m y x m y x 的解满足不等式组⎩⎨⎧->+≤+13423y x y x ,求满足条件的m 的整数解21.(本题8分)如图,A (-1,4)、B (-3,1)、C (1,0) (1) 求△ABC 的面积(2) 当线段AB 向右平移2个单位长度,求平移后的线段与y 轴交点坐标(3) 将线段AB 沿水平方向平移至A 1B 1,速度为1个单位/秒,__________秒钟后△A 1B 1O 与△ABC 的面积相等22.(本题10分)为了迎接军运会,武汉市公交总公司计划购买A 型和B 型两种环保节能公交车10辆,已知一辆A 型公交车与一辆B 型公交车售价之比为2∶3,每辆B 型车的售价比每辆A 型车的2倍少60万元(1) 求购买两种型号的公交车每辆各需多少万元?(2) 预计在该线路上A 型和B 型公交车每辆年均载客量分别为50万人次和80万人次,若购买A 型和B 型公交车的总费用不超过1500万,且确保这10辆公交车在该线路上的年均载客量综合不少于590万人次,则有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(本题10分)已知直线AB ∥CD(1) 如图1,直接写出∠B 、∠E 、∠C 的数量关系___________________如图2,直接写出∠A 、∠E 、∠F 、∠D 的数量关系__________________________(2) 如图3,AH 平分∠BAE ,FH 平分∠EFD .若∠AEF =80°,求∠AHF 和∠FDC 满足的数量关系(3) 如图4,若∠BAD =β,且BC ⊥CD ,点Q 在直线BC 上运动(不含B 、C ).已知AM 平分∠BAQ ,QN 平分∠AQC ,请直接写出∠BAM 与∠NQC 满足的数量关系(用含有β的式子表示)24.(本题12分)若a 、b 、c 满足0)(|2|42=-++--+-b c a a b a ,且A (-a ,0)、B (0,a )、C (c ,b )(1) 如图1,在y 轴负半轴上有一点E .若△ACE 的面积为18,求点E 的坐标(2) 若在平面直角坐标系上存在一点M ,M 的坐标为(m ,-2m ),满足14≤S △ABM ≤26,求m 的取值范围(3) 若点P 从原点出发,以每秒1个单位的速度向x 轴正半轴运动,同时点Q 从原点出发,以每秒3个单位的速度向y 轴负半轴运动,t 秒后,直线PQ 与直线AC 相交于点H .若AC ∶CH =2,求t 的值。
2018-2019学度湖北武汉初一5月六校联考数学试题数学试题【一】选择题〔每题3分,共30分〕 1、25的平方根是〔〕 A 、5B 、±5C2、如图1所示,以下能推出AD ∥BC 的条件是〔〕 A 、∠EAD=∠DB 、∠B=∠DC 、∠B+∠C=180°D 、∠EAD=∠B317,0、1010010001……〔相邻两个1之间依次多一个0〕其中是无理数的个数有〔〕A 、4个B 、3个C 、2个D 、1个4、点P 〔m+3,m+1〕在x 轴上,那么点P 的坐标为〔〕 A 、〔2,0〕B 、〔0,-2〕C 、〔4,0〕D 、〔0,-4〕5、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用〔-40,-30〕表示,那么〔10,20〕表示的位置是〔〕A 、点AB 、点BC 、点CD 、点D6、方程组106mx y x y +=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,那么m 的值是〔〕 A 、3B 、-3C 、2D 、-27、根据市场调查,某种消毒液的大瓶装〔500g 〕和小瓶装〔250g 〕两种产品的销售数量比为2:5,,每天生产这种消毒液22、5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?设应该分装大小瓶两种产品x 瓶、y 瓶,那么可用二元一次方程组表示题中的数量关系为〔〕A 、5250025022500000y xx y =⎧⎨+=⎩B 、:2:550025022.5x y x y =⎧⎨+=⎩ C 、:5:250025022.5x y x y =⎧⎨+=⎩D 、:2:550025022500000x y x y =⎧⎨+=⎩如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,那么∠BCE 等于〔〕 A 、23°B 、16°C 、20°D 、26°9、将一组整数按如下图的规律排列下去、假设有序数对〔n ,m 〕表示第n 排,从左到右第m 个数,如〔4,2〕表示的数为8,那么〔7,4〕表示的数是〔〕A 、32B 、24C 、25D 、-25....................10-98-76-54-32-110、如图,AB ⊥AC ,CD 平分∠ACB ,BE 平分∠ABC ,AG ∥BC ,AG ⊥BG 。
七年级(下)月考数学试卷(5月份)一、选择题:(本大题共有10小题,每小题3分,共30分)1.下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a62.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>03.甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米4.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或85.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣46.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.连接三角形两边中点的线段7.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.8.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0 B.x>2 C.x<0 D.x<29.如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+∠E﹣∠C=180°C.∠B+∠C﹣∠E=180°D.∠C+∠E﹣∠B=180°10.方程5x+3y=54共有()组正整数解.A.2 B.3 C.4 D.5二、填空题:(本大题共10小题,每空2分,共24分)11.一个n边形的内角和是1260°,那么n=.12.已知m x=2,m y=4,则m x+2y=.13.如果a<b.那么3﹣2a3﹣2b.(用不等号连接)14.计算:(﹣2x3y)•(﹣x2y2)=.(x﹣1)(x+1)(x2+1)=.15.不等式3x﹣9>0的解集为,不等式14﹣2x>6的解集为.16.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为.17.