传感器工作原理及故障判断方法
- 格式:doc
- 大小:4.06 MB
- 文档页数:56
宽带氧传感器的工作原理和常见故障的检查方法发布时间: 2010-4-29 15:52 | 编辑: 汽车乐 | 查看: 1067次来源: 网络随着汽车尾气排放限值要求的不断提高,传统的开关型氧传感器已不能满足需要,取而代之的是控制精度更高的线性宽带氧传感器(Universal Exhaust Gas Oxygen Sensor,简称UEGO)。
氧传感器闭环控制调节发动机燃烧室内的混合汽,以实现最佳的三元催化转换器运行,从而满足排放限值的要求。
为此,氧传感器闭环控制的任务是确保废气空燃比始终处于催化转换器的最佳工作点。
氧传感器闭环控制只改变所要喷射的燃油质量、燃烧室内的空气质量,也就是说汽缸充气和点火正时均不受影响,因此氧传感器是用来帮助确定废气中氧含量而反映实际工况中的空燃比。
控制单元内的氧传感器闭环控制必须通过所提供的信号来对混合汽的成分做出相应调整,控制过程很大程度上取决于氧传感器的属性。
宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合汽浓度始终保持理论空燃比值。
宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,优化了发动机的性能,并可节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。
宽带氧传感器通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。
ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃比(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。
如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。
现代汽车发动机管理系统中,安装在催化转换器前的宽带氧传感器,称作控制氧传感器,安装在三元催化器的上游位置,监测尾气中氧的浓度,并将信息反馈给控制单元,用于调节喷油量,从而实现发动机的闭环控制,改善发动机的燃烧性能并减少有害气体的排放。
氧传感器的检测及故障案例1、结构和工作原理在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。
三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NO某三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。
故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。
并将其转换成电压信号或电阻信号,反馈给ECU。
ECU控制空燃比收敛于理论值。
目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。
(1)氧化锆式氧传感器氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管图1。
锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。
氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。
氧化锆在温度超过300℃后,才能进行正常工作。
早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连(图2a)。
现在,大部分汽车使用带加热器的氧传感器(图2b),这种传感器内有一个电加热元件,可在发动机起动后的20-30内迅速将氧传感器加热至工作温度。
它有三根接线,一根接ECU,另外两根分别接地和电源锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。
由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压(图3)。
当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。
这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。
因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。
