2020年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)
- 格式:docx
- 大小:551.75 KB
- 文档页数:40
专题2.13 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解2)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.13 二次函数y=ax²+bx+c(a≠0)的图像与性质(知识讲解2)类型六、两个二次函数图像的综合判断1.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图象完全重合,则c = ;(3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表:表中m 、n 、p 的大小关系为 (用“<”连接).2.如图,抛物线F :2y ax bx c =++的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:2y a x b x c '''=++,抛物线F ′与x 轴的另一个交点为C .(1)当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案);(2)若a 、b 、c 满足了22b ac =,⊥求b :b ′的值;⊥探究四边形OABC 的形状,并说明理由.类型七、根据二次函数图象判断式的符号3.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点()1,2-和()1,0,且与y 轴相交于负半轴.第()1问:给出四个结论:①0a >;②0b >;③0c >;④0a b c ++=.写出其中正确结论的序号(答对得3分,少选、错选均不得分)第 ()2问:给出四个结论:⊥abc <0;⊥2a +b >0;⊥a +c =1;⊥a >1.写出其中正确结论的序号.4.抛物线()20y ax bx c a =++≠的图象如图所示:(1)判断a ,b ,c ,24b ac -的符号;(2)当OA OB =时,求a ,b ,c 满足的关系.5.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型八、根据抛物线上的对称点求对称轴6.已知二次函数y=ax2+bx 的图象过点(6,0),(﹣2,8).(1)求二次函数的关系式;(2)写出它的对称轴和顶点坐标.7.已知二次函数2y x bx c =-++,函数值y 与自变量x 之间的部分对应值如表:(1)写出二次函数图象的对称轴.(2)求二次函数的表达式.(3)当41x -<<-时,写出函数值y 的取值范围.8.已知二次函数y =ax 2﹣2ax .(1)二次函数图象的对称轴是直线x = ;(2)当0≤x ≤3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,请结合函数图象,直接写出t 的取值范围.9.如图,已知抛物线2142y x x =--+与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于C.(1)求点A 、B 、C 的坐标;(2)若点E 与点C 关于抛物线的对称轴对称,求梯形AOCE 的面积.类型九、二次函数y=ax2 +bx+c (a≠0)的最值10.如图在平面直角坐标系中,一次函数y kx b =+的图像经过点()0,4A -、()2,0B 交反比例函数m y x=()0x >的图像于点()3,C a ,点P 在反比例函数的图像上,横坐标为n ()03n <<,//PQ y 轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数和反比例函数的表达式;(2)求DPQ 面积的最大值.11.已知二次函数y =ax 2+bx ﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x 在什么范围内,y 随x 增大而减小?该函数有最大值还是有最小值?求出这个最值.12.已知二次函数的图象经过三点(1,0)()3,0-,30,2⎛⎫- ⎪⎝⎭ (1)求二次函数的解析式;(2)求抛物线的顶点坐标,对称轴以及抛物线与坐标轴的交点;(3)当x 为何值时,函数有最大值或最小值?最大值或最小值是多少?类型十、二次函数y=ax2 +bx+c (a≠0)图象中的将军饮马问题13.如图,抛物线y =﹣x 2+bx+c (a≠0)与x 轴交于A (1,0),B (﹣4,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上求出Q 点的坐标使得⊥QAC 的周长最小.14.如图,抛物线y =﹣x 2+bx+c (a≠0)与x 轴交于A (1,0),B (﹣4,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上求出Q 点的坐标使得⊥QAC 的周长最小.15.