关于x、y的方程组,则x+y的值为.18.4根小木棒的长度分别为2cm、3cm、4cm和5cm.用其中3根搭三角形,可以搭出不同的三角形.19.若m2+n2﹣6n+4m+13=0,m2﹣n2=.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.三、解答题:(本大题共9小题,共46分,解答时应写出必要的计算过程、推演步骤或文字说明).21.计算:(1)(﹣a)2•(a2)2÷a3(2)(x+2)(4x﹣2)+(2x﹣1)(x﹣4)22.把下列各式分解因式:(1)2x2﹣8xy+8y2(2)4x3﹣4x2y﹣(x﹣y)23.解方程组:(1)(2).24.代数式的值不小于的值,在数轴上表示出x的取值范围并求出x的最大整数值.25.解不等式组:.26.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.27.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.28.为了科学使用电力资源,我市对居民用电实行“峰谷”计费:8:00~21:00为峰电价,每千瓦时0.56元;其余时间为谷电价,每千瓦时0.28元,而不实行“峰谷”计费的电价为每千瓦时0.52元.小丽家某月共用电200千瓦时.(1)若不按“峰谷”计费的方法,小丽家该月原来应缴电费元;(2)若该月共缴电费95.2元,求小丽家使用“峰电”与“谷电”各多少千瓦时?(3)当峰时用电量小于总用电量的几分之几时,使用“峰谷”计费法比原来的方法合算?29.如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF 的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF=.(仅填结果)参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分)1.下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.解答:解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D点评:此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.2.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0考点:在数轴上表示不等式的解集.分析:根据在数轴上表示不等式解集的方法进行解答即可.解答:解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选A.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心原点的区别是解答此题的关键.3.甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00 000 008=8×10﹣8,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或8考点:等腰三角形的性质;三角形三边关系.分析:因为腰长没有明确,所以分①2是腰长,②3是腰长两种情况求解.解答:解:①2是腰长时,能组成三角形,周长=2+2+3=7,②3是腰长时,能组成三角形,周长=3+3+2=8,所以,它的周长是7或8.故选:D.点评:本题考查了等腰三角形的性质,易错点为要分情况讨论求解.5.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4考点:因式分解的意义.分析:根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.解答:解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.点评:此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.6.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.连接三角形两边中点的线段考点:三角形的角平分线、中线和高;三角形的面积.分析:根据等底等高的三角形的面积相等解答.解答:解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选:A.点评:本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.7.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设小刚的弹珠数为x颗,小龙的弹珠数为y颗,根据题意,列方程组即可.解答:解:设小刚的弹珠数为x颗,小龙的弹珠数为y颗,由题意得,x+y=10,x+y=10化简得,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.8.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0 B.x>2 C.x<0 D.x<2考点:不等式的解集.分析:首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法;大大取大可确定另一个不等式的解集,进而选出答案.解答:解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1,故选:A.点评:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.9.如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+∠E﹣∠C=180°C.∠B+∠C﹣∠E=180°D.∠C+∠E﹣∠B=180°考点:平行线的性质.分析:过点E作EF∥AB,根据两直线平行,同旁内角互补表示出∠1,两直线平行,内错角相等表示出∠2,再根据∠E=∠1+∠2整理即可得解.解答:解:如图,过点E作EF∥AB,则∠1=180°﹣∠B,∵AB∥CD,∴EF∥CD,∴∠2=∠C,∵∠1+∠2=∠E,∴180°﹣∠B+∠C=∠E,∴∠B+∠E﹣∠C=180°.故选B.点评:本题考查了平行线的性质,此类题目,过拐点作辅助线是解题的关键.10.方程5x+3y=54共有()组正整数解.A.2 B.3 C.4 D.5考点:解二元一次方程.分析:求出y=18﹣x,取3的倍数即可得出答案.解答:解:5x+3y=54y=18﹣x,共有3组正整数解:是,,.故选B.点评:本题考查了二元一次方程的解的应用,主要考查学生的理解能力和计算能力.