引言概述:故障指示器作为电力系统中重要的设备之一,具有监测、诊断和指示作用,能够准确地指示电力设备的故障情况。
在前文中,我们已经介绍了故障指示器的工作原理的第一部分,本文将继续深入探讨故障指示器的工作原理,并重点介绍其识别、监测和指示故障的细节。
正文内容:一、故障指示器的识别原理1.电流传感器:故障指示器通过电流传感器来监测电流的变化,一旦电流异常,即可判断为故障。
2.电压传感器:故障指示器通过电压传感器来监测电压的变化,一旦电压异常,即可判断为故障。
3.温度传感器:故障指示器通过温度传感器来监测设备的工作温度,一旦温度过高,即可判断为故障。
二、故障指示器的监测原理1.电流监测:故障指示器通过监测电流的大小和方向来判断电路是否正常工作。
2.电压监测:故障指示器通过监测电压的大小和相位角来判断电路的负载和故障情况。
3.温度监测:故障指示器通过监测设备的工作温度来判断设备是否存在过热或过载情况。
三、故障指示器的指示原理1.指示灯:故障指示器在检测到故障时,会通过指示灯的亮灭来指示故障的类型和位置。
2.报警器:故障指示器在检测到严重故障时,会发出声音或光闪等警报信号来引起人们的注意。
3.通讯功能:故障指示器可以通过与监控中心或其他设备的通讯,将故障信息及时传输出去。
四、故障指示器的应用范围1.电力系统:故障指示器广泛应用于电力系统中,监测和指示电力设备的故障情况,确保电力系统的安全稳定运行。
2.工业自动化:故障指示器也被应用于工业自动化领域,用于监测和指示各种工业设备的故障情况,提高工作效率和安全性。
3.交通系统:故障指示器在交通系统中的应用主要用于监测和指示交通信号设备的故障情况,保障交通流畅和安全。
五、故障指示器的发展趋势1.智能化:故障指示器将越来越智能化,通过引入人工智能和大数据技术,能够更精准地识别、监测和指示故障情况。
2.远程监测:故障指示器将与互联网技术相结合,实现远程监测和管理,使得故障报警更及时、反应更快速。
LVDT位移传感器的原理、特点及常见故障处理
随着LVDT位移传感器不断发展,LVDT位移传感器的也应用于越来越广泛的领域,那么,LVDT位移传感器究竟有哪些要点呢?今天我们就一起来了解关于LVDT 位移传感器的四大要点。
LVDT位移传感器
一、LVDT位移传感器的原理
LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成,如右图所示,初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。
当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0;当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。
为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。
LVDT工作过程中,铁心的运动不能超出线圈的线性范围,否则将产生非线性值,因此所有的LVDT均有一个线性范围。
二、LVDT位移传感器的主要特点
(1)原理直观、结构简单、工作可靠、使用寿命长;
(2)灵敏度高、线性范围宽、重复性好;
(3)分辨率高、应用广、适合于不同的应用;
(4)结构对称、零位可恢复;
(5)应用于小型制冷剂,如自由活塞式斯特林制冷机时,受到安装空间的限制。
三、LVDT位移传感器的优点
1.无摩擦测量。
LVDT 的可动铁芯和线圈之间通常没有实体接触,也就是说LVDT 是没有摩擦的部件。
它被用于可以承受轻质铁芯负荷,但无法承受摩擦负荷的重要测量。
例。
洗衣机水位传感器的原理及故障的修复方法
洗衣机水位传感器工作原理
容器内的水位传感器,将感受到的水位信号传送到控制器,控制器内的计算机将实测的水位信号与设定信号进行比较,得出偏差,然后根据偏差的性质,向给水电动阀发出“开”“关”的指令,保证容器达到设定水位。
进水程序完成后,温控部份的计算机向供给热媒的电动阀发出“开”的指令,于是系统开始对容器内的水进行加热。
到设定温度时。
控制器才发出关阀的命令、切断热源,系统进入保温状态。
洗衣机水位传感器故障的修复及检查方法:
1、拔下水位传感器的透明管下端吹气,可以听到传感器的动作声音,说明通水管未漏气。
2、拆开洗衣机壳上部,拔下水位选择旋钮,找到传感器并卸下,再次吹气并测量触点接触情况,发现接触不良,断定是传感器故障而不是控制板的问题。
