讲义MSA
- 格式:doc
- 大小:798.50 KB
- 文档页数:32
测量系统分析(MSA)的理解与实施目录一、基本概念~~~~~~~~~~~~~~~测量数据的质量测量糸统基本原理二、测量系统的统计特性~~~~~~~~~~测量系统的变差变差对测量系统的影响及对应的统计特性可接受的测量系统三、测量系统分析的实施~~~~~~~~测量系统分析的策划测量系统分析的准备偏倚的分析稳定性的分析线性的分析重复性和再现性的分析计数型测量系统的分析不可重复的测量系统的分析测量系统分析(MSA)的理解与实施~~~基本概念测量系统分析(MSA)理解与实施第一部分基本概念一. 测量数据的质量1.测量的定义:赋值给具体事物已表示特定特性关系。
●测量结果为测量值,●测量需借助工具,即量具/设备等监测装置。
2.获得测量值的目的:用于判断,决策。
3.测量数据的质量: 测量数据与被测特性真值的接近程度。
●越接近真值,则测量数据质量越高。
●由于测量系统自身的变差,真值无法获得。
二测量系统1.测量系统的定义:用来对被测特性进行定量测量或定性评价的量具、标准、操作、方法、夹具、软件、人员、环境、假设的集合。
●测量包括获得数值(计量型特性)和定性评价(计数型特性)。
●标准:量具朔源的母标准,包括通用标准及专用标准●操作:实施测量的习惯动作。
2. 测量系统分析的目的:●确定测量系统是否具有所需的统计特性。
测量系统分析(MSA)的理解与实施~~~基本概念●确定影响测量系统的环境因素,并使其满足要求。
●确定测量系统是否持续保持恰当的统计特性。
三.基本原理1.量具的分辩力(分辨率,可读性)●量具的最小读数单位,●由量具设计所决定的量具固有特性。
●在兼顾成本及可行性条件下,量具应能识别被测特性的微小变化。
2.真值●被测质量特性的实际数值。
●由于物理条件限制及环境影响,真值不可获得。
3.基准值●在进行测量系统分析时,代替真值。
●通过较高级别分辨率的测量系统进行测量,获得基准值。
4.MSA与测量溯源性的关系。
●测量溯源性:校准或检定。
五大手册系列讲义之一--------M S A编写者:课题名称:测量系统分析(MEASUREMENT SYSTEM ANALYSIS)授课目的:在已有的MSA知识基础上,加深对其的理解,以便于企业相关人员对MSA运用的时机有更进一步的认识。
授课日期:年月日讲师:讲义正文:1测量系统分析的基础知识1.1测量系统的概念:在测量过程中,有五个方面会产生测量误差:人、机、料、法、环;而构成测量误差的五个方面就被称为“测量系统”;(举例说明)1.2测量系统分析目的:1)确信测量系统处于统计控制中,处于受控状态;2)确信测量系统的变异必须小于制造过程的变异。
制造过程以测量系统为其组织基础之一;3)确信产生的变异应小于公差带,(当然了!);即:分析测量系统在工作时产生的测量误差与测量任务之间的差异是否在可以接受的范围内;注意:测量仪器的精度应高于过程变异和公差带两者之中精度较高者,一般来讲,测量精度是过程变异和公差带两者中精度较高者的十分之一。
1.3注:12、MSA统(做1.4测量系统可能发生的变化:构成测量系统的五个方面任一方面发生了变化,称为测量系统发生了变化。
1.5测量系统分析常分为两个阶段:第一阶段:明白测量过程并确定测量系统是否能满足我们的需要;这类试验在组织实际使用该测量系统之前进行,试验可能包括几个不同水平的环境因素,表明受影响的程度;第二阶段:验证一个测量系统一旦被认为是可行的,应持续具有恰当的统计特性;通常:我们只做第二阶段即可。
2、测量系统的分类:2.1测量系统可分为计量型测量系统和计数型测量系统两大类2.1.1计量型测量系统:量具/检具测量的结果是可以量化的,测量任务也是确切的量化数值(举例说明:10±0.5等)。
分析方法常见有: 偏倚法、线性法、稳定性法、重复性和再现性分析法。