如图,在平面直角坐标系中,抛物线l 1:y =x 2+bx+c 过点C(0,﹣3),且与抛物线l 2:y =﹣12x 2﹣32x+2的一个交点为A ,已知点A 的横坐标为2.点P 、Q 分别是抛物线l 1、抛物线l 2上的动点.(1)求抛物线l 1对应的函数表达式;(2)若点P 在点Q 下方,且PQ⊥y 轴,求PQ 长度的最大值;(3)若以点A 、C 、P 、Q 为顶点的四边形为平行四边形,直接写出点P 的坐标.16.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值. 类型十一、二次函数图象的平移17.已知:抛物线y =﹣x 2+bx +c 经过点B (﹣1,0)和点C (2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y 轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.18.已知抛物线212y x bx c =-++经过点(1,0),(0,32). (1)求该抛物线的函数表达式;(2)抛物线212y x bx c =-++可以由抛物线212y x =-怎样平移得到?请写出一种平移的方法.19.已知二次函数y =x 2-4x +3.(1)直接写出函数图象的顶点坐标、与x 轴交点的坐标;(2)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y 轴交点的坐标.类型十二、二次函数综合20.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索) 21.已知抛物线23y ax bx =++过()30A -,,()10B ,两点,交y 轴于点C . (1)求该抛物线的表达式.(2)设P 是该抛物线上的动点,当PAB 的面积等于ABC 的面积时,求P 点的坐标.22.已知m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和⊥BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把⊥PCH 分成面积之比为2:3的两部分,请求出P点的坐标.23.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点D,抛物线的顶点为C.(1)求A,B,C,D的坐标;(2)求四边形ABCD的面积.参考答案:1.(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p<m<n 【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数y =ax2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)⊥函数y=ax2与函数y=﹣2x2+c的形状相同,⊥a=±2,⊥抛物线y=ax2沿y轴向下平移2个单位得到y=ax2﹣2,与y=﹣2x2+c的图象完全重合,⊥c=﹣2,故答案为:±2,﹣2.(3)由函数y=﹣2x2+c可知,抛物线开口向下,对称轴为y轴,⊥1﹣0<0﹣(﹣2)<5﹣0,⊥p<m<n,故答案为:p<m<n.【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.2.(1)C(3,0);(2)⊥2:3;⊥矩形,理由见解析【分析】(1)由于抛物线F′由抛物线F平移所得,开口方向和开口大小都无变化,因此a=a′=1;由于两条抛物线都与y轴交于A点,那么c=c′=3.然后可根据抛物线F的坐标求出其顶点坐标,即可得出D点的坐标,然后将D的坐标代入抛物线F′中,即可求出抛物线F′的解析式,进而可求出C点的坐标.(2)⊥与(1)的方法类似,在求出D的坐标后,将D的坐标代入抛物线F′中,即可得出关于b,b′的关系式即可得出b,b′的比例关系.⊥探究四边形OABC的形状,无非是平行四边形,菱形,矩形这几种.那么首先要证的是四边形OABC 是个平行四边形,已知了OA //BC ,只需看A ,B 的纵坐标是否相等,即OA 是否与BC 的长相等.根据抛物线F 的解析式可求出P 点的坐标,然后用待定系数法可求出OP 所在直线的解析式.进而可求出抛物线F 与直线OP 的交点B 的坐标,然后判断B 的纵坐标是否与A 点相同,如果相同,则四边形OABC 是矩形(⊥AOC =90°),如果B ,A 点的纵坐标不相等,那么四边形AOCB 是个直角梯形.【详解】解:(1) ⊥a = 1,b =-2,c = 3⊥223y x x =-+=()212x -+⊥P (1,2)⊥过点P 作PD ⊥x 轴于点D ,⊥D (1,0)由于抛物线F ′由抛物线F 平移所得,开口方向和开口大小都无变化,因此a =a ′=1;由于两条抛物线都与y 轴交于A 点,那么c =c ′=3.