二、填空题:(本大题共10小题,每空2分,共24分)11.一个n边形的内角和是1260°,那么n=9.考点:多边形内角与外角.分析:根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.解答:解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.点评:此题主要考查了多边形的内角和公式,关键是掌握内角和公式.12.已知m x=2,m y=4,则m x+2y=32.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积的乘方和幂的乘方的运算法则求解即可.解答:解:∵m x=2,m y=4,∴m x+2y=m x(m y)2=2×16=32.故答案为:32.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.13.如果a<b.那么3﹣2a>3﹣2b.(用不等号连接)考点:不等式的性质.分析:根据不等式的性质3,可得﹣2a>﹣2b,根据不等式的性质1,可得3﹣2a与3﹣2b的大小关系.解答:解:∵a<b,两边同乘﹣2得:﹣2a>﹣2b,不等式两边同加3得:3﹣2a>3﹣2b,故答案为:>.点评:本题考查了不等式的性质,注意计算顺序,先根据不等式的性质3,两边同乘﹣2,在根据不等式的性质1,不等式两边同加3.14.计算:(﹣2x3y)•(﹣x2y2)=2x5y3.(x﹣1)(x+1)(x2+1)=(x4﹣1).考点:平方差公式;单项式乘单项式.分析:利用单项式的乘法法则进行运算即可;两次运用平方差公式即可求得答案.解答:解:(﹣2x3y)•(﹣x2y2)=2x5y3;(x﹣1)(x+1)(x2+1)=(x2﹣1)(x2+1)=(x4﹣1).故答案为:2x5y3、(x4﹣1).点评:本题考查了平方差公式及单项式的乘法,属于基础运算,解题的关键是牢记平方差公式和单项式乘法的运算法则,难度较小.15.不等式3x﹣9>0的解集为x>3,不等式14﹣2x>6的解集为x<4.考点:解一元一次不等式.分析:先移项,然后将系数化为1,可得出不等式的解集.解答:解:3x﹣9>0,移项得:3x>9,系数化为1可得:x>3;14﹣2x>6,移项得:2x<8,系数化为1得:x<4.故答案为:x>3,x<4.点评:本题考查了解一元一次不等式的知识,解答本题的关键是掌握解一元一次不等式的步骤.16.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为4.考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,令一次项系数为0即可求出k的值.解答:解:(x+k)(x﹣4)=x2+(k﹣4)x﹣4k,∴k﹣4=0,即k=4.故答案为:4.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.17.关于x、y的方程组,则x+y的值为﹣1.考点:解二元一次方程组.分析:方程组的两个方程相加,再两边都除以3,即可求出答案.解答:解:,①+②得:3x+3y=﹣3,x+y=﹣1,故答案为:﹣1.点评:本题考查了解二元一次方程组的应用,主要考查学生能否选择适当的方法求出结果,题目比较好,难度适中.18.4根小木棒的长度分别为2cm、3cm、4cm和5cm.用其中3根搭三角形,可以搭出3不同的三角形.考点:三角形三边关系.分析:先写出不同的分组,再根据三角形的任意两边之和大于第三边对各组数据进行判断即可得解.解答:解:任取3根可以有一下几组:①2cm,3cm,4cm,能够组成三角形,②2cm,3cm,5cm,∵2+3=5,∴不能组成三角形;③2cm,4cm,5cm,能组成三角形,③3cm,4cm,5cm,能组成三角形,∴可以搭出不同的三角形3个.故答案为:3.点评:本题考查了三角形的三边关系,按照一定的顺序进行分组才能做到不重不漏.19.若m2+n2﹣6n+4m+13=0,m2﹣n2=﹣5.考点:配方法的应用;非负数的性质:偶次方.专题:计算题.分析:已知等式常数项13变形为9+4,结合后利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0求出m与n的值,即可求出所求式子的值.解答:解:∵m2+n2﹣6n+4m+13=(m2+4m+4)+(n2﹣6n+9)=(m+2)2+(n﹣3)2=0,∴m+2=0,n﹣3=0,即m=﹣2,n=3,则m2﹣n2=4﹣9=﹣5.故答案为:﹣5点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.考点:直角三角形全等的判定.分析:要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.解答:解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题:(本大题共9小题,共46分,解答时应写出必要的计算过程、推演步骤或文字说明).21.计算:(1)(﹣a)2•(a2)2÷a3(2)(x+2)(4x﹣2)+(2x﹣1)(x﹣4)考点:整式的混合运算.分析:(1)先算积的乘方和幂的乘方,再算同底数幂的乘除;(2)利用整式的乘法展开,进一步合并得出答案即可.解答:解:(1)原式=a2•a4÷a3=a3;(2)原式=4x2+6x﹣4+2x2﹣9x+4=6x2﹣3x.点评:此题考查整式的混合运算,掌握运算顺序于计算方法是解决问题的关键,注意符号的判断.22.把下列各式分解因式:(1)2x2﹣8xy+8y2(2)4x3﹣4x2y﹣(x﹣y)考点:提公因式法与公式法的综合运用.分析:(1)首先提取公因式2,再利用完全平方公式进行二次分解即可.(2)首先把前两项组合提取公因式4x2,然后再提取公因式(x﹣y)进行二次分解,最后利用平方差公式进行三次分解即可.解答:解:(1)2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2;(2)4x3﹣4x2y﹣(x﹣y)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1).点评:此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底.23.解方程组:(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解答:解:(1)方程组整理得:,①﹣②得:4y=16,即y=4,把y=4代入①得:x=10,则方程组的解为;(2)方程组整理得:,①+②×5得:7x=﹣7,即x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.代数式的值不小于的值,在数轴上表示出x的取值范围并求出x的最大整数值.