2.1.2计数型测量系统:量具/检具测量的结论是不须用量化的数据来表示的(举例说明:NG/G, 好/不好等)。
第一章通用测量系统指南一、MSA目的:选择各种方法来评定测量系统的质量.........。
活动:测量、分析、校正二、适用范围:用于对每一零件能重复读数的测量系统。
三、测量和测量过程:1)赋值给具体事物以表示它们之间关于特殊特性的关系;2)赋值过程定义为测量过程;3)赋予的值定义为测量值;4)测量过程看成一个制造过程,它产生数字(数据)作为输出。
四、量具:任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。
五、测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。
六、测量变差:1)多次测量结果变异程度;表示;2)常用σm3)也可用测量过程过程变差R&R表示。
注:a.测量过程(数据)服从正态分布;b.R&R=5.15σm七、测量系统质量特性:测量成本;●测量的容易程度;●最重要的是测量系统的统计特性。
八、常用统计特性:●重复性(针对同一人,反映量具本身情况)●再现性(针对不同人,反映测量方法情况)●稳定性●线性(针对不同尺寸的研究)注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。
九、测量系统对其统计特性的基本要求:●测量系统必须处于统计控制中;●测量系统的变异必须比制造过程的变异小;●变异应小于公差带;●测量精度应高于过程变异和公差带两者中精度较高者(十分之一);●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程变差和公差带中的较小者。
十、评价测量系统的三个问题:●有足够的分辨力;(根据产品特性的需要)●一定时间内统计上保持一致(稳定性);●在预期范围(被测项目)内一致可用于过程分析或过程控制。
(线性)十一、评价测量系统的试验:●确定该测量系统是否具有满足要求的统计特性;●发现哪种环境因素对测量系统有显著的影响;●验证统计特性持续满足要求(R&R)。
十二、程序文件要求:●示例;●选择待测项目和环境规范;●规定收集、记录、分析数据的详细说明;●关键术语和概念可操作的定义、相关标准说明、明确授权。
MSA(Measurement System Analysis)测量系统分析1.目的:1.1 保证用于测量数据和作出判断的仪器设备的准确1.2 保证数据的准确性和可靠性2.研究对象:2.1 变异(种类和程度)3.研究MSA的规则:3.1 首先确定一个量规仪器的校量允收水准3.2 同一类量具进行量具间的比对3.3 对量具的量测能力的评估(精密度,量程,最小刻度)3.4 对所有量具进行管制和编号4.统计特性4.1 过程中特殊情形造成的变异会引起MSA的结果判定有误,一般要取消此类情况的发生。
比如:卡尺的甩落造成卡尺不准4.2 过程本身有变异(从5M1EDE的角度考虑)» MSA的变异4.3 SPEC,规格范围/公差带» MSA的变异4.4 MSA 变异的最小值 < Min [过程变异,规格范围]5.如何进行MSA分析5.1 对新购的仪器要编号(并编写保养规定和使用说明)的管制;5.2 进行校正并按允收标准进行判定;5.3 初始的MSA 判定仪器是否满足生产测量的精度要求。