⊥抛物线F ′:23y x b x '=++,代入D (1,0)得0=1+b ’+3解得b ’=-4⊥243y x x =-+=()()13x x --⊥点C 的坐标为(3,0);(2)⊥抛物线2y ax bx c =++,令x =0,则y =c ,⊥A 点坐标(0,c ).⊥22b ac =, ⊥244224442ac b ac ac ac c a a a --===, ⊥点P 的坐标为(2b a -,2c ). ⊥PD ⊥x 轴于D ,⊥点D 的坐标为(2b a -,0). 根据题意,得a =a ′,c = c ′,⊥抛物线F ′的解析式为2'y ax b x c =++.又⊥抛物线F ′经过点D (2b a-,0),⊥220()42b b a b c a a'=⨯+-+. ⊥2024b bb ac '=-+.又⊥22b ac =,⊥2032b bb '=-.⊥b :b ′=23.⊥由⊥得,抛物线F ′为232y ax bx c =++. 令y =0,则2302ax bx c ++=. ⊥12,2b b x x a a=-=-. ⊥点D 的横坐标为2b a- ⊥点C 的坐标为(ba -,0).设直线OP 的解析式为y kx =.⊥点P 的坐标为(,22b c a -), ⊥22c b k a =-, ⊥22222ac ac b b k b b b =-=-=-=-, ⊥2b y x =-. ⊥点B 是抛物线F 与直线OP 的交点, ⊥22b ax bxc x ++=-. ⊥12,2b b x x a a=-=-. ⊥点P 的横坐标为2b a-, ⊥点B 的横坐标为ba -. 把b x a =-代入2b y x =-,得22()222b b b ac y c a a a=--===. ⊥点B 的坐标为(,)b c a-. ⊥BC //OA ,AB //OC .(或BC //OA ,BC =OA ),⊥四边形OABC 是平行四边形.又⊥⊥AOC =90°,⊥四边形OABC 是矩形.【点睛】本题着重考查了待定系数法求二次函数的性质、函数的平移变换、探究矩形的构成情况等重要知识点.3.(1)正确的序号为⊥⊥;(2)正确的序号为⊥⊥⊥.【分析】(1)根据抛物线开口向上对⊥进行判断;根据抛物线对称轴x=-2b a在y 轴右侧对⊥进行判断;根据抛物线与y 轴的交点在x 轴下方对⊥进行判断;根据x=1时,y=0对⊥进行判断;(2)有(1)得到a>0,b<0,c<0,则可对⊥进行判断;根据0<-2b a<1可对⊥进行判断;把点(-1,2)和(1,0)代入解析式得a ﹣b +c =2,a +b +c =0,整理有a+c=1,则可对⊥进行判断;根据a=1-c ,c<0可对⊥进行判断.【详解】(1)⊥由抛物线的开口方向向上可推出a >0,正确;⊥因为对称轴在y 轴右侧,对称轴为x =2b a->0. 又⊥a >0,⊥b <0,错误;⊥由抛物线与y 轴的交点在y 轴的负半轴上,⊥c <0,错误;⊥由图象可知:当x =1时y =0,⊥a +b +c =0,正确.故(1)中,正确结论的序号是⊥⊥.(2)⊥⊥a >0,b <0,c <0,⊥abc >0,错误;⊥由图象可知:对称轴x =2b a ->0且对称轴x =2b a -<1,⊥2a +b >0,正确; ⊥由图象可知:当x =﹣1时y =2,⊥a ﹣b +c =2,当x =1时y =0,⊥a +b +c =0;a ﹣b +c =2与a +b +c =0相加得2a +2c =2,解得:a +c =1,正确;⊥⊥a +c =1,移项得:a =1﹣c .又⊥c <0,⊥a >1,正确.故(2)中,正确结论的序号是⊥⊥⊥.【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.(2)b 由对称轴和a 的符号确定:由对称轴公式x =2b a-判断符号. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:2个交点,b 2﹣4ac >0;1个交点,b 2﹣4ac =0;没有交点,b 2﹣4ac <0.4.(1)240b ac ->;(2)10ac b -+=.【分析】(1)根据图形,开口向下得a <0,x =0时可得c >0,由对称轴可得b >0,与x 轴有两个不同交点可得b 2﹣4ac >0;(2)由于B 点坐标可以表示为:(0,c ),|OA |=|OB |,可知A (﹣c ,0)即可进行求解.【详解】(1)由图象可知,抛物线开口向下,可得:a <0;x =0时,y =c >0;⊥对称轴x =02b a->,a <0,⊥b >0; 图象与x 轴有两个不同交点可得b 2﹣4ac >0;(2)当|OA |=|OB |时,即A 点坐标为(﹣c ,0),代入抛物线方程得y =ac 2﹣bc +c 两边同时除以c 得:ac ﹣b +1=0.【点睛】本题考查了二次函数图象与系数的关系,难度一般,关键在已知条件下表示出A 点的坐标代入抛物线方程.5.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号;(2)根据图象和x=-1的函数值确定a -b+c 与0的关系;(3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0.