数学史概论 第五讲
- 格式:ppt
- 大小:3.70 MB
- 文档页数:32
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
《数学史概论》课程标准课程名称:数学史概论课程类型:A类课程编码:0702033280适用专业及层次:数学计算机系教育专业、专科层次课程总学时:32学时,其中理论28学时,其他4学时。
课程总学分:2一、课程的性质、目的与任务1.本课程的性质:专业选修课2.课程目的与任务:本课程是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。
因此,它是培养学生素质以及了解数学发展历史的重要途径,本课程对提升学生的数学文化素养有着重要的意义。
通过教学使学生了解本课程的性质、地位和意义,知道这门课程的研究对象、范围,以及它与所学数学知识的联系,了解数学史在自然科学技术史中的地位和作用,全面提升专业素养;理解数学史的理论、思想和方法。
培养学生综合运用数学理论和方法分析问题、解决问题的能力,提高学生的整体素质;通过数学史的学习,使学生认识到要解决实际问题,自己所学知识远远不够,学而后知不足,激发学生强烈的学习愿望和求知欲。
3.课程与其它课程的联系:《数学史概论》是数学教育专业的选修课程。
数学史是人类文明史的重要组成部分,本课程不仅与数学专业的基础课程及自然科学有直接联系,也与人文历史等学科领域密切相关,所以也可作为其他专业的拓展课程,借以提高学生的整体素养。
二、教学内容、教学要求及教学重难点本课程由六个专题组成,内容应反映出数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法。
教学内容可参考标准给出的可供选择的专题,并在此基础上可根据学生的知识结构及相关课程设置可相应增减专题的内容,如三次数学危机、数学的严格性与三个数学学派、从透视学到射影几何、计算机技术与对数、两项影响最大的国际数学奖励——菲尔兹奖和沃尔夫奖等,体现课程内容一定的弹性和开放性。
本课程的知识与技能要求分为知道、理解、掌握、学会四个层次,这四个层次的一般涵义表述如下:知道——是指对这门学科和教学现象的认知。
《数学史概论》教案第一章:数学史的概述1.1 数学史的定义与意义1.2 数学发展的大致历程1.3 数学史的研究方法与资料来源1.4 数学史与数学教育的关联第二章:古代数学2.1 古代数学的背景与文化环境2.2 埃及数学与巴比伦数学2.3 古希腊数学:毕达哥拉斯学派与欧几里得2.4 中国古代数学:勾股定理与算盘第三章:中世纪数学3.1 印度数学:阿拉伯数字与零的概念3.2 伊斯兰数学家:阿尔·花拉子米与代数学的发展3.3 欧洲中世纪数学:数学符号与运算规则的改进3.4 中国宋元数学:天元术与代数学的进展第四章:文艺复兴与科学革命时期的数学4.1 欧洲文艺复兴时期的数学发展4.2 哥白尼、开普勒与牛顿的数学贡献4.3 解析几何的诞生:笛卡尔与费马4.4 微积分的创立:牛顿与莱布尼茨第五章:现代数学的发展5.1 17至18世纪数学:欧拉与拉格朗日5.2 19世纪数学:非欧几何与群论5.3 20世纪初数学:集合论、数理逻辑与泛函分析5.4 现代数学的多元化发展:计算机科学与数学的交叉第六章:中国的数学成就(续)6.1 明清时期的数学发展6.2 数学著作《数书九章》与《算法统宗》6.3 清朝的数学教育与科举中的数学考试6.4 中国数学对日本及朝鲜数学的影响第七章:欧洲启蒙时期的数学7.1 启蒙运动与数学的关系7.2 莱布尼茨与微积分的发展7.3 伯努利兄弟与概率论的兴起7.4 欧拉与数学分析的进一步发展第八章:19世纪的数学突破8.1 非欧几何的发现8.2 群论与域论的建立8.3 数学符号与逻辑的完善8.4 19世纪数学的其他重要进展第九章:20世纪的数学革命9.1 集合论与数理逻辑的进展9.2 泛函分析与谱理论的发展9.3 拓扑学与微分几何的新成就9.4 计算机科学与数学的关系第十章:数学史的教育意义与应用10.1 数学史在数学教育中的作用10.2 数学史如何激发学生对数学的兴趣10.3 数学史在数学课程设计中的应用10.4 数学史与跨学科研究的结合第十一章:数学与科技的互动11.1 计算机科学与数学的关系11.2 信息技术与数学软件的发展11.3 数学在生物科学、物理学等领域的应用11.4 数学模型与模拟在科学研究中的作用第十二章:数学哲学与数学思想12.1 数学哲学的基本问题12.2 形式主义、直觉主义与逻辑实证主义12.3 数学基础危机与集合论的困境12.4 数学思想在数学发展中的影响第十三章:数学与社会文化13.1 数学与文化的交融13.2 数学在民族志与人类学中的应用13.3 数学传播与教育的发展13.4 数学与社会公正、性别平等的关系第十四章:数学史的国际视角14.1 非洲、拉丁美洲数学史14.2 亚洲数学史:印度、日本与伊斯兰世界14.3 数学交流与比较数学史的研究14.4 数学史的国际会议与出版物第十五章:数学史的展望与挑战15.1 数学史的研究现状与趋势15.2 数字人文与数学史的结合15.3 跨学科研究在数学史中的应用15.4 数学史的未来挑战与机遇重点和难点解析本《数学史概论》教案涵盖了数学史的基本概念、古代数学、中世纪数学、文艺复兴与科学革命时期的数学、现代数学的发展、中国的数学成就、欧洲启蒙时期的数学、19世纪的数学突破、20世纪的数学革命、数学史的教育意义与应用、数学与科技的互动、数学哲学与数学思想、数学与社会文化、数学史的国际视角以及数学史的展望与挑战。
一、设置《数学史选讲》的必要性和作用随着数学的发展、时代的不断前进,数学在日常生活、社会和科学技术发展中的作用日益广泛,人们对数学和数学教育的认识越来越深入。
数学具有悠久的历史,它不仅是数学知识的积累,人类认识客观世界的有力工具,也是人类文化的重要组成部分。