a)第一次进行MSA时,要对所有的量规仪器进行初期的MSA分析;b)免校仪器无需做MSA5.4 根据测量工具的稳定性,确定MSA的周期;5.5进行定期的MSA,判定测试数据的可信度;5.6 MSA的判定标准:a) MSA的变异量 <10% 可接受b) 10% < MSA的变异量 < 30% 选择性接受b.1 如果这种仪器来之不易(很贵),则可接受b.2 如果这种仪器难于修理,则可接受b.3 如果这种仪器参与了某些重要特性的测量,停止使用重要特性参数将无法控制,则可接受c) MSA的变异量 > 30% 不能接受5.7 MSA的相关要求:5.7.1 MSA的人员:必须培训考核合格;5.7.2 MSA的样板:界于合格和不合格的临界样板5.7.3 MSA的方法:书面明确化(比如抽样量)5.7.4 MSA的判定:依判定标准6.测量系统分析6.1 变异种类:6.1.1 重复性量具变异;EV(Equipment variation)a)定义:由一个测量人,采用同一种测量仪器,多次测量同一零件的同一指定特性时所获得的测量值变差。
MSA测量系统分析培训课程内容第一章通用测量系统指南1、概述2、术语3、测量系统的统计特性第二章分析/评定测量系统的方法●偏倚●重复性●再现性●稳定性●零件间变差●线性第三章测量系统研究程序1.计量型测量系统研究指南2.计数型测量系统研究指南附件案例练习(附应用表单)第一章通用测量系统指南一、概述1、QS-9000与MSAQS-9000第一部分4.11.4:为分析在各种测量和试验设备系统测量结果中表现的变差,必须进行适当的统计研究。
此要求必须用于在控制计划中提及的测量系统。
所有的分析方法及接受准则应与测量系统分析参考手册相一致(如:偏倚、线性、稳定性、重复性、再现性研究)。
如经顾客批准,也可采用其它分析方法及接受准则。
2、MSA目的:选择各种方法来评定测量系统的质量.........。
被检产品特性数据/测量结果输入输出受控:量具、仪器、检测人员、程序、软件活动:测量、分析、校正3、适用范围:用于对每一零件能重复读数的测量系统。
二、术语測量以确定量值為目的的一組操作.–那些用預設的標准比較實物有多少單位的過程.–測量結果由一個數位和一個標準的測量單位構成。
–測量結果是測量過程的輸出。
测量和测量过程:1)赋值给具体事物以表示它们之间关于特殊特性的关系;2)赋值过程定义为测量过程;3)赋予的值定义为测量值;4)测量过程看成一个制造过程,它产生数字(数据)作为输出。
量具任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。
測量數據的品質測量數據的品質與在穩定的作業狀況下,由一個測量系統獲得的多個測量值的統計特性有關。
–參考值(Reference Value)—一個作為比較參考的被認同的值–如果某一特性的測量值[接近]它的標準值,則稱此一數據的品質為[高]。
–如果某一特性的測量值[遠離]它的標準值,則稱此一數據品質為[低]。
测量系统用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。
测量变差●多次测量结果变异程度;●常用σm表示;●也可用测量过程过程变差R&R表示。
测量系统质量特性●测量成本;●测量的容易程度;●最重要的是测量系统的统计特性。
盲测法在实际测量环境下,操作者事先不知正在对该测量系统进行评定的条件下,获得测量结果。
霍桑效应:是指1924年11月到1932年8月间,在西部电车的霍桑工厂完成的一系列工业试验的结果。
在该试验中,研究人员系统地变更了五个装配工的工作条件,并监测结果。
●由于条件的改善,产量上升,然而当工作条件下降时,产量继续增长。
●产生该结果的原因只是工人已产生了更积极的工作态度,而不是改变了工作条件的结果。
常用统计特性●重复性(针对同一人,反映量具本身情况)●再现性(针对不同人,反映测量方法情况)●稳定性●线性(针对不同尺寸的研究)注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。
三、测量系统对其统计特性的基本要求:●测量系统必须处于统计控制中,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的。
