高中数学六种概率模型
- 格式:docx
- 大小:3.38 KB
- 文档页数:2
第二章统计一、简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二、系统抽样1.系统抽样(也叫等距离抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体)/n(样本个数)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
三、分层抽样1.分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
高中常见数学模型案例中华人民共和国教育部 4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。
”教材中常见模型有如下几种:一、函数模型用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。
函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。
1、正比例、反比例函数问题例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。
分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。
若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(⋅-=---b a b 化简得a b 45=,所以x a bx y ⋅⋅==2.0452.0,即+∈=N x x a y ,42、一次函数问题例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。
分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。
高中数学模型总结归纳数学模型是数学在实际问题中的应用,通过建立数学模型,我们可以对实际问题进行定量分析和预测。
在高中数学学习中,数学模型是一个重要的学习内容,它能够培养学生的数学思维和解决实际问题的能力。
下面将从线性规划、概率统计和微分方程三个方面总结归纳高中数学模型的相关知识。
一、线性规划模型线性规划模型是数学建模中常用的一种模型。
它通过建立一组线性方程和一个线性目标函数来描述实际问题,并求解最优解。
线性规划模型在经济、管理、交通等领域有广泛的应用。
例如,在生产计划中,可以通过线性规划模型来确定最佳的生产数量,以最大化利润或最小化成本。
在运输问题中,可以利用线性规划模型来确定最佳的物流路径,以最大化运输效益或最小化运输成本。
二、概率统计模型概率统计模型是研究随机现象的数学模型。
它通过建立概率分布函数和统计模型来描述实际问题,并对随机变量进行分析和推断。
概率统计模型在风险评估、市场调查、医学研究等领域具有重要的应用价值。
例如,在风险评估中,可以利用概率统计模型来评估不同投资组合的风险和收益,以帮助投资者做出合理的决策。
在市场调查中,可以通过概率统计模型来分析市场需求和消费者行为,以指导企业的营销策略。
三、微分方程模型微分方程模型是描述变化过程的数学模型。
它通过建立微分方程和初始条件来描述实际问题,并求解方程得到解析解或数值解。
微分方程模型在物理、生物、环境等领域有广泛的应用。
例如,在物理学中,可以利用微分方程模型来描述物体的运动规律,求解方程可以得到物体的位置、速度和加速度等信息。
在生物学中,可以通过微分方程模型来描述生物种群的增长和衰退过程,以了解生态系统的变化和稳定性。
高中数学模型是数学在实际问题中的应用,通过建立数学模型,可以对实际问题进行定量分析和预测。
线性规划模型、概率统计模型和微分方程模型是数学建模中常用的三种模型。
通过学习和应用这些模型,可以培养学生的数学思维和解决实际问题的能力,提高数学学科的学习效果和实际应用能力。
高中数学概率知识点归纳总结《高中数学概率知识点归纳总结》嗨,大家好!我虽然是个小学生,但是我对高中数学里的概率可好奇啦。
今天就想和大家聊聊我了解到的高中数学概率的那些事儿。
咱们先说说概率是啥吧。
概率啊,就像是猜一个事情发生的可能性大小。
比如说,我们玩抛硬币的游戏,硬币不是正面就是反面,那正面朝上的概率是多少呢?嘿嘿,就是二分之一啦。
这就好像是把所有可能发生的情况放在一个大盒子里,正面朝上就是其中的一种情况,所以就是一半的可能性。
这就好比是分糖果,一共有两颗糖,一颗是水果味的,一颗是牛奶味的,你拿到水果味糖的概率就是二分之一呀。
那概率的基本概念里有个叫样本空间的东西。
样本空间就是所有可能结果的集合。
就像扔骰子,骰子有六个面,那这个扔骰子的样本空间就是{1,2,3,4,5,6}这六个数。
这多像我们去超市选零食,超市里的零食架子上有各种各样的零食,这整个零食架子就像是样本空间,而每一种零食就是其中的一个结果。
再说说事件。
事件呢,就是样本空间的一个子集。
比如说扔骰子,得到偶数这个事件,那这个事件就是{2,4,6}。
这就好比是在超市里专门挑出甜的零食,这些甜的零食就是一个事件。
那事件又分好多种呢。
有基本事件,就像单独的一个结果,扔骰子得到3就是一个基本事件。
还有复合事件,像刚刚说的得到偶数这种由好几个基本事件组成的就是复合事件。
接着就是概率的计算啦。
古典概型可有趣了。
古典概型就是满足两个条件的概率模型,一是试验中所有可能出现的基本事件只有有限个,二是每个基本事件出现的可能性相等。
就像从一个盒子里拿球,盒子里有3个红球和2个白球,一共就5个球,这就是有限个球。
而且每个球被拿到的可能性是一样的。
那从这个盒子里拿到红球的概率怎么算呢?就是红球的个数除以球的总个数,也就是3除以5等于五分之三。
这就像在一群小朋友里分蛋糕,男生有3个,女生有2个,那男生分到蛋糕的概率就是男生的人数除以总人数啦。
还有几何概型呢。
几何概型和古典概型有点不一样。
高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。
在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。
一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。
3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。
对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。
“独立是指是指各次试验的结果是相互独立的。
基于n重贝努利试验建立的模型,即为贝努利模型。
4、超几何分布:是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
高中数学六种概率模型概率是数学中的重要概念,用于描述事件发生的可能性。
在高中数学中,概率是一个重要的内容,它有着广泛的应用。
在数学中,我们常常使用六种概率模型来描述和计算概率,它们分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