考点:解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.分析:根据题意列出关于x的不等式,然后利用不等式的性质来解该一元一次不等式,并将其在数轴上表示出来.解答:解:根据题意,得:≥,去分母得,2(x++1)≥5(2x+3),去括号得,2x+2≥10x+15,移项得2x﹣10x≥15﹣2,合并同类项得﹣8x≥13,系数化为1,得x≤﹣所以x的最大整数值是﹣2.数轴上表示如下:点评:本题考查了利用不等式的性质来解一元一次不等式.不等式的性质是:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.25.解不等式组:.考点:解一元一次不等式组.分析:首先分别解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.解答:解:,解不等式①得:x≥0,解不等式②得:x<4,不等式组的解集为:0≤x<4.点评:此题主要考查了解一元一次不等式,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.26.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:(2a+b)2+5a(a+b)﹣(3a﹣b)2=4a2+4ab+b2+5a2+5ab﹣9a2+6ab﹣b2=15ab,当a=3,b=﹣时,原式=15×3×(﹣)=﹣30.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,题目比较好,难度适中.27.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.考点:全等三角形的判定与性质.专题:证明题.分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.解答:证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.点评:本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.28.为了科学使用电力资源,我市对居民用电实行“峰谷”计费:8:00~21:00为峰电价,每千瓦时0.56元;其余时间为谷电价,每千瓦时0.28元,而不实行“峰谷”计费的电价为每千瓦时0.52元.小丽家某月共用电200千瓦时.(1)若不按“峰谷”计费的方法,小丽家该月原来应缴电费104元;(2)若该月共缴电费95.2元,求小丽家使用“峰电”与“谷电”各多少千瓦时?(3)当峰时用电量小于总用电量的几分之几时,使用“峰谷”计费法比原来的方法合算?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)直接利用用电量×单价=总费用,得出即可;(2)设小丽家“峰电”与“谷电”分别用了x、y千瓦时,由题意得出方程组求出即可;(3)设“峰电”用电量占总用电量的比值为:x,总用电量为a千瓦时,由题意得出:0.56ax+0.28a(1﹣x)<0.52a,进而求出即可.解答:解:(1)200×0.52=104元;故答案为:104;(2)设小丽家“峰电”与“谷电”分别用了x、y千瓦时,由题意得:,解得:,答:小丽家“峰电”与“谷电”分别用了140千瓦时、60千瓦时;(3)设“峰电”用电量占总用电量的比值为:x,总用电量为a千瓦时,由题意得出:当0.56ax+0.28a(1﹣x)<0.52a时,“峰谷”计费方式便宜,解得:x<,答:当峰时用电量小于总用电量的时,使用“峰谷”计费法比原来的方法合算.点评:此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出不等式关系是解题关键.29.如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF 的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF=3.(仅填结果)考点:命题与定理;三角形的面积;直角三角形的性质.分析:(1)根据直角三角形两锐角互余可得∠A+∠B=90°,然后求出∠A+∠ACD=90°,从而得到∠ADC=90°,再根据垂直的定义证明即可;(2)根据角平分线的定义可得∠CAE=∠BAE,再根据直角三角形两锐角互余可得∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,从而得到∠AEC=∠AFD,再根据对顶角相等可得∠AFD=∠CFE,然后等量代换即可得证;(3)根据等高的三角形的面积的比等于底边的比求出S△ACD和S△ACE,然后根据S△CEF﹣S△ADF=S△ACE﹣S△ACD计算即可得解.解答:(1)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,即CD⊥AB,证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;(2)证明:∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,∴∠AEC=∠AFD,∵∠AFD=∠CFE(对顶角相等),∴∠AEC=∠CFE;(3)解:∵BC=3CE,AB=4AD,∴S△ACD=S△ABC=×36=9,S△ACE=S△ABC=×36=12,∴S△CEF﹣S△ADF=S△ACE﹣S△ACD=12﹣9=3.故答案为:3.点评:本题考查了命题与定理,三角形的面积,直角三角形两锐角互余的性质,有两个锐角互余的三角形是直角三角形,(3)利用等高的三角形的面积的比等于底边的比求出S△ACD和S△ACE是解题的关键.。
人教版七年级数学第二学期5月份月考检测测试卷含答案一、选择题1.已知|x+y -1|+(x -y+3)2=0,则(x+y)2019的值是( )A .22019B .-1C .1D .-220192.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有( ) A .2 B .3 C .4 D .53.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种4.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23 B .29 C .44 D .535.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 6.方程组22{?23x y m x y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( ) A .m >1 B .m <1 C .m >-1 D .m <-17.