这可称为统计稳定性;●测量系统的变异必须比制造过程的变异小;●变异应小于公差带;●测量精度应高于过程变异和公差带两者中精度较高者(十分之一);●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程变差和公差带中的较小者。
四、测量系统的评定测量系统的评定通常分为两个阶段,称为第一阶段和第二阶段第一阶段:明白该测量过程并确定该测量系统是否满足我们的需要。
主要有二个目的:➢确定该测量系统是否具有所需要的统计特性,此项必须在使用前进行。
➢发现哪种环境因素对测量系统有显着的影响,例如温度、湿度等,以决定其使用之空间及环境。
第二阶段➢目的是在验证一个测量系统一旦被认为是可行的,应持续具有恰当的统计特性。
➢常见的就是“量具R&R”是其中的一种型式。
评价测量系统的三个问题●有足够的分辨力;(根据产品特性的需要)●一定时间内统计上保持一致(稳定性);●在预期范围(被测项目)内一致可用于过程分析或过程控制。
(线性)评价测量系统的试验●确定该测量系统是否具有满足要求的统计特性;●发现哪种环境因素对测量系统有显著的影响;●验证统计特性持续满足要求(R&R)。
程序文件要求●示例;●选择待测项目和环境规范;●规定收集、记录、分析数据的详细说明;●关键术语和概念可操作的定义、相关标准说明、明确授权。
包括:a. 评定,b. 评定机构的职责,c. 对评定结果的处理方式及责任第二章分析/评定测量系统的方法一、测量系统分析实施流程图二、测量系统变差的类型:偏倚:●定义:是测量结果的观测平均值与基准值的差值。
又称为“准确度”。
注:基准值可通过更高级别的测量设备进行多次测量取平均值。
●确定方法:1)在工具室或全尺寸检验设备上对一个基准件进行精密测量;2)让一位评价人用正被评价的量具测量同一零件至少10次;3)计算读数的平均值。
●偏倚原因:1)基准的误差;2)磨损的零件;3)制造的仪器尺寸不对;4)仪器测量非代表性的特性;5)仪器没有正确校准;6)评价人员使用仪器不正确。
●定义:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。
测量过程的重复性意味着测量系统自身的变异是一致的。
●确定方法:1)采用极差图;2)如果极差图受控,则仪器变差及测量过程在研究期间是一致的;3)重复性标准偏差或仪器变差距(σe)的估计为R/d2*;4)仪器变差或重复性将为5.15R/d2*或4.65 R;注(假定为两次重复测量,评价人数乘以零件数量大于15)5)此时代表正态分布测量结果的99%。
●极差图失控:1)调查识别为失控不一致性原因加以纠正;2)例外:当测量系统分辨率不足时。
●定义:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
●确定方法:1)确定每一评价人所有平均值;2)从评价人最大平均值减去最小的得到极差(R0)来估计;3)再现性的标准偏差(σ0)估计为R0/d2*;4)再现性为5.15R0/d2*或3.65 R0;5)代表正态分布测量结果的99%。
●定义:是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
●确定方法:选取一个样品, 并建立可追溯标准之真值或基准值, 若无样本则可从生产线中取一个落在中心值域的零件, 当成标准值, 且应针对预期测试值的最低值,最高值及中程数的标准各取得样本或标准件, 并对每个样本或标准件单独测量并绘制控制图.(所以可能是须做三张控制图来管制仪器之高、中、低各端,但一般而言,只需做中间值那个就可以了)定期(时、天、周)对标准件或样本测量3~5次. 注意, 决定样本量及频度的考虑因素应包括要求多长时间重新校正或修理次数, 测量系统使用的频度与操作环境(条件)等.将测量(数据)值标记在X-R CHART 或X–S CHART上.计算管制界限, 确定每个曲线的控制限并按标准图判断失控或不稳定状态。