一、等可能模型等可能模型是最简单的概率模型之一,它假设每个事件发生的可能性相等。
例如,抛一枚公正的硬币,出现正面或反面的概率都是1/2。
又如,掷一颗公正的骰子,出现任意一个数字的概率都是1/6。
等可能模型的特点是简单明了,计算方法也非常简单,只需将某个事件发生的可能性除以总的可能性即可。
二、几何模型几何模型是描述概率的一种模型,它应用于空间中的几何问题。
例如,在一个正方形的平面上随机选择一个点,那么这个点落在正方形的某个子集中的概率就可以使用几何模型来描述。
几何模型的特点是需要用到几何图形的性质和计算方法,通常需要使用面积或体积的概念来描述概率。
三、排列模型排列模型是用于描述事件发生顺序的概率模型。
例如,从1到10这十个数字中随机选择3个数字,按照选择的顺序排列,那么不同的排列方式的概率可以使用排列模型来计算。
排列模型的特点是需要考虑事件发生的顺序,通常需要使用排列的计算方法。
四、组合模型组合模型是用于描述事件发生组合的概率模型。
例如,从1到10这十个数字中随机选择3个数字,不考虑选择的顺序,那么不同的组合方式的概率可以使用组合模型来计算。
组合模型的特点是不考虑事件发生的顺序,通常需要使用组合的计算方法。
五、条件概率模型条件概率模型是用于描述事件在给定条件下发生的概率。
例如,已知某个学生参加了数学竞赛,并且获得了奖项,那么在已知该学生获奖的条件下,他是男生的概率可以使用条件概率模型来计算。
条件概率模型的特点是需要考虑给定条件下事件发生的概率,通常需要使用条件概率的计算方法。
六、贝叶斯模型贝叶斯模型是用于描述事件的先验概率和后验概率之间的关系的概率模型。
高中数学模型系列之概率模型概率模型简介概率模型是数学中一个重要的分支,用于描述和分析不确定性和随机事件的规律。
它是基于概率论和统计学的理论基础,广泛应用于实际问题的建模和预测中。
概率的基本概念在概率模型中,我们首先需要了解一些基本的概率概念。
1. 随机试验:指具有不确定性的试验,其结果无法事先确定。
2. 样本空间:随机试验所有可能结果的集合。
3. 事件:样本空间的子集,表示我们感兴趣的结果。
4. 概率:表示事件发生的可能性大小的数值。
概率计算方法在概率模型中,我们可以使用两种基本的计算方法来计算事件的概率。
1. 古典概型:适用于各种试验结果等可能发生的情况。
概率可以通过事件发生次数与样本空间大小的比值来计算。
2. 统计概型:适用于试验结果不等可能发生的情况。
概率可以通过统计数据进行估算。
概率模型的应用概率模型广泛应用于各个领域,下面列举几个常见的应用场景。
1. 游戏和赌博:在赌博中,使用概率模型可以帮助预测不同结果的可能性,从而进行合理的押注决策。
2. 金融和保险:在金融和保险行业中,概率模型可以用于计算风险和收益的概率,从而辅助决策和风险管理。
3. 生物学和医学:概率模型可以用于分析疾病的发生和传播,预测药物的疗效,以及评估基因变异对生物体的影响。
4. 工程和科学研究:在工程和科学研究中,使用概率模型可以帮助分析和优化复杂系统的性能和可靠性。
小结概率模型作为数学的一个重要分支,具有广泛的应用领域。
通过理解和运用概率模型,我们可以更好地理解和分析各种随机事件,从而做出更合理的决策和预测。
以上是关于高中数学模型系列之概率模型的简要介绍。
_注意:此文档为纯粹的数学介绍,具体应用中可能涉及到更多的细节和实际情况,请在具体问题中咨询相应领域的专业人士或进一步深入研究。
_。
高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118,∴所求概率为P (B|A )=P (AB )P (A )=11813=16.题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=2 9,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=10 81,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=8 81 .故X的分布列为E(X)=2×59+3×29+4×1081+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×2=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.题型三:概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组75,80),第2组80,85),第3组85,90),第4组90,95),第5组95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5××40=12.第4组的人数为5××40=8.第5组的人数为5××40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为E(X)=0×25+1×815+2×115=1015=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【变式训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=.题型四:统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值. 解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n∑ni =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24,由此得b^=lxylxx=2480=,a^=y-b^x=2-×8=-,故所求线性回归方程为y^=-.(2)由于变量y的值随x值的增加而增加(b^=>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=×7-=(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【变式训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K2=10060×40×55×45≈>,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。