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ). A .2 B .3 C .4 D .58.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y y x -=⎧⎪⎨-=⎪⎩B . 4.512y x y y -=⎧⎪⎨-=⎪⎩C . 4.512y x y x -=⎧⎪⎨-=⎪⎩D . 4.512x y y y -=⎧⎪⎨-=⎪⎩9.若关于x ,y 的二元一次方程组432x y k x y k+=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( )A .2B .10C .2-D .410.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = 二、填空题11.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b(a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.12.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.13.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.14.已知关于x 、y 的方程组135x y a x y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)15.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.16.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组340416a c c ⎧++-=⎪=-(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.17.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____. 18.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____. 19.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干.20.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________ 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10(1) 请直接用含a 的代数式表示b 和c(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值, }min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组: }}1{,?{?3{39,311?4max x x y min x x y -=++=. 26.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由绝对值和平方的非负性可得1030x y x y +-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可. 【详解】解:根据题意可得10? 30? x y x y +-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2, 故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组.2.B解析:B【分析】设甲获胜x 局,平y 局,则负()9x y --局,根据题意得出关于x 和y 的二元一次方程,由x ,y ,()9x y --均为整数即可得出结论.【详解】解:设甲获胜x 局,平y 局,则负()9x y --局,根据题意可得:412x y +=,即124y x =-,当1x =时,8y =,90x y --=;当2x =时,4y =,93x y --=;当3x =时,0y =,96x y --=;当4x =时,4y =-(舍);综上所述,获胜的场数可能为1,2,3,共3种可能,故选:B .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.3.C解析:C【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合;当6x =时,2y =,符合;当8x =时,1y =,符合,共3种购买方案,故选C.【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.4.C解析:C【分析】分别令n=2与n=5表示出a 2,a 5,代入已知等式求出a 1与d 的值,即可确定出a 15的值.【详解】令n=2,得到a 2=a 1+d=5①;令n=5,得到a 5=a 1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a 1=2,则a 15=a 1+14d=2+42=44.故选:C .【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.B解析:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩,代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x ,代入方程组得:31x k x k -=⎧⎨-=-⎩,即k=3k-1, 解得:12k =, 则存在实数12k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩, 解不等式组得:321x k y k =-⎧⎨=-⎩, ∵1y x ->-,∴1(32)1k k --->-,解得:1k <,此选项错误;④x+3y=3k-2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.6.B解析:B【解析】解方程组22{23x y m x y +=++=得43{123mx m y -=+= , ∵x 、y 满足x-y>0, ∴412330333m m m -+--=>, ∴3-3m>0,∴m<1.故选B. 7.C解析:C【解析】根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=.