八年级数学上册第11章平面直角坐标系111平面内点的坐标第2课时图形与坐标作业新版沪科版
- 格式:doc
- 大小:388.50 KB
- 文档页数:4
第2课时坐标平面内的图形◇教学目标◇【知识与技能】1.能正确地画出平面直角坐标系;2.在给定的平面直角坐标系中,会根据坐标描出点的位置.【过程与方法】1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.【情感、态度与价值观】将现实的题材呈现给学生,揭示平面直角坐标系与现实世界的联系.◇教学重难点◇【教学重点】能够根据点的坐标确定平面内点的位置.【教学难点】体会点的坐标与点到坐标轴的距离之间的关系.◇教学过程◇一、情境导入由点找坐标是已知点在平面直角坐标系中的位置,根据这点在方格纸上对应的x轴、y 轴上的数字写出它的坐标,反过来,已知坐标,在平面直角坐标系中找点,你能找到吗?二、合作探究典例在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).观察所得的图形,你觉得它像什么?[解析]如图所示,这个图形像一栋“房子”,旁边还有一棵“大树”.在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来观察所得的图形,看一看像什么?(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);(2)(1,3),(2,2),(4,2),(5,3);(3)(1,4),(2,4),(2,5),(1,5),(1,4);(4)(4,4),(5,4),(5,5),(4,5),(4,4);(5)(3,3).[解析]如图所示,看起来像“猫脸”.在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来,观察所得的图形,看一看像什么?(1)(0,0),(1,3),(2,0),(3,3),(4,0);(2)(0,3),(1,0),(2,3),(3,0),(4,3).[解析]如图所示,观察所得的图形,分别像字母“M”和“W”,合起来看像“活动门”.三、板书设计坐标平面内的图形坐标平面内的图形在坐标平面内描点作图坐标平面内图形面积的计算建立适当的直角坐标系描述图形的位置◇教学反思◇引导学生去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.。
12.1 平面内点的坐标第2课时坐标平面内的图形学习目标:1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积.2、会根据实际情况建立适当的坐标系.3、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用.学习重点::会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置.学习难点:通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系一、学前准备1.在平面直角坐标系中描出A(5,1),A→B→C→A将所描出的点连接起来;说出得到的是什么图形;并计算它的面积.2.如图,矩形ABCD的长与宽分别是6,4标。
3.(1)写出坐标:A( ),B( ),C( ),D( )(2)对称点的坐标特点:点A与点B关于____轴对称, 两个点的横坐标_____,纵坐标互为________点A与点C关于____轴对称, 两个点的纵坐标_____,横坐标互为________点A与点D关于______对称, 两个点的横、纵坐标分别互为________(3)平面直角坐标系中的点到坐标轴的距离:点P(x,y)到x轴的距离是_____,到y轴的距离是______.练一练:1.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)2.点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;预习疑难摘要_________________________________________________________________________________________________________________________________________________________________________________________________________ 二、探究活动(一)师生探究·解决问题例1. 在平面直角坐标系中描出A(-1,2), B(-2,-1),C(2,-1),D(3,2)各点,并按次序A→B→C→D→A将所描出的点连接起来; 说出得到的是什么图形;并计算它的面积.例2.适当的直角坐标系,并写出各点的坐标。
第2课时图形与坐标课题图形与坐标第2课时时间月日课型新知探究课教具教材、课件、三角板学习目标知识与能力结合所给图形,建立适当的坐标系,写出点的坐标。
过程与方法经历建坐标系描述图形的过程,开展数形结合意识。
情感态度价值观通过活动,认识数学与人类生活的密切联系,提高学习兴趣。
教学重点根据实际问题建立适当的坐标系,并能写出各点的坐标。