【详解】()1∵抛物线开口向下,∴0a <,∵对称轴12b x a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方,∴0c >,∵抛物线与x 轴有两个交点,∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.6.(1)y=12x2﹣3x ;(2)对称轴为直线x=3、顶点坐标为(3,﹣92). 【分析】(1)根据图像过点(6,0),(﹣2,8)列方程组求出a 、b 的值即可,(2)把解析式配方后即可确定对称轴和顶点坐标.【详解】(1)⊥y=ax 2+bx 的图象过点(6,0),(﹣2,8).⊥3660428a b a b +=⎧⎨-=⎩, 解得:123a b ⎧=⎪⎨⎪=-⎩ , ⊥二次函数解析式为y=12x 2﹣3x ; (2)⊥y=12x 2﹣3x=12(x ﹣3)2﹣92, ⊥抛物线的对称轴为直线x=3、顶点坐标为(3,﹣92). 【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的三种形式.将二次函数的一般解析式转化为顶点式时,可采用了“配方法”.灵活运用二次函数的三种形式是解题关键. 7.(1)x=2;(2)242y x x =---;(3)22y -<≤【分析】(1)二次函数是轴对称图形,而(-4,-2),(0,-2)关于对称轴对此,利用中点坐标公式可求,(2)求二次函数解析式2y x bx c =-++,可知b,c 待定,但(-4,-2),(0,-2)只能取一点,取两点坐标(-1,1),(0,-2)代入解之即可,(3)由于对称轴与x 轴交点横坐标,在41x -<<-,说明x=-4与x=-1取值不是最大值,为此x=-4与x=-1对应的函数值的最小值与x=-2时函数值即可.【详解】解:(1)⊥二次函数是轴对称图形,4x =-、0x =时的函数值相等,都是2-,对称轴是(-4,-2),(0,-2)两点连结的中垂线,⊥此函数图象的对称轴为直线4022x -+==-; (2)由点(-1,1),(0,-2)在抛物线上将()1,1-,()0,2-代入2y x bx c =-++,得:112b c c --+=⎧⎨=-⎩, 解得:42b c =-⎧⎨=-⎩, ⊥二次函数的表达式为:242y x x =---;(3)⊥()224222y x x x =---=-++,⊥当2x =-时,y 取得最大值2,由表可知当4x =-时=2y -,当=1x -时1y =,⊥当41x -<<-时,22y -<≤.【点睛】本题考查利用列表求对称轴表示式,二次函数解析式,函数值范围,关键利用数形结合思想,掌握二次函数的性质,函数值的求法,抛物线最值.8.(1)1;(2)y =x 2﹣2x 或y =﹣x 2+2x ;(3)﹣1≤t ≤2【分析】(1)由对称轴是直线x =2b a -,可求解; (2)分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.【详解】解:(1)由题意可得:对称轴是直线x =22a a--=1, 故答案为:1;(2)当a >0时,⊥对称轴为x =1,当x =1时,y 有最小值为﹣a ,当x =3时,y 有最大值为3a ,⊥3a ﹣(﹣a )=4.⊥a =1,⊥二次函数的表达式为:y =x 2﹣2x ;当a <0时,同理可得y 有最大值为﹣a ; y 有最小值为3a ,⊥﹣a ﹣3a =4,⊥a =﹣1,⊥二次函数的表达式为:y =﹣x 2+2x ;综上所述,二次函数的表达式为y =x 2﹣2x 或y =﹣x 2+2x ;(3)⊥a <0,对称轴为x =1,⊥x ≤1时,y 随x 的增大而增大,x >1时,y 随x 的增大而减小,x =﹣1和x =3时的函数值相等,⊥t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,⊥t ≥﹣1,t +1≤3,⊥﹣1≤t ≤2.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识点的综合应用,能利用分类思想解决问题是本题的关键.9.(1)A (-4,0),B (2,0),C,0,4);(2)12【分析】(1)在抛物线的解析式中,令x=0可以求出点C 的坐标,令y=0可以求出A 、B 点的坐标;(2)先求出E 点坐标,然后求出OA ,OC ,CE 的长计算面积即可.【详解】解:(1)当y=0时,212x --x+4=0,解得x 1=-4,x 2=2, ⊥A (-4,0),B (2,0),当x=0时,y=4,⊥C (0,4);(2)y=212x -﹣x+4=12-(x+1)2+92, ⊥抛物线y=212x -﹣x+4的对称轴是直线x=-1, ⊥E 的坐标为(-2,4),则OA=4,OC=4,CE=2,S 梯形AOCE =(24)4122+⨯= 【点睛】本题是对二次函数的基础考查,熟练掌握二次函数与x 轴,y 轴交点坐标的求解及梯形面积知识是解决本题的关键.10.