第十章概率(公式、定理、结论图表)1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.【特别提醒】如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n . 3. 古典概型的概率公式 P (A )=事件A 包含的可能结果数试验的所有可能结果数.典例1:5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求: (1)甲中奖的概率P(A); (2)甲、乙都中奖的概率P(B); (3)只有乙中奖的概率P(C); (4)乙中奖的概率P(D).【思路点拨】先确定事件总数,再确定四个事件中包含的基本事件个数,用古典概率公式求解. 【解析】甲、乙两人按顺序各抽一张,5张奖券分别为A 1,A 2,B 1,B 2,B 3,其中A 1,A 2为中奖券,则基本事件为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 1,B 3),(B 2,A 1),(B 2,A 2),(B 2,B 1),(B 2,B 3),(B 3,A 1),(B 3,A 2),(B 3,B 1),(B 3,B 2),共20种.(1)若“甲中奖”,则有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),共8种,故P(A)82205==. (2)甲、乙都中奖含有的基本事件有(A 1,A 2),(A 2,A 1),共2种,所以P(B)=212010=. (3)“只有乙中奖”的基本事件有(B 1,A 1),(B 2,A 1),(B 3,A 1),(B 1,A 2),(B 2,A 2),(B 3,A 2),共6种,故63()2010P C ==. (4)“乙中奖”的基本事件有(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 3,A 1),(A l ,A 2),(B 1,A 2),(B 2,A 2),(B 3,A 2),共8种,故82()205P D ==. 【总结升华】1、利用古典概型的计算公式时应注意两点: (1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏. 2、古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数m;(4)用公式()mP An求出概率并下结论.4.事件的关系与运算5.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).②若事件B与事件A互为对立事件,则P(A)=1-P(B).典例2:经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?【思路点拨】利用互斥事件概率加法公式计算.【解析】记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A、B、C、D、E、F互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,∴P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)记“至少3人排队等候”为事件H,则H=D∪E∪F,∴P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.【总结升华】第(2)问也可以这样解:因为G与H是对立事件,所以P(H)=1-P(G)=1-0.56=0.44.。
高中数学概率知识点总结在高中数学中,概率是一个重要的知识点,它不仅在数学学科中有着广泛的应用,也与我们的日常生活息息相关。
下面就让我们一起来详细梳理一下高中数学概率的相关知识。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子出现的点数、明天是否下雨等。
2、概率的定义概率是用来描述随机事件发生可能性大小的数值。
对于一个随机事件 A,其概率 P(A)的值介于 0 到 1 之间。
如果 P(A) = 0,则事件 A 几乎不可能发生;如果 P(A) = 1,则事件 A 一定会发生;如果 0 < P(A) < 1,则事件 A 有可能发生。
3、古典概型古典概型是一种最简单的概率模型。
具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
在古典概型中,事件 A 的概率 P(A) =事件 A 包含的基本事件个数÷总的基本事件个数。
4、几何概型几何概型是另一种常见的概率模型。
特点是试验中所有可能出现的结果(基本事件)有无限多个,每个基本事件发生的可能性相等。
其概率的计算通常与长度、面积、体积等几何度量有关。
二、事件的关系与运算1、事件的包含关系如果事件 A 发生必然导致事件 B 发生,那么称事件 B 包含事件 A,记作 A⊆B。
2、事件的相等关系如果 A⊆B 且 B⊆A,那么称事件 A 与事件 B 相等,记作 A = B。
3、并事件(和事件)事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的并事件,记作 A∪B。
4、交事件(积事件)事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的交事件,记作A∩B。
5、互斥事件如果事件 A 与事件 B 不能同时发生,那么称事件 A 与事件 B 互斥,其含义是A∩B =∅。
6、对立事件若两个互斥事件A、B 必有一个发生,则称事件A、B 为对立事件,记作 A =。
高中数学六种概率模型高中数学中,概率是一个重要的概念。
它用来描述事件发生的可能性大小。
在概率论中,有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
下面将逐个介绍这六种概率模型。
一、等可能概型:等可能概型是指每个基本事件发生的可能性相等。
比如抛硬币,硬币正面和反面出现的概率都是1/2。
再比如掷骰子,每个点数出现的概率都是1/6。
在等可能概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
二、几何概型:几何概型是指在几何空间中进行概率计算。
比如说,我们可以通过几何概型来计算平面内的点落在某个区域的概率。
在几何概型中,我们可以通过计算区域的面积或体积与几何空间的大小来求解概率。
三、排列概型:排列概型是指在排列问题中的概率计算。
比如说,从n个元素中取出r个元素进行排列,那么排列的个数就是n个元素的全排列数,即n!。
在排列概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
四、组合概型:组合概型是指在组合问题中的概率计算。
比如说,从n个元素中取出r个元素进行组合,那么组合的个数就是n个元素的组合数,即C(n,r)。
在组合概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
五、条件概型:条件概型是指在已知某些条件下的概率计算。
比如说,已知某个事件A发生的条件下,另一个事件B发生的概率。
在条件概型中,我们可以通过计算事件A与事件B同时发生的概率与事件A发生的概率之比来求解概率。
六、分布概型:分布概型是指在统计分布中的概率计算。
比如说,正态分布、泊松分布、二项分布等等。
在分布概型中,我们可以通过计算随机变量的取值与概率密度函数或概率质量函数之间的关系来求解概率。
高中数学中的概率有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
每种概率模型都有其独特的应用场景和计算方法。
熟练掌握这些概率模型,有助于我们更好地理解和应用概率论的知识,解决实际生活和工作中的问题。