《普通高中数学新课程标准》理念中指出:“数学课程应当适当地反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学的推动作用,数学的思想体系,数学的美学价值,数学家的创新精神。
数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。
”如何实现《标准》的理念,使数学教育在人的全面发展过程中发挥应有的作用呢?如何渗透数学文化,体现人文精神呢?实现这一理念的最佳途径是在数学课程教学中融入数学史的内容。
在新的教材编排里,就着重数学文化这一方面进行了很多的改编。
增加了很多数学文化,数学史的内容。
数学发展的历史是一部内容丰富、思想深刻的历史。
通过生动、丰富的事例,使学生了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,作用:1. 帮助学生更好地理解数学。
数学史的学习使学生开阔数学视野,认识数学的科学价值,应用价值和文化价值,体会数学的美学意义,可以使学生更多了解数学的基本思想和方法,及其在解决生活和生产实际问题中的应用。
2. 激发学生学习数学的兴趣,树立学好数学的信心。
3. 培养生学形成锲而不舍的研究精神和科学态度4. 培养学生的创新精神5. 形成批判性的思想习惯和崇尚科学的理性精神二、数学史的主要体现形式数学史在高中数学课程中的安排可以采取多种形式,可以通过课外数学活动或小组活动的一项内容,也可以穿插渗透于课堂教学的各个环节结合教学内容进行。
但作为选修系列的一个专题,《数学史选讲》相对比较集中地将数学发展中一些能够体现重大数学思想发展又比较贴近高中学生水平与实际的选题汇串在一起学习。
《数学史概论》教案第一讲数学的起源与早期发展主要内容:数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。
1、数与形概念的产生从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。
人从生产活动中认识到了具体的数,导致了记数法。
“屈指可数”表明人类记数最原始、最方便的工具是手指。
早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)等。
世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。
2、河谷文明与早期数学2.1 古代埃及的数学(1)古王国时期:前2686-前2181年。
埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。
(2)新王国时期:前1567-前1086年。
埃及进入极盛时期,建立了地跨亚非两洲的大帝国。
数学贡献:记数制,基本的算术运算,分数运算,一次方程,正方形、矩形、等腰梯形等图形的面积公式,近似的圆面积,锥体体积等。
公元前4世纪希腊人征服埃及以后,这一古老的数学完全被蒸蒸日上的希腊数学所取代。
2.2 古代巴比伦的数学背景:古代巴比伦简况两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字“楔形文字”。
(1)古巴比伦王国:公元前1894-前729年。
汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。
(2)亚述帝国:前8世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。
(3)新巴比伦王国:前612-前538年。
尼布甲尼撒二世(在位前604-前562年)统治时期达到极盛,先后两次攻陷耶路撒冷,建成世界古代七大奇观之一的巴比伦“空中花园”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,是古代西方人眼中的全部世界,而中国的长城距他们太远了。
《数学史概论》教案一、教学目标1. 知识与技能:(1)使学生了解数学发展的历史背景和主要成就;(2)培养学生对数学史的兴趣和好奇心;(3)提高学生运用数学知识解决实际问题的能力。
2. 过程与方法:(1)通过查阅资料、讨论交流等方式,学会分析数学问题;(2)培养学生团队合作精神,提高研究性学习的能力。
3. 情感态度与价值观:(1)使学生认识数学与人类文明发展的密切关系;(2)培养学生尊重和热爱数学的情感;(3)引导学生关注数学在社会、科技和经济发展中的应用。
二、教学内容1. 中国古代数学:(1)中国古代数学的发展历程;(2)古代数学家及他们的主要成就;(3)举例介绍《九章算术》和《周髀算经》等古代数学著作。
2. 欧洲古代数学:(1)古希腊数学的发展历程;(2)古希腊数学家及他们的主要成就;(3)举例介绍欧几里得《几何原本》等古代数学著作。
3. 印度数学:(1)印度数学的发展历程;(2)印度数学家及他们的主要成就;(3)举例介绍阿瑜博达等印度数学家的贡献。
4. 阿拉伯数学:(1)阿拉伯数学的发展历程;(2)阿拉伯数学家及他们的主要成就;(3)举例介绍花拉子米等阿拉伯数学家的贡献。
5. 近现代数学:(1)近现代数学的主要发展历程;(2)近现代数学家及他们的主要成就;(3)举例介绍牛顿、莱布尼茨、欧拉等近现代数学家的贡献。
三、教学重点与难点1. 教学重点:(1)中国古代、欧洲古代、印度、阿拉伯以及近现代数学的主要发展历程;(2)各个时期著名数学家及他们的主要成就。
2. 教学难点:(1)近现代数学的发展历程及数学家的贡献;(2)如何引导学生理解数学发展与人类文明的密切关系。
四、教学方法1. 讲授法:讲解各个时期数学发展的历史背景、主要成就和著名数学家;2. 讨论法:组织学生分组讨论,分享对数学史的理解和感悟;3. 案例分析法:举例分析具体数学家的贡献和影响。
五、教学评价1. 平时成绩:考查学生课堂参与度、讨论交流和作业完成情况;2. 期中考试:测试学生对数学史知识的掌握和理解;3. 课程论文:引导学生深入研究某一时期或数学家的贡献,培养学生的研究能力。