(1)624,y x y x=-=;(2)4. 【分析】(1)利用点()0,4A -、()2,0B 求解一次函数的解析式,再求C 的坐标,再求反比例函数解析式;(2)设6,,P n n ⎛⎫ ⎪⎝⎭则(),24,Q n n -再表示PQ 的长度,列出三角形面积与n 的函数关系式,利用函数的性质可得答案.【详解】解:(1)设直线AB 为,y kx b =+把点()0,4A -、()2,0B 代入解析式得:420b k b =-⎧⎨+=⎩解得:24k b =⎧⎨=-⎩∴ 直线AB 为24,y x =-把()3,C a 代入得:2342,a =⨯-=()3,2,C ∴把()3,2C 代入:,m y x= 236m ∴=⨯=,6,y x∴= (2)设6,,P n n ⎛⎫ ⎪⎝⎭//PQ y 轴, 则(),24,Q n n - 由0<n <3,()666242424,PQ n n n n n n∴=--=-+=-+ 16242DPQ S n n n ⎛⎫∴=-+ ⎪⎝⎭()222314,n n n =-++=--+即当1n =时, 4.DPQ S ∴=最大【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.11.(1)y =x 2﹣2x ﹣3;(2)当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【分析】(1)将(1,﹣4)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得3430a b a b +-=-⎧⎨--=⎩, 解得12a b =⎧⎨=-⎩, 所以抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,顶点坐标为(1,﹣4),∵a >0,∴当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.12.(1)21322y x x =+-;(2)顶点()1,2--,对称轴=1x -,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭;(3)=1x -时函数有最小值为2-.【分析】(1)抛物线的点过(1,0)3,0,可以设抛物线的解析式为y=a(x -1)(x+3),把点30,2⎛⎫- ⎪⎝⎭代入解得a 即可;(2)由配方法,得出抛物线解析式的顶点式,可得顶点坐标,对称轴以及抛物线与坐标轴的交点;(3)由抛物线的开口向上,可得函数有最小值,顶点坐标的纵坐标是函数的最小值.【详解】(1)设抛物线解析式为y=a(x -1)(x+3), 将30,2⎛⎫- ⎪⎝⎭代入,解得12a =, 所以抛物线解析式为21322y x x =+-, 故答案为:21322y x x =+-; (2)抛物线解析式为21322y x x =+-, 配方可得,()221123=1222y x x x =+-+-(), ⊥顶点()1,2-- ,对称轴=1x -,由(1)知,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭, 故答案为:顶点()1,2--,对称轴=1x -,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭; (3)由(2)可知,函数解析式为()21122y x =+-,开口向上,函数有最小值,当=1x - 时函数有最小值为2-, 故答案为:=1x -时函数有最小值为2-.【点睛】本题考查了二次函数的解析式求法,二次函数的性质,熟练掌握二次函数的性质是解题的关键.13.(1)y =﹣x 2﹣3x+4(2)Q (﹣32,52) 【分析】(1)函数的表达式为:y =﹣(x ﹣1)(x+4),即可求解;(2)点B 为点A 关于函数对称轴的对称点,连接BC 交函数对称轴与点Q ,则点Q 为所求,即可求解.【详解】解:(1)函数的表达式为:y =﹣(x ﹣1)(x+4)=﹣x 2﹣3x+4;(2)抛物线的对称轴为:x =﹣32, 点B 为点A 关于函数对称轴的对称点,连接BC 交函数对称轴与点Q ,则点Q 为所求,点C(0,4),将点B、C坐标代入一次函数表达式:y=kx+m得:404k mm-+=⎧⎨=⎩,解得:14km=⎧⎨=⎩,故直线BC的表达式为:y=x+4,当x=﹣32时,y=52,则点Q(﹣32,52).【点睛】本题考查了利用待定系数法求二次函数解析式,周长最小本质上考查抛物线的对称轴上求出Q点的坐标使得QA+QC最短,点B为点A关于函数对称轴的对称点,连接BC 交函数对称轴与点Q,原理是是两点之间线段最短14.(1)y=﹣x2﹣3x+4(2)Q(﹣32,52)【分析】(1)函数的表达式为:y=﹣(x﹣1)(x+4),即可求解;(2)点B为点A关于函数对称轴的对称点,连接BC交函数对称轴与点Q,则点Q为所求,即可求解.