第二讲 概 率1. 基本事件的定义一次试验中可能出现的结果都是随机事件,这类随机事件称为基本事件. 基本事件的特点:(1)任何两个基本事件是互斥的; (2)任何事件都可以表示成基本事件的和. 2. 古典概型(1)古典概型我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,以上两个特点的概率模型称为古典概率模型,简称古典概型. (2)古典概率模型的概率求法如果一次试验中基本事件共有n 个,那么每一个基本事件发生的概率都是1n ,如果某个事件A 包含了其中的m 个基本事件,那么事件A 发生的概率为P (A )=mn .3. 几何概型(1)几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. (2)几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4. 互斥事件与对立事件的关系(1)对立是互斥,互斥未必对立;(2)如果事件A ,B 互斥,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和,即P (A +B )=P (A )+P (B ).这个公式称为互斥事件的概率加法公式.(3)在一次试验中,对立事件A 和A 不会同时发生,但一定有一个发生,因此有P (A )=1-P (A ).1. (2013·安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910答案 D解析 由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.2. (2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78 答案 C解析 设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎨⎧0≤X ≤40≤y ≤4|x -y |≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P (|x -y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.3. (2013·福建)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________.答案 13解析 由3a -1<0得a <13.由几何概型概率公式得P =13.4. (2012·广东改编)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.答案 19解析 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.5. (2012·安徽改编)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率是________.答案 25解析 设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共6个.∴其概率为615=25.题型一 古典概型例1 (1)(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.(2)设集合P ={a 1,a 2,a 3,…,a 10},则从集合P 的全部子集中任取一个,取出含有3个元素的子集的概率是( )A.310B.112C.4564D.15128审题破题 (1)利用古典概型概率的计算公式求解;(2)利用集合知识求出P 的全部子集个数和含3个元素的子集个数.答案 (1)2063(2)D解析 (1)P =4×57×9=2063.(2)集合P 的全部子集个数为210=1 024,含三个元素的子集个数为10×9×86.∴P =10×9×86×210=15128.反思归纳 古典概型是最基本的概率问题,可以直接利用公式P (A )=mn 求出事件的概率,解题关键是求基本事件总数和事件A 所包含的基本事件个数.变式训练1 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种. 从中选出的2名教师性别相同的结果为:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种.所以选出的2名教师性别相同的概率为49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出的2名教师来自同一学校的结果为:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种.所以选出的2名教师来自同一学校的概率为615=25.题型二 几何概型例2 (1)在区间[-1,1]上随机取一个数x ,cosπx 2的值介于0到12之间的概率为 ( )A.13B.2π C.12 D.23(2)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 ( )A.π4B.π-22C.π6 D.4-π4审题破题 (1)将cos π2x 的条件转化为x 的条件;(2)D 为正方形区域,点满足的条件为D内的一个圆外. 答案 (1)A (2)D解析 (1)在区间[-1,1]上随机取一个实数x ,cosπx 2的值位于[0,1]区间,若使cos πx 2的值位于⎣⎡⎦⎤0,12区间,取到的实数x 应在区间⎣⎡⎦⎤-1,-23∪⎣⎡⎦⎤23,1内,根据几何概型的计算公式,可知P =2×132=13.(2)如图,不等式⎩⎨⎧0≤x ≤2,0≤y ≤2表示的区域D 为正方形OABC .以O 为圆心,以2为半径作圆弧AMC ,则阴影部分内的点到原 点O 的距离大于2,∴P =S 阴影S 正方形=2×2-14·π·222×2=4-π4.反思归纳 几何概型中基本事件总数是无限的,计算几何概型要抓住问题的测度(长度、面积、体积),利用公式计算.变式训练2 (1)如图,在单位圆O 的某一直径上随机的取一点Q ,过点Q 且与该直径垂直的弦长长度不超过1的概率为______.答案 1-32解析 弦长不超过1, 即|OQ |≥32,而Q 点在直径AB 上是随机的, 事件A ={弦长超过1}.由几何概型的概率公式得P (A )=32×22=32.∴弦长不超过1的概率为1-P (A )=1-32.(2)在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率为________.答案 23解析 ∵V S —ABC V S —APC =S △ABC S △APC =ABAP ,∴V S —APC =AP AB ·V >V 3,AP >13AB ,所以所求概率为23.题型三 互斥事件、对立事件的概率例3 班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的编号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.审题破题 “不全是男生”包括“二个女生”,“一男一女”两种情况,将所求事件分解为两个互斥事件的和.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典概型.