故选:C.8.C解析:C【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】 依题意,得: 4.512y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.D解析:D【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值.【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5k y =, 把5k y =代入②得:115k x =, 把115k x =,5k y =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s ts t+=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得131112909(990b a a b +=⎧⎨+=⎩), ∴7040a b =⎧⎨=⎩, 故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.12.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.13.508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.14.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得:,则,∴①错误;当x与y互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④. 【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.15.5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由题意可得:5x+15y+40z=10(x ﹣3)+20(y ﹣2)+30(z ﹣1)①,z=y ﹣7 ②; 由①得:x+y ﹣2z=20 ③,将②代入③得:x+y ﹣2(y ﹣7)=20,解得:x ﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x ﹣3)﹣(y ﹣2)=(x ﹣y )﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.16.()【解析】【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c 为常数),∴,∵,,∴,∴c=4,∴解析:(1,33-)【解析】【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标.【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1), 根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 17.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.18.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的 解析:16【分析】 从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】 解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比.19.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.20.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨, 依题意,得:23123417x y x y +=⎧⎨+=⎩, 解得:32x y ==⎧⎨⎩. 故答案为:1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨. (2)①依题意,得:3m+2n =21,∴m =7﹣23n . 又∵m ,n 均为非负整数,∴19m n =⎧⎨=⎩或36m n =⎧⎨=⎩或53m n ==⎧⎨⎩或70m n =⎧⎨=⎩. 答:共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车. ②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少【分析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得 3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-,152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.23.(1)5040a b ;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个. 【分析】(1)由图示利用板材的长列出关于a 、b 的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A 型板材和B 型板材的张数,然后根据竖式与横式礼品盒所需要的A 、B 两种型号板材的张数列出关于x 、y 的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200a b a b , 解得:5040a b ,答:图甲中a 与b 的值分别为:50、40;(2)由图示裁法一产生A 型板材为:3×625=1875,裁法二产生A 型板材为:1×125=125, 所以两种裁法共产生A 型板材为1875+125=2000(张),由图示裁法一产生B 型板材为:1×625=625,裁法二产生A 型板材为,3×125=375, 所以两种裁法共产生B 型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x 个,横式无盖礼品盒有y 个,则A 型板材需要(4x+3y )个,B 型板材需要(x+2y )个,则有43200021000xy x y ,解得200400x y .【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.+24.(1)46b ac a =+⎧⎨=+⎩;(2)S △ABC =13为定值;(3)542a -≤<- 【分析】(1)由4b -c =3a +10可知c=4b-3a-10,把c 代入3b -5c =-2a -18可用a 表示出b ,同理可表示c ;(2)如图构造梯形,根据S △ABC =S 梯形ADEC -S △ADB -S △CBE 可证明S △ABC 是定值,所以△ABC 的面积无变化;(3)作AD ⊥x 轴,BE ⊥x 轴,CF ⊥x 轴,根据S △PAB >S △PBC 可知AP >PC ,进而可得S △OAP >S △OPC ,所以S △OAB >S △OBC ,利用梯形和三角形的面积差可表示出△OAB和△OBC的面积,即可列出不等式,由AB与y轴相交可得-4≤a≤0,结合前面的不等式求出公共解集即可求出a的取值范围.