【详解】解:(1)函数的表达式为:y=﹣(x﹣1)(x+4)=﹣x2﹣3x+4;(2)抛物线的对称轴为:x=﹣32,点B为点A关于函数对称轴的对称点,连接BC交函数对称轴与点Q,则点Q为所求,点C(0,4),将点B、C坐标代入一次函数表达式:y=kx+m得:404k mm-+=⎧⎨=⎩,解得:14km=⎧⎨=⎩,故直线BC的表达式为:y=x+4,当x=﹣32时,y=52,则点Q(﹣32,52).【点睛】本题考查了利用待定系数法求二次函数解析式,周长最小本质上考查抛物线的对称轴上求出Q点的坐标使得QA+QC最短,点B为点A关于函数对称轴的对称点,连接BC 交函数对称轴与点Q,原理是是两点之间线段最短15.(1)y=x2﹣2x﹣3;(2)12124;(3)(﹣1,0)或(3,0)或(43-,139)或(﹣3,12)【分析】(1)将x=2代入y=﹣12x2﹣32x+2,从而得出点A的坐标,再将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,解得b与c的值,即可求得抛物线l1对应的函数表达式;(2)设点P的坐标为(m,m2﹣2m﹣3),则可得点Q的坐标为(m,﹣12m2﹣32m+2),从而PQ等于点Q的纵坐标减去点P的纵坐标,利用二次函数的性质求解即可;(3)设点P的坐标为(n,n2﹣2n﹣3),分两类情况:第一种情况:AC为平行四边形的一条边;第二种情况:AC为平行四边形的一条对角线.分别根据平行四边形的性质及点在抛物线上,得出关于n的方程,解得n的值,则点P的坐标可得.【详解】解:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,⊥点A的坐标为(2,﹣3).将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得23=2+23b cc⎧-+⎨-=⎩,解得23bc=-⎧⎨=-⎩,⊥抛物线l1对应的函数表达式为y=x2﹣2x﹣3;(2)⊥点P、Q分别是抛物线l1、抛物线l2上的动点.⊥设点P的坐标为(m,m2﹣2m﹣3),⊥点P在点Q下方,PQ⊥y轴,⊥点Q的坐标为(m,﹣12m2﹣32m+2),⊥PQ=﹣12m2﹣32m+2﹣(m2﹣2m﹣3),=﹣32m2+12m+5,⊥当m=﹣112=3622⎛⎫⨯-⎪⎝⎭时,PQ长度有最大值,最大值为:﹣23126⎛⎫⨯ ⎪⎝⎭+1126⨯+5=12124;⊥PQ长度的最大值为121 24;(3)设点P的坐标为(n,n2﹣2n﹣3),第一种情况:AC为平行四边形的一条边.AC=2⊥当点Q在点P右侧时,点Q的坐标为(n+2,﹣12(n+2)2﹣32(n+2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,,得n2﹣2n﹣3=﹣12(n+2)2﹣32(n+2)+2,解得,n=0或n=﹣1.⊥n=0时,点P与点C重合,不符合题意,舍去,⊥n=﹣1,⊥点P的坐标为(﹣1,0);⊥当点Q在点P左侧时,点Q的坐标为(n﹣2,﹣12(n﹣2)2﹣32(n﹣2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,得n2﹣2n﹣3=﹣12(n﹣2)2﹣32(n﹣2)+2,解得n=3或n=﹣43.⊥此时点P的坐标为(3,0)或(﹣43,139);第二种情况:AC为平行四边形的一条对角线.Q点的纵坐标y Q,n2-2n-3-(-3)=-3-y Q,y Q=-n2+2n-3,点Q的坐标为(2﹣n,﹣n2+2n﹣3),将Q的坐标代入y=﹣12x2﹣32x+2,得﹣n2+2n﹣3=﹣12(2﹣n)2﹣32(2﹣n)+2,解得,n=0或n=﹣3.⊥n=0时,点P与点C重合,不符合题意,舍去,⊥n=﹣3,⊥点P的坐标为(﹣3,12).综上所述,点P的坐标为(﹣1,0)或(3,0)或(43,139)或(﹣3,12).【点睛】本题考查抛物线解析式,平行y轴线段的最值,平行四边形的性质,掌握抛物线解析式,平行y轴线段的最值,平行四边形的性质,利用平形四边形的性质构造方程是解题关键.16.(1)215322y x x =++;(2【分析】(1)利用132y x =+的解析式求解A 的坐标,把()0,3A ,()3,0C -代入212y x bx c =++,利用待定系数法列方程组,解方程组可得答案;(2)联立两个函数解析式,求解B 的坐标,线段BC 的长度, 如图,要使MBC 的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x =-=-⨯ 点()2,0D -,连接,BD 交对称轴于,M MD MC =,此时,MB MC MB MD BD +=+=最小,再利用勾股定理求解BD =【详解】.解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A 把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴=如图,要使MBC 的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C - ∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD ==MBC ∴【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解三角形的周长的最小值,掌握以上知识是解题的关键.17.