用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P (A )=525=15=0.2.反思归纳 运用互斥事件的概率公式时,一定要首先确定各事件是否彼此互斥,然后分别求出各事件发生的概率,再求和.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解. 变式训练3 一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求 (1)取出的小球是红球或黑球的概率; (2)取出的小球是红球或黑球或白球的概率.解 方法一 (1)从12个球中任取1球是红球有5种取法,是黑球有4种取法,是红球或黑球共有5+4=9种不同取法,而任取1球共有12种取法.∴任取1球是红球或黑球的概率为P 1=912=34.(2)从12个球中任取1球是红球有5种取法,是黑球有4种取法,是白球有2种取法, ∴任取1球是红球或黑球或白球的概率P 2=5+4+212=1112.方法二 记事件A ={任取1球为红球}, B ={任取1球为黑球},C ={任取1球为白球}, D ={任取1球为绿球},则P (A )=512,P (B )=13,P (C )=16,P (D )=112.(1)取出1球为红球或黑球的概率为P 1=P (A )+P (B )=512+13=34.(2)取出1球为红球或黑球或白球的概率为P 2=P (A )+P (B )+P (C )=512+13+16=1112.(或P 2=1-P (D )=1-112=1112).典例 (12分)(2012·湖南)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14.[9分]因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件, 所以P (A )=P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3) =320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]评分细则 (1)x ,y 计算正确得2分;若只有x ,y 的值而无计算过程得1分;(2)将事件A 正确拆分得1分;P (A 1)、P (A 2)、P (A 3)少一个扣0.5分;(3)没有指明A 1、A 2、A 3互斥扣1分.阅卷老师提醒 (1)对复杂事件概率的计算要对事件进行拆分,转化为几个互斥事件的和;(2)事件拆分要不重不漏,否则易造成失分;(3)求概率时步骤要完备,每个小事件的概率要计算出来.1. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34 答案 A解析 甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3种.故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.2. 某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1的离心率e >32的概率是( )A.118B.536C.16D.13答案 C 解析 e = 1-b 2a 2>32⇒b a <12⇒a >2b ,符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况:当b =2时,有a =5,6两种情况,总共有6种情况.所以概率为66×6=16.3. 盒子内装有红球、白球、黑球三种,其数量分别为3、2、1,从中任取两球,则互斥而不对立的两个事件为 ( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个 答案 D解析 红、黑球各取一个,则一定取不到白球,故“至少有一个白球;红、黑球各一个”为互斥事件,又任取两球还包含其他事件,所以不对立.4. 盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.答案 35解析 红色球分别用A 1,A 2,A 3表示,黄色球分别用B 1,B 2表示.从中随机取出2个球:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),(A 1,A 2),(A 2,A 3),(A 1,A 3)共10种取法.2个球颜色不同共6种,故所求概率为610=35.5. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 答案 1316解析 ∵去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116,∴不在家看书的概率为P =34+116=1316.6. 在集合A ={m |关于x 的方程x 2+mx +34m +1=0无实根}中随机地取一元素x ,恰使式子lg x 有意义的概率为________.答案 45解析 由于Δ=m 2-4⎝⎛⎭⎫34m +1<0,得-1<m <4,若使lg x 有意义,必须使x >0. 在数轴上表示为,故所求概率为45.专题限时规范训练一、选择题1. 某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为 ( )A .0.5B .0.3C .0.6D .0.9答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 2. 从数字1,2,3,4,5中随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率是( )A.13B.16125C.18125D.19125答案 D解析 个位数字依次为1,2,3,4,5时,前两位数字之和依次为8,7,6,5,4,且依次有3,4,5,4,3种结果,故组成的三位数各位数字之和等于9的概率P (A )=3+4+5+4+3125=19125.3. 一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.9100B.350C.3100D.29 答案 A解析 任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种,故所求概率为9100.4. 在集合{(x ,y )|0≤x ≤5,0≤y ≤4}内任取一个元素,能使不等式x 5+y2-1≤0成立的概率为( )A.14B.34C.13D.23 答案 A解析 集合{(x ,y )|0≤x ≤5,0≤y ≤4}在直角坐标系中表示的区域是一个由直线x =0,x=5,y =0,y =4所围成的长为5,宽为4的矩形,而不等式x 5+y2-1≤0和集合{(x ,y )|0≤x ≤5,0≤y ≤4}表示的公共区域是以5为底、2为高的一个直角三角形,由几何概型公式可以求得概率为12×5×25×4=14.5. 口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.32答案 D解析 摸出红球的概率为45100=0.45,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为1-0.45-0.23=0.32.6. 