3、传感器用铁制圆形外壳封闭且是压边固定在传感器座上的,水位控制旋钮通过不同深度的齿形拨叉控制触点的距离来控制水位,只好用薄改锥慢慢撬开拆下。
4、触点快速动作铜片与普通的微动开关一样,只是较大,其触点仅是一条压焊的铜丝,用砂纸打磨并测量接触良好,恢复原状。
如吹气时动作不灵敏,可稍微调节一下调节螺钉使之能灵活通、断。
5、注意,拆下触点部分时,要先拆下侧壳(板正2个固定脚,拔下),再拆下水位控制铁压板、弹簧及压帽(压板及传动杆各一个),再将传动杆芯旋转90度就可分解。
不要丢掉那几个弹簧、压帽。
传感器工作原理及故障判断方法概述综合录井技术是在钻井过程中应用电子技术、计算机技术及分析技术,借助分析仪器进行各种石油地质、钻井工程及其它随钻信息的采集(收集)、分析处理,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻石油勘探技术。
应用综合录井技术可以为石油天然气勘探开发提供齐全、准确的第一性资料,是油气勘探开发技术系列的重要组成部分。
综合录井技术主要作用为随钻录井、实时钻井监控、随钻地质评价及随钻录井信息的处理和应用。
综合录井技术的特点有:录取参数多、采集精度高、资料连续性强、资料处理速度快、应用灵活、服务范围广等。
目前国际国内先进的综合录井仪参数的检测精度上有了大幅度的提高,也扩展了计算机系统功能,形成了随钻计算机实时监控和数据综合处理网络,部分综合录井仪还配套了随钻随测(MWD)系统,增加了远程传输等功能,实现了数据资源的共享。
其原理框图见图1。
图1:综合录井仪基本结构图1、传感器亦称一次仪表,是将一种物理量转换为另一种物理量的设备。
其输入信号为待测物理量,如温度、密度、压力、电阻率、距离等,输出信号为可以被二次仪表或计算机接收的物理量,如电流、电压、电阻等。
传感器是综合录井仪的最基础部分,其工作性能的好坏直接影响着录井质量。
2、气体检测仪气体检测仪主要包括烃类检测仪、非烃组分检测仪(或二氧化碳检测仪)等气体检测设备,以及脱气器、氢气发生器、空气压缩机等辅助设备。
烃类检测仪主要是利用FID技术测量钻井液中的烃类气体含量;非烃组分检测仪是利用热导池鉴定器测量钻井液中C02、H2等其它气体的含量。
3、计算机系统随着计算机技术的发展及应用,目前综合录井仪的计算机系统不仅担负着参数的采集、处理、存储和输出的任务。
其存储的资料还可以按照用户的要求,应用其它专用软件进行进一步处理,以完成地质勘探、钻井监控及其它录井目的。
同时其联机系统已形成多用户的网络化计算机系统,实现多用户、网络化数据管理,具有携带近程或远程工作站的功能,以便于大型应用软件的使用和数据资源的共享。
电机传感器故障检测与诊断电机是工业生产中常用的动力设备,被广泛应用于各种机械设备中,如风机、水泵、压缩机等。
为了保证电机的正常运行,传感器被引入电机控制系统中,用于检测电机的运行状态和监测电机周围的环境参数。
然而,由于长期使用和环境条件的限制,电机传感器常常会出现故障,导致电机的性能下降甚至停机。
因此,电机传感器故障的检测与诊断显得尤为重要。
首先,我们需要了解电机传感器的基本原理和工作模式。
电机传感器是一种能够将电机的机械信号、电气信号或磁场信号转化为电信号输出的装置。
常用的电机传感器包括速度传感器、温度传感器、震动传感器等。
这些传感器可以通过测量电机旋转速度、温度或振动情况,来监测电机的运行状态是否正常。
当电机传感器发生故障时,我们需要通过检测与诊断来找出故障原因,并进行维修或更换。
接下来,我们将介绍一些常见的电机传感器故障及其检测与诊断方法。
首先是速度传感器故障的检测与诊断。
速度传感器是电机控制系统中常用的传感器之一,用于测量电机的转速。
如果速度传感器发生故障,电机的转速信号将无法正常获取,从而导致电机控制系统无法对电机进行准确的控制。
为了检测速度传感器是否正常工作,可以通过测量传感器输出的电压信号和电阻值,并与标准值进行比较,来判断传感器是否损坏。
同时,还可以借助电机控制系统中的自检功能,通过观察电机控制系统的故障代码和报警信号,来判断速度传感器是否存在故障。
其次是温度传感器故障的检测与诊断。
温度传感器用于监测电机的温度变化,当电机过热时,温度传感器将发出警报信号,以保护电机不过载损坏。
然而,温度传感器也可能由于长期使用而出现故障,导致无法准确测量电机的温度。
为了检测温度传感器是否正常工作,可以使用温度计等工具,对传感器所在位置进行温度测量,并与传感器显示的数值进行对比。
同时,还可以参考电机控制系统中的温度报警功能,观察报警信号是否与实际温度相符,来判断温度传感器是否有故障。
最后是震动传感器故障的检测与诊断。