(1)y =﹣x 2+2x +3;(2)需将抛物线向上平移4个单位【分析】(1)把点B 和点C 的坐标代入函数解析式解方程组即可;(2)求出原抛物线上x =-2时,y 的值为-5,则抛物线上点(-2,-5)平移后的对应点为(-2,-1),根据纵坐标的变化可得平移的方向和平移的距离.【详解】解:(1)把B (﹣1,0)和点C (2,3)代入y =﹣x 2+bx +c得10423b c b c --+=⎧⎨-++=⎩, 解得23b c =⎧⎨=⎩, 所以抛物线解析式为y =﹣x 2+2x +3;(2)把x =﹣2代入y =﹣x 2+2x +3得y =﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.【点睛】本题主要考查待定系数法求二次函数的解析式及抛物线的平移,熟练掌握待定系数法求二次函数的解析式是解题的关键.18.(1)213y 22x x =--+;(2)先向左平移1单位,再向上平移2个单位 【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)先将抛物线的一般式转化为顶点式,然后指出满足题意的平移方法即可.【详解】解:(1)把()1,0,30,2⎛⎫ ⎪⎝⎭代入抛物线解析式得: 10232b c c ⎧-++=⎪⎪⎨⎪=⎪⎩, 解得:132b c =-⎧⎪⎨=⎪⎩, 则抛物线解析式为213y 22x x =--+; (2)抛物线解析式为22131y (1)2222x x x =--+=-++, 抛物线213y 22x x =--+可以由抛物线212y x =-先向左平移1单位,再向上平移2个单位. 【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键. 19.(1)顶点坐标为()2,1-,与x 轴的交点坐标为()1,0,()3,0;(2)()0,3-. 【分析】(1)根据配方法,可得顶点式解析式,根据函数值为零,可得相应自变量的值;(2)根据图象向左平移加,向右平移减,向上平移加,向下平移减,可得平移后的解析式,根据自变量与函数值的关系,可得答案.【详解】解:(1)()22x 4321y x x =--=-+,顶点坐标为()2,1-, 当0y =时,2430x x -+=,解得1x =或3x =,即图象与x 轴的交点坐标为()1,0,()3,0;(2)图象先向左平移2个单位,再向下平移2个单位,得()2,2212y x =-+--, 化简得23y x =-,当0x =时,3y =-,即平移后的图象与y 轴交点的坐标()0,3-.【点睛】本题考查了二次函数的性质,利用配方法得出顶点坐标,利用图象向左平移加,向右平移减,向上平移加,向下平移减得出平移后的解析式是解题关键.20.(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,)5-或12,)5(4-. 【分析】1()根据点AB 、的坐标可设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,由C 点坐标即可求解;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,即可求解; 3()512E E OEBF S OB y y ⨯⨯四边形===,则125E y =,将该坐标代入二次函数表达式即可求解. 【详解】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,⊥抛物线经过点4(0)C ,, 则54a =,解得:45a =, 抛物线的表达式为:()()2224416465345555245y x x x x x --+--+=== , 函数的对称轴为:3x =; 2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k b b =+⎧⎨=⎩解得:4,54k b ⎧=-⎪⎨⎪=⎩ 直线BC 的表达式为:4y x 45=-+, 当3x =时,85y =, 故点835P (,); 3()存在,理由: 四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则512E E OEBF S OB y y ⨯⨯四边形===, 点E 在第四象限,故:则125E y =-, 将该坐标代入二次函数表达式得:()24126555y x x -+==-, 解得:2x =或4, 故点E 的坐标为122,5(-)或12,5(4-). 【点睛】本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中2(),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法.21.