教学难点根据一些特殊点的坐标复原坐标系。
教法学法引导、启发,合作交流教学环节教学过程设计意图情景导入新知探究活动一:建立平面直角坐标系,描述图形1.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。
在没有直角坐标系的情况下不能写出各个顶点的坐标,所以应先建立直角坐标系,那么应如何选取直角坐标系呢?展示成果:这两位同学选取坐标系的方式都是以矩形的某一个顶点为坐标原点,矩形的相邻两边所在直线分别作为x轴、y轴,建立直角坐标系的。
这样建立直角坐标系的方式还有两种,即以A,B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。
除此之外,还有其他方式吗?通过活动,激发学生思维,调动学生学习积极性。
通过建立直角坐标系的多种方法,学生体验数学活动充满着探索与创造,激发学习兴趣。
引导学生体会在不同的坐标系中,同一图形的位置不同,那么,关键点的坐标也不同。
〔1〕以点C为坐标原点,分别以CD,CB所在直线为x轴、y轴,建立直角坐标系。
由CD的长为6,CB长为4,可得A,B,C,D的坐标分别为A〔6,4〕,B〔0,4〕,C〔0,0〕,D〔6,0〕。
〔2〕如下图,以点D为坐标原点,分别以CD,AD所在直线为x轴、y轴,建立直角坐标系。
〔3〕如下图,以矩形的中心〔即对角线的交点〕为坐标原点,平行于矩形相邻两边的直线为x稳固训练归纳小结〔4〕把上图中的横坐标逐渐向上、下移动,纵坐标左、右移动,那么可得到不同的坐标系,从而得到A,B,C,D四点的不同坐标。
从刚刚我们讨论的情况看,大家能发现什么?建立直角坐标系有多种方法。
第2课时图形与坐标
知识要点基础练
知识点1通过找点、连线、观察,确定图形的大致形状
1.经过两点A(2,3),B(-4,3)作直线AB,则直线AB(A)
A.平行于x轴
B.平行于y轴
C.经过原点
D.无法确定
2.在平面直角坐标系内顺次连接下列各点,不能得到正方形的是(C)
A.(-2,2),(2,2),(2,-2),(-2,-2),(-2,2)
B.(0,0),(2,0),(2,2),(0,2),(0,0)
C.(0,0),(0,2),(2,-2),(-2,0),(0,0)
D.(-1,-1),(-1,1),(1,1),(1,-1),(-1,-1)
知识点2坐标系中图形的面积问题
3.如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,C,D的坐标分别是(0,0),(5,0),(7,4),(2,4),则这个四边形的面积为(D)
A.6
B.8
C.12
D.20
4.如图,在平面直角坐标系中,A(2,3),B(4,0),则三角形AOB的面积为6.
知识点3根据实际情况建立适当的坐标系求解问题
5.如图,在方格纸上有A,B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为(4,3);若以点A为原点建立平面直角坐标系,则点B的坐标为(A)
A.(-4,-3)
B.(-4,3)
C.(4,-3)
D.(4,3)
6.如图,正方形ABCD的边长为6.
(1)如果以点A为原点,AB所在的直线为x轴,建立平面直角坐标系,那么y轴是哪条线?
(2)写出正方形的顶点A,B,C,D的坐标.
(3)请另建立一个平面直角坐标系,并写出此时正方形的顶点A,B,C,D的坐标.
解:(1)AD所在直线.
(2)A(0,0),B(6,0),C(6,6),D(0,6).
(3)略.
综合能力提升练
7.如图,在平面直角坐标系中,点A,B,C的坐标分别为A(2,3),B(5,0),C(4,1),则三角形AOC的面积为(A)
A.5
B.10
C.15
D.75
8.在网格图中有一个面积为10的三角形ABC,三角形ABC的三个顶点均在网格的格点上,墨墨在网格图中建立了适当的平面直角坐标系,并知道点A的坐标为(2,3),点B的坐标为(-3,-2),后来墨墨不小心在该图洒上了墨水,如图所示,点C的坐标看不清了,但他记得线段AC与y轴平行,则点C的坐标为(C)
A.(2,1)
B.(1,2)
C.(2,-1)
D.(-1,2)
【变式拓展】已知点A(0,4),B点在x轴上,AB与坐标轴围成的三角形面积为2,则B点坐标是(1,0)或(-1,0).
9.若线段AB平行于x轴,AB长为5,且点A的坐标为(4,5),则点B的坐标为(-1,5)或(9,5).
10.(1)如图,若以火车站为坐标原点,建立平面直角坐标系,超市的坐标为(2,-3),则市场的坐标为(4,3),文化宫的坐标为(-3,1);
(2)如图,若已知医院的坐标为(1,-1),宾馆的坐标为(5,3),请根据题目条件画出适合的平面直角坐标系,并直接写出体育馆的坐标(-1,4).
解:(2)图略.
11.在平面直角坐标系中描出下列各点,并将各点用线段依次连接起来.
A(-2,-1),B(2,-1),C(2,2),D(3,2),E(0,3),F(-3,2),G(-2,2),A(-2,-1).根据图形回答下列问题:
(1)观察所得图形,你觉得像什么?
(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?
解:(1)如图所示,图形像一个房子的图案.。