【详解】(1)∵4b-c=3a+10,∴c=4b-3a-10,∵3b-5c=-2a-18,∴3b-5(4b-3a-10)=-2a-18,∴b=a+4,同理可得:c=a+6,∴46b ac a=+⎧⎨=+⎩(2) 构造如图所示的梯形:S△ABC=12⨯(3+5)⨯6-12⨯3⨯4-12⨯2⨯5=13为定值,(3) 线段AB与y轴相交,故40aa≤⎧⎨+≥⎩,∴-4≤a≤0,∵S△PAB>S△PBC,∴AP>PC,∴S△OAP>S△OPC,∴S△OAB>S△OBC,作AD⊥x轴,BE⊥x轴,CF⊥x轴,S△OAB=12(3+6)4a a⎡⎤++⎣⎦ -124a+⨯6-12⨯6a⨯=6-32a,S△OBC=12⨯(1+6)(64a a+-+)+124a+⨯6-126a+=52a+16,∴6-32a>52a+16, 解得:a<-52, ∴54a 2-≤<-【点睛】本题考查解二元一次方程组,利用代入消元法可减少未知数的个数,从而实现消元;本题也考查了梯形与三角形的面积公式,熟练掌握相关知识是解题关键.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组. 详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.0【解析】分析: 把甲的结果代入②求出b 的值,把乙的结果代入①求出a 的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入②,将54x y =⎧⎨=⎩代入①得:12252015b a -+=-⎧⎨+=⎩解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点睛: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.。
湖北省武汉市七年级下学期数学5月月考试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共34分)1. (3分)(2020·扬州) 在平面直角坐标系中,点所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (3分)计算的结果()A .B . -C .D . -3. (2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A . ∠1=∠2B . ∠2=∠4C . ∠3=∠4D . ∠1+∠4=180°4. (3分)(2020·广州模拟) 实数a, b在数轴上的对应点的位置如图所示, 下列结论正确的是()A . a > bB . a > -bC . -a > bD . -a< b5. (3分)下列数中是无理数的是()A . -2B .C . 0.010010001D . π6. (3分) (2018九上·孟津期末) 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y 轴正半轴上点D′处,则点C的对应点C′的坐标为()A . (,1)B . (2,1)C . (1,)D . (2,)7. (3分)(2017·宁德模拟) 如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A . BM= ABB . AM+BM=ABC . AM=BMD . AB=2AM8. (3分)关于x、y的方程组的解是方程3x﹣2y=25的一个解,那么m的值是()A . 2B . ﹣1C . 1D . ﹣29. (2分) (2019七下·鸡西期末) 下列A,B,C,D;四幅图案中,能通过平移左图案得到的是()A .B .C .D .10. (3分) (2020七下·陇县期末) 用代入法解方程组时,代入正确的是()A . x-2-x=4B . x-2-2x=4C . x-2+2x=4D . x-2+x=411. (3分)若代数式在实数范围内有意义,则x的取值范围为()A . x>0B . x≥0C . x≠0D . x≥0且X≠112. (3分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()A . 3B . 4C . 5D . 6二、填空题 (共8题;共28分)13. (5分)已知x= +2,代数x2﹣4x+11的值为________.14. (2分) (2018七上·九台期末) 如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=________.15. (5分)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点N的坐标分别是________.16. (2分)(2017·溧水模拟) 5的算术平方根是________;将写成负整数指数幂的形式是________17. (5分)“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出本世纪你喜欢的一个“平方根”节(题中所举例子除外)________ 年________ 月________ 日.18. (5分) (2019七下·呼和浩特期末) 平面直角坐标系中,点 (-3,2), (1,4),经过点的直线轴,点是直线上的一个动点,则线段的长度最小时,点的坐标为________。
○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
湖北省武汉市金银湖片区2018-2019学年七年级下学期数学
5月月考试卷
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 一 二 三 四 五 六 总分 核分人 得分
注意
事项
:
1、
填
写
答
题
卡
的
内
容
用
2B
铅
笔
填
写
2、提前 15 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
评卷人 得分
一、单选题(共10题)
1. 如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )
A . 400cm 2
B . 500cm 2
C . 600cm 2
D . 4000cm 2
2. 方程kx+3y=5有一组解是
,则k 的值是( )
A . 1
B . ﹣1
C . 0
D . 2
3. 若a <b ,则下列各式正确的是( )
A . 3a >3b
B . ﹣3a >﹣3b
C . a ﹣3>b ﹣3
D .