任意抛掷两颗骰子,得到的点数分别为a ,b ,则点P (a ,b )落在区域|x |+|y |≤3中的概率为( ) A.2536B.16C.14D.112答案 D解析 P (a ,b )落在区域|x |+|y |≤3中的有(1,1),(1,2),(2,1),∴P =36×6=112. 7. 记集合A ={(x ,y )|x 2+y 2≤16}和集合B ={(x ,y )|x +y -4≤0,x ≥0,y ≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为( )A.12πB.1πC.14D.π-24π答案 A解析 区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P =SΩ2SΩ1=816π=12π,故选A. 8. A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },则A ∩B =B 的概率是 ( )A.29B.13C.89D .1 答案 C解析 有序实数对(a ,b )的取值情形共有9种,满足A ∩B =B 的情形有①(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),此时B =∅;②(2,1),此时B ={1};③(3,2),此时B ={1,2}.所以A ∩B =B 的概率为P =89. 二、填空题9. 抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y为整数的概率是________. 答案 12解析 将抛掷甲、乙两枚质地均匀的正四面体所得的数字x ,y 记作有序实数对(x ,y ),共包含16个基本事件,其中x y为整数的有 (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求的概率为816=12. 10.在区间[-6,6]内任取一个元素x 0,若抛物线y =x 2在x =x 0处的切线的倾斜角为α,则α∈⎣⎡⎦⎤π4,3π4的概率为________.答案 1112解析 当α∈⎣⎡⎦⎤π4,3π4时,斜率k ≥1或k ≤-1,又y ′=2x ,所以x 0≥12或x 0≤-12,所以P =1112. 11.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.答案 23解析 如图可设l AB=1,则由几何概型可知其整体事件是其周长3,则其概率是23. 12.已知函数f (x )=-x 2+ax -b .若a ,b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.答案 932解析 f (1)=-1+a -b >0,即a -b >1,如图,A (1,0),B (4,0),C (4,3),S △ABC =92, P =S △ABC S 矩=924×4=932. 三、解答题13.已知集合A ={x |x 2+3x -4<0},B ={x |x +2x -4<0}. (1)在区间(-4,5)上任取一个实数x ,求“x ∈A ∩B ”的概率;(2)设(a ,b )为有序实数对,其中a ,b 分别是集合A ,B 中任取的一个整数,求“a -b ∈A ∪B ”的概率.解 (1)由已知得A ={x |x 2+3x -4<0}={x |-4<x <1},B ={x |x +2x -4<0}={x |-2<x <4}, 显然A ∩B ={x |-2<x <1}.设事件“x ∈A ∩B ”的概率为P 1,由几何概型的概率公式得P 1=39=13. (2)依题意,得(a ,b )的所有可能的结果一共有以下20种:(-3,-1),(-3,0),(-3,1),(-3,2),(-3,3),(-2,-1),(-2,0),(-2,1),(-2,2),(-2,3),(-1,-1),(-1,0),(-1,1),(-1,2),(-1,3),(0,-1),(0,0),(0,1),(0,2),(0,3),又A ∪B ={x |-4<x <4},因此“a -b ∈A ∪B ”的所有可能的结果一共有以下14种:(-3,-1),(-3,0),(-2,-1),(-2,0),(-2,1),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(0,3).所以“a -b ∈A ∪B ”的概率P 2=1420=710. 14.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解 (1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3; 从中学中抽取的学校数目为6×1421+14+7=2; 从大学中抽取的学校数目为6×721+14+7=1. 故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15.。
㊀㊀㊀123㊀㊀高中数学中的概率模型高中数学中的概率模型Һ杨玉灿㊀(上海市南汇第一中学,上海㊀201399)㊀㊀ʌ摘要ɔ数学模型是将学生面对的实际问题抽象化,并建立相应方式的解题模式,该模式对于解决实际问题提供了便利.概率模型是概率知识的重要组成部分,在高中数学教学中有着重要的地位;概率模型是新课标要求高中学生必须掌握的模型之一,也是高考数学的必考内容.掌握古典概率模型㊁几何概率模型以及其他模型为学习概率知识打下了良好基础.下面通过一些例题系统地比较分析高中数学中的三种概率模型.ʌ关键词ɔ数学模型;高中数学;概率模型一㊁古典概率模型古典概型的随机试验,包含了若干个基本事件,这些基本事件都具有两大基本特性:第一,任何两个基本事件一定互斥;第二,排除不可能事件外,任何事件都是由基本事件所组成的.通常情况下,辨别某一个概率事件是否为古典概型,要看它有无下述两点特性:第一,该项实验中全部可能存在的基本事件数量是有限的;第二,所有基本事件存在的概率均相同.凡符合上述两点特性者均为古典概型,其数学公式为:P(A)=mn,其中m为事件A包含的基本事件个数,n为整个随机试验包含的基本事件的个数.基本事件的有限性和等可能性是正确判断随机试验的类型为古典概型的依据,也是解决此类问题的关键.处理古典概型的方法一般分为两种:图表法和列举法.(一)CASE1㊀用图表法求古典概型的概率例1㊀现存在两个玩具,其形状均为正四面体,每个玩具的四面分别写有1㊁2㊁3㊁4.现进行投掷玩具试验,以X代表第一个玩具抛落在地的贴地面数字,以Y代表另一个玩具贴地面的数字,两者用(X,Y)的形式表示.①要求罗列上述试验基本事件;②计算 两玩具贴地面数字之和大于3 的事件概率;③计算 两玩具贴地面数字相等 的事件概率.解㊀①这个试验的基本事件列表如下:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)从表中可以看出,该随机试验共包含了16个基本事件.②由①中图表可知,事件 两玩具贴地面的数字之和大于3 包含有13个基本事件,ʑP=1316.③由①中图表可知,事件 两玩具贴地面的数字相等包含有4个基本事件,ʑP=416=14.