计算标准差, 并与测量过程偏差相比较, 以评估测量系统的重复性是否适于应用.不可以发生此项之标准大于过程标准差之现象,如果有发生此现象,代表测量之变异大于制程变异,此项仪器是不可接受的。
●稳定性之判定:稳定性之判定一般之方式和控制图之判定方式是一致的,(一)不可以有点子超出控制界限,(二)不可以有连续三点中有二点在A区或A区以外之位置,(三)不可以有连续五点中有四点在B区或B区以外之位置,(三)不可有连续八点在控制图之同一侧,(四)不可以有连续七点持续上升或下降之情形;如果有以上之情形,代表仪器已不稳定,须做维修或调整,维修及调整完后须再做校正以及稳定性之分析。
零件间变差:●定义:――零件间固有的差异;――不包含测量的变差。
●确定方法:使用均值控制图:1)子组平均值反映出零件间的差异;2)零件平均值的控制限值以重复性误差为基础,而不是零件间的变差;3)没有一个子组平均值在这些限值之外,则零件间变差隐蔽在重复性中,测量变差支配着过程变差,如果这些零件用来代表过程变差,则此测量系统用于分析过程是不可接受的;4)如果越多的平均值落在限值之外,该测量越有用。
(注:非受控,50%以上为好;即:R图受控,X图大部分点在界外)●测量系统标准差:σm= (σe2+σ02)●零件之间标准偏差的确定:――可由测量系统研究的数据或由独立的过程能力研究决定。
1)确定每一零件平均值;2)找出样品平均值极差(R P);3)零件间标准偏差(σP)估计为R P/d2*;4)零件间变差PV为5.15R P/d2*或3.65 R P;代表正态分布的99%测量结果。
5)总过程变差标准偏差:σt= (σp2+σm2) ;则零件间标准偏差:σP=(σt2-σm2) ;6)与测量系统重复性及再现性相关的容差的百分比R&R为5.15*[σm/容差] 100;产品尺寸的数:[σp/σm]*1.41或1.41(PV/R&R)确定。
PV=5.15σp TV=5.15σT线性:●定义:是在量具预期的工作范围内,偏倚值的差值。
注:●在量程范围内,偏倚不是基准值的线性函数。
●不具备线性的测量系统不是合格的,需要校正。
●确定方法:1)在测量仪器的工作范围内选择一些零件;2)被选零件的偏倚由基准值与测量观察平均值之间的差值确定;3)最佳拟合偏倚平均值与基准值的直线的斜率乘以零件的过程变差是代表量具线性的指数;4)将线性乘以100然后除以过程变差得到“%线性”。
●非线性原因:1)在工作范围上限和下限内仪器没有正确校准;2)最小或最大值校准量具的误差;3)磨损的仪器;4)仪器固有的设计特性。
量测平均值有偏倚无偏倚真实值第四章 测量系统研究程序1. 准备工作:1) 先计划将要使用的方法;2) 确定评价人的数量、样品数量及重复读数:● 关键尺寸需要更多的零件和/或试验; ●大或重的零件可规定较少样品和较多试验;3) 从日常操作该仪器的人中挑选评价人; 4) 样品必须从过程中选取并代表其整个工作范围;5) 仪器的分辨力应允许至少直接读取特性的预期过程变差的十分之一; 6) 确保测量方法(即评价人和仪器)在按照规定的测量步骤测量特征尺寸。
2. 测量顺序: 1) 测量应按照随机顺序;2) 评价人不应知道正在检查零件的编号;3)研究人应知道正在检查零件的编号,并相应记下数据;即:评价人A ,零件1,第一次试验; 评价人B ,零件2,第二次试验等; 4) 读数就取至最小刻度的一半;5) 研究工作应由知其重要性且仔细认真的人员进行;6) 每一位评价人应采用相同的方法(包括所有步骤)来获得读数。
3. 计量型测量系统研究指南: A. 确定稳定性用指南:1) 获得一样本并确定其相对于可追溯标准的基准值; 2) 定期(天、周)测量基准样品3~5次; 3)或控制图中标绘数据;4)确定每个曲线的控制限并按标准曲线图判断失控或不稳定状态;5)计算测量结果的标准偏差并与测量过程偏差相比较,确定测量系统稳定性是否适于应用。