4. 将二元一次方程
化成用x 的代数式表示y 的形式为( )
A .
B .
C .
D .
5. 点P (m+3、m+1)在x 轴上,则P 点的坐标为( )
A . (0,1)
B . (1,0)
C . (0,-2)
D . (2,0)
6. 下列各式中,是一元一次不等式的是( )
答案第2页,总17页
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
A . 5+4>8
B . 2x -1
C . 2x≤5
D . -3x≥0
7. 下列哪组数是方程组 的解( ) A . B .
C .
D .
8. 用数轴表示不等式 <0的解集正确的是( )
A .
B .
C .
D .
9. 若点P 在第四象限,且到X 轴的距离是2,到Y 轴的距离是4,则P 点的坐标为( ) A . (2,4) B . (-4,2) C . (4,-2) D . (-2,4)
10. 如果关于 的一元一次方程3( +4)=2 +5的解大于关于 的方程 的解,那么 的取值是( ). A . B .
C .
D .
第Ⅱ卷 主观题
第Ⅱ卷的注释
评卷人
得分
一、填空题(共6题)
1. 请写出解为 的一个二元一次方程组 .
2. 观察下列图形,根据图形反映出的规律可知,第6个图形中有 点.
3. 当
时,下列方程①
,②
,③ 有公共解.
○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
4. 如果方程组 的解中的 、 ,满足 ≤4,则非负数 的取值范围是 .
5. 有人问某男孩,有几个兄弟,几个姐妹,他回答说:“有几个兄弟就有几个姐妹.”再问他妹妹有几个兄弟,几个姐妹,她回答说:“我的兄弟是姐妹的2倍.”若设兄弟x 人,姐妹y 人,则可列出方程组: .
6. 如果不等式组 的解集是 ,那么 的值为 .
评卷人 得分
二、计算题(共2题)
7. 解下列二元一次方程组
(1)
8. 解下列不等式,并把解集在数轴上表示出来
(1) (2)
评卷人 得分
三、解答题(共3题)
普通(元/间/天) 豪华(元/间/天) 三人间 150 300 双人间
140 400
为吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房,若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房多少间?
10. 如果关于x 的方程 -2x =4-a 的解大于关于x 的方程a(x -1)=x(a -2)的解,求a 的取值范围. 11. 下列图示程序
若输入x 的值为1,则输出的值为1;若输入x 的值为-1,则输出的值为-3;当输入x 的值为 时,输出的值为多少?
答案第4页,总17页
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
评卷人 得分
四、作图题(共1题)
△ABC 的位置如图所示:
(1)请写出点A 、B 、C 三点的坐标.
(2)将△ABC 向右平移6个单位,再向上平移2个单位,请在图中作出平移后的△A 'B 'C ', 并写出它们的坐标:A '( ),B '( ),C '( ) 评卷人 得分
五、综合题(共2题)
13. 已知一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元.
(1)求一个书包的价格是多少元?
(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?
14. 某中学新建了一栋7层的教学大楼,每层楼有8间教室,进出这栋大楼共有八道门,其中四道正门大小相同,四道侧门大小也相同.安全检查中,对八道门进行了测试:当同时开启一道正门和两道侧门时,2分内可以通过560名学生;当同时开启一道正门和一道侧门时,4分内可以通过800名学生.
(1)平均每分内一道正门和一道侧门分别可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低30%.安全检查规定:在紧急情况下全大
○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
楼的学生应在5分内通过这八道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问建造的这八道门是否符合安全规定?请说明理由.
参数答案
1.【答案】:
【解释】: 2.【答案】: 【解释】: 3.【答案】:。