(二)CASE2㊀用列举法求古典概型的概率例2㊀现有8名志愿者,其中志愿者A1㊁A2㊁A3通晓日语,B1㊁B2㊁B3通晓俄语,C1㊁C2通晓韩语.从中选出通晓日语㊁俄语㊁韩语的志愿者各一名,组成一个小组.①求A1被选中的概率;②求B1和C1不全被选中的概率.解㊀①从8人中选出通晓日㊁俄㊁韩语的志愿者各一名,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}共18个基本事件.用M表示 A1恰被选中 这一事件.则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)}共6个基本事件.ʑP(M)=618=13.②用N表示 B1和C1不全被选中 这一事件,则其对立事件N表示为 B1㊁C1全被选中 这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},即事件N包含了3个基本事件,ʑP(N)=318=16,ʑP(N)=1-16=56.二㊁几何概率模型几何概型定义:假使每个事件发生的概率都只同该事件所表示区域的长度㊁面积或体积成比,此类概率模式即为几何概型.计算公式如下:P(A)=构成事件A的区域长度(面积或体积)试验全部结果所构成的区域长度(面积或体积).通过以上定义和计算公式,我们可以得出几何概型的三种基本题型.(一)CASE1㊀求与长度有关的几何概型的概率㊀图1例3㊀如图A㊁B两盏路灯之间的长度是30米,因住户反应两灯之间距离过远,光线太暗,现需要在A,B中间再安两盏灯C㊁D,求A㊁C两灯和B㊁D两灯之间距离都大于或等于10米的概率.解㊀记事件E为 A与C,B与D之间的距离都不小于10米 ,把AB三等分,30ˑ13=10米.ʑP(E)=1030=13.(二)CASE2㊀求与面积有关的几何概型的概率㊀图2例4㊀现有一长方形ABCD,长和宽分别为2㊁1,AB中点设为O,在长方形内随机取一点,求该点与O点距离超过1的概率.解㊀记事件E为 取点到O的距离大于1 ,其对立事件E为取点到O点距离小于1 .因为长方形的面积为2,以O为圆心,1为半径作圆,在长方形ABCD内部为半圆的面积等于π2.㊀㊀㊀㊀㊀124㊀ʑP(E)=π22=π4,P(E)=1-π4.故取点到O点距离大于1的概率为1-π4.(三)CASE3㊀求与体积有关的几何概型的概率例5㊀已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得VP-ABC<12VS-ABC的概率是多少?㊀图3解㊀要使VP-ABC<12VS-ABC,只需使三棱锥P-ABC的高小于三棱锥S-ABC的高的一半.设A1,B1,C1分别为SA,SB,SC的中点,则所求概率即为棱台A1B1C1-ABC的体积与三棱锥S-ABC的体积之比.其中O1为正三棱锥的高SO的中点,әA1B1C1是过O1平行于底面的截面.VS-ABC=13ˑ12ˑ4ˑ4ˑ32æèçöø÷ˑ3=43,VA1B1C1-ABC=VS-ABC-VS-A1B1C1=43-13ˑ(12ˑ2ˑ2ˑ32)ˑ32=732.ʑPVP-ABC<12VS-ABC()=732ː43=78.三㊁抽取 小球 试验模型抽取 小球 试验模型可以分为两种基本类型,即抽取 小球 放回试验和抽取 小球 不放回试验.抽取 小球 放回试验模型称为几何分布;抽取 小球 不放回试验模型称为超几何分布.(一)CASE1㊀求服从几何分布的概率什么叫几何分布呢?几何分布是常用的一个离散型分布,几何分布的概率公式为:P(X=k)=(1-p)k-1p,随着k增大呈等比级数变化,等比级数又称几何级数.例6㊀现有一批货品,包含合格品10枚㊁次品3枚,每次从这批货品中随机抽取一枚,且假设所有产品被抽取的概率均相等,分别算出下述两种情况中抽出合格品为止的抽取次数为X的分布列.①所有抽取出的产品均不放回;②每次抽取的产品均需放回该批次货品才能继续进行抽取.分析㊀①因抽取货品后均不放回,可知每次抽取相互影响;②因抽取后均需放回才可进行下一次抽取,可知每次抽取相互独立,该情况隶属于几何分布.解㊀①根据题意知,随机变量X可取值为:1,2,3,4.当X=1时,即第一次取出的产品为合格品,故P(X=1)=1013;当X=2时,即第二次取出的产品为合格品,第一次取到的产品为次品,故P(X=2)=313ˑ1012=526;类似地P(X=3)=313ˑ212ˑ1011=5143;P(X=4)=313ˑ212ˑ111ˑ1010=1286.所以X的分布列为:X1234P101352651431286②因为每次取出的产品都放回再抽取,所以这类试验符合几何分布的特征,随机变量X的取值为1,2,3, ,n,随机变量X服从几何分布.当X=1时,即第一次取到了合格品,ʑP(X=1)=1013;当X=2时,即第一次取到次品,第二次取到了合格品,ʑP(X=2)=313ˑ1013;当X=3时,即第一次㊁第二次取到次品,第三次取到了合格品,ʑP(X=3)=313ˑ313ˑ1013=313()2ˑ1013;类似地,当X=n时,即前n-1次取到的均为次品,第n次取到合格品,故P(X=n)=313()n-1ˑ1013.所以随机变量X的分布列为:X123nP1013313ˑ1013313()2ˑ1013313()n-1ˑ1013点评㊀(1)几何分布是放回抽样问题,这也是几何分布的特征,其分布列概率可以代入公式P(X=h)=(1-p)k-1p;(2)此类试验都可以看作是抽取 小球 的试验模型,难点在于确定随机变量X取值的个数.(二)CASE2求服从超几何分布的概率什么叫超几何分布呢?如果在含有M件次品数的N件产品中,任取n件,其中含有X件次品,则事件{X=k}发生的概率为:P(X=k)=CkMCn-kN-MCnN,k=0,1,2, ,m,其中m=min{M,N}且nɤN,MɤN,n,M,NɪN∗.我们把这样的分布称为超几何分布.由于这个级数CkMCn-kN-MCnN和几何级数类似,被称为超几何级数,因此得名.例7㊀从装有3个红球2个白球的袋子中随机取出2个球,设其中有X个红球,求随机变量X的分布列.解㊀本题的随机变量X服从超几何分布,其概率的计算公式:P(X=k)=Ck3C2-k2C25,代入公式得P(X=0)=0.1,P(X=1)=0.6,P(X=2)=0.3.故X的分布列为:X012P0.10.60.3点评㊀(1)超几何分布隶属于不放回抽样,这也是其最为显著的特点,其分布列概率公式如下:P(X=k)=CkMCn-kN-MCnN;(2)此类问题都可以转化为例7抽取 小球 的试验模型,随机变量X为取到 红球 的个数,超几何分布的本质上也是古典概型.总结:通过讨论以上三种基本概率模型,我们总结出概率模型的一些通性以及解题的一些通法.这为我们今后遇到此类问题时提供一些帮助,使我们在分析问题和处理问题时少走一些弯路,帮助我们准确而快速地找到解题的思路和方法.。
高中数学中的概率论概率论是高中数学中的一门重要学科,通过研究事件发生的可能性和规律,帮助我们理解和解决现实生活中的随机事件问题。
本文将从概率的基本概念、计算方法、常见概率模型等方面进行探讨。
一、概率的基本概念在高中数学中,我们常常遇到各种各样的概率问题,比如掷硬币、抽球、扑克牌等。
而概率就是用来描述事件发生的可能性。
它的取值范围是0到1,表示事件的不确定程度。
当概率接近0时,表示事件几乎不可能发生;当概率接近1时,表示事件几乎肯定会发生;当概率为0.5时,表示事件的发生与不发生的可能性相等。
二、概率的计算方法计算概率主要有两种方法:经典概率和统计概率。
1. 经典概率经典概率是基于事件总数的计算方法,假设每个事件发生的可能性相等。
例如,当我们掷一枚公正的硬币时,正面和反面的可能性是相等的,因此正面朝上的概率是1/2。
2. 统计概率统计概率是基于大量实验数据的计算方法,通过频率的统计来确定概率。
例如,在进行多次掷硬币实验后,我们可以得出正面朝上的频率,这个频率就可以作为正面朝上的概率。
三、常见概率模型除了基本的概率计算方法外,高中数学还介绍了一些常见的概率模型。
1. 条件概率条件概率是指在某个条件下发生的概率,用P(A|B)表示。
其中,P(A|B)表示在已知事件B发生的前提下,事件A发生的概率。
2. 乘法法则和加法法则乘法法则是用来计算两个事件同时发生的概率,加法法则是用来计算两个事件至少发生一个的概率。
3. 排列组合排列组合是概率论中常用的计算方法,特别是在有限样本空间中的计数问题中。
它包括排列和组合两种方法,用来计算不同事件之间的组合可能性。
四、概率论的应用概率论在现实生活中有广泛的应用,下面列举几个例子。
1. 随机抽样概率论可以帮助我们进行随机抽样,从而获取代表性的样本数据。
例如,在市场调研中,通过随机抽样可以获取到具有代表性的受访者群体,从而得到准确的调研结果。
2. 风险评估概率论可以帮助我们进行风险评估,分析事件发生的可能性和影响程度。
随机事件概率的几种常见模型王红敢随机事件的概率问题是近几年高考中重点考查的内容之一,掌握这一问题的求法,有助于同学们对概率这一章的学习,下面从常见的几种模型出发来探讨一下此类题目的求法。
一、分组问题模型分组问题一定要分清是有序分组或是无序分组,在此基础上又需考虑是平均分组或是非平均分组,或是局部平均分组等。
例1 现有强弱不同的10支球队,若把它们均匀分为两组进行比赛,分别计算: (1)2支最强的队被分在不同组的概率; (2)2支最强的队恰在同一个组的概率。
解:(1)10支球队均分为两组,共有510C 21种分法,而2支最强的队必须分开的分法有4812C C 21种,记事件A={2支最强队分在不同组},则P (A )=95C 21C C 215104812=。
(2)记事件B={2支最强队分在同组},则B 所包含的基本事件数为3822C C 种,于是P(B )=94C 21C C 5103822=。
二、分配问题模型解答与分配问题有关的概率试题的关键在于:利用分配问题知识正确地求出基本事件的总和A 所包含的基本事件数,通常采用先分组后分配的方法。
例2 有6个房间安排4人居住,每人可以进住任一房间,且进住房间是等可能的,试示以下事件的概率:(1)事件A ,指定的4个房间中各有1人; (2)事件B ,恰有4个房间各有1人; (3)事件C ,指定的某个房间中有2人;(4)事件D ,第一号房间有1人,第二号房间有3人。
解:由于每人可以进住任一房间,则4个人进住6个房间共有64种方法。
(1)指定的4个房间中各有1人,共有44A 种方法,所以P (A )=5416A 444=。
(2)恰有4个房间中各有1人的进住方法有4446A C 种,所以P (B )=1856A C 44446=。
(3)从4人中选出2人去指定的房间,有24C 种方法,其余2人各有5种进住方法,总共有15055C 24=⨯⨯(种)方法,所以P (C )=2162561504=。
God will not treat hardworking people badly, nor will he sympathize with fake hardworking people. It knows howhard you work.(页眉可删)高中数学概率知识点高中数学概率知识点就在下面,概率一直都是高中学习的重点,为了帮助大家学习,就为大家带来了高中数学关于概率知识点哦!高中数学概率知识点一基本事件的定义:一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件的发生都是等可能的;那么,我们称这个随机试验的概率模型为古典概型.古典概型的概率:如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数m;(4)用公式求出概率并下结论。
求古典概型的概率的关键:求古典概型的概率的关键是如何确定基本事件总数及事件A 包含的基本事件的个数。
高一数学必修3几何概型知识点几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。
几何概型的概率:一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率说明:(1)D的测度不为0;(2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积;(3)区域为"开区域";(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的.可能性大小只与该部分的测度成正比而与其形状位置无关。
高中数学六种概率模型
在高中数学中,概率是一个重要的概念,在日常生活中也随处可见。
概率模型是用来描述不确定事件发生的可能性的数学模型。
在高中数学中,我们学习了六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
第一种概率模型是等可能模型。
在等可能模型中,我们假设所有的结果是等可能发生的,例如掷硬币、掷骰子等。
在这种情况下,我们可以通过计算事件发生的可能性来求解概率。
例如,抛掷一枚硬币,出现正面的概率和出现反面的概率都是1/2。
第二种概率模型是几何模型。
几何模型适用于一些连续事件,例如抛掷一根棍子,棍子落在某个距离范围内的概率。
这种情况下,我们需要用到几何概率的计算方法,即事件的概率等于事件所占的长度或面积与总长度或面积的比值。
第三种概率模型是排列模型。
排列模型适用于有序事件的概率计算。
例如,从一副扑克牌中抽出三张牌,求得其中一种特定牌型的概率。
这种情况下,我们可以使用排列的计算公式,将事件的可能性与总的可能性进行比较。
第四种概率模型是组合模型。
组合模型适用于无序事件的概率计算。
例如,从一副扑克牌中抽出三张牌,求得其中任意三张牌的概率。
这种情况下,我们可以使用组合的计算公式,将事件的可能性与总的可能性进行比较。
第五种概率模型是条件概率模型。
条件概率模型是指在已知一些信息的情况下,求另外一些信息的概率。
例如,在已知某人生病的情况下,求他感染某种疾病的概率。
在条件概率中,我们需要用到贝叶斯公式来计算概率。
第六种概率模型是贝叶斯模型。
贝叶斯模型是一种用来更新先验概率的模型。
在贝叶斯模型中,我们通过观察到的事实来更新我们对事件发生的概率的估计。
这种模型常常用于统计学和机器学习中。
高中数学中有六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
这些模型可以帮助我们计算事件发生的可能性,对我们理解概率提供了有力的工具。
通过学习这些模型,我们可以更好地理解和应用概率知识,为未来的学习和工作打下坚实的基础。