(1)y=-x 2-2x +3;(2)P 坐标为(-,-3)或(-1-3).【分析】(1)把A与B坐标代入求出a与b的值,即可确定出表达式;(2)根据已知三角形面积相等求出P的坐标即可.【详解】解:(1)把A与B坐标代入得:9330a ba b c-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=-⎩,则该抛物线的表达式为y=-x2-2x+3;(2)由抛物线解析式得:C(0,3),⊥⊥ABC面积为12×3×4=6,⊥⊥P AB面积为6,即12×|Py|×4=6,即Py=3或-3,当P y=3时,可得3=-x2-2x+3,解得:x=-2或x=0(舍去),此时P坐标为(-2,3);当y P=-3时,可得-3=-x2-2x+3,解得:x=-此时P坐标为(-,-3)或(-1-3).【点睛】本题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.(1)、y=-x2-4x+5;(2)、15;(3)、(-,0)或(-,0).【详解】试题分析:(1)、首先求出方程的解得出点A和点B的坐标,然后利用待定系数法求出函数解析式;(2)、根据二次函数的解析式得出点C的坐标和顶点坐标,过D作x轴的垂线交x轴于M,从而求出⊥DMC、梯形MDBO和⊥BOC的面积,然后得出面积;(3)、设P点的坐标为(a,0),得出直线BC的方程,则PH与直线BC的交点坐标为(a,a+5),PH与抛物线的交点坐标为H(a,-a2-4a+5),然后根据EH=EP和EH=EP两种情况分别求出点P的坐标.试题解析:(1)、解方程x2-6x+5=0,得x1=5,x2=1.由m<n,m=1,n=5,。
二次函数y=ax ²+bx+c 的图象和性质➢ 二次函数y=ax ²+bx+c 的图象是一条抛物线,与抛物线y=ax ²的形状相同,位置不同。
利用配方法能够将y=ax ²+bx+c 转化为顶点式,即:a b ac a b x a a c a b a b x a b x a a c x a b x a c bx ax y 442222222222-+⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=++=➢ 二次函数y=ax ²+bx+c 的性质 a 的符号a>0a<0图象开口方向 向上向下对称轴abx 2-= ab x 2-= 顶点坐标(ab 2-, a b ac 442-)(ab 2-, a b ac 442-)增减性✧ 当abx 2-<时,y 随x 的增大而减小; ✧ 当abx 2->时,y 随x 的增大而增大; ✧ 当abx 2-<时,y 随x 的增大而增大;✧ 当abx 2->时,y 随x 的增大而减小; 最值当a bx 2-=时,y 有最小值,a b ac y 442-=当abx 2-=时,y 有最大值,ab ac y 442-=例1:已知二次函数422++-=x x y 1) 确定抛物线的开口方向、顶点坐标和对称轴2) 当x 取何值时,y 随着x 的增加而增大?当x 取何值时,y 随着x 的增加而减小?知识点二:抛物线y=ax ²+bx+c 与系数的关系抛物线在坐标系内的位置与系数a ,b ,c 的符号有着密切的联系,知道图象的位置能够确定a ,b ,c 的符号;反过来,由a ,b ,c 的符号能够确定抛物线的大致位置。
它们之间的关系如下:系数 图象的特征 系数的符号a开口向上 a>0 开口向下 a<0 b对称轴为y 轴b=0 对称轴在y 轴左侧 a ,b 同号 对称轴在y 轴右侧a ,b 异号 c经过原点c=0 与y 轴正半轴相交 c>0 与y 轴负半轴相交c<0例2:抛物线c bx 2++=ax y 经过点(-1, 0),对称轴l 如以下列图所示。
专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。
第11讲二次函数y=a 2x +bx+c 的图像与性质(7种题型)【知识梳理】二、二次函数2y ax bx c =++的图像二次函数2y ax bx c =++的图像称为抛物线2y ax bx c =++,这个函数的解析式就是这条抛物线的表达式.任意一个二次函数2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)都可以运用配方法,把它的解析式化为()2y a x m k =++的形式.对2y ax bx c =++配方得:22424b ac b y a x a a -⎛⎫=++⎪⎝⎭. 由此可知:抛物线2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的对称轴是直线2b x a =-,顶点坐标是(2ba-,244ac b a-). 当0a >时,抛物线2y ax bx c =++开口向上,顶点是抛物线的最低点,抛物线在对称轴(即直线2bx a=-)左侧的部分是下降的,在对称轴右侧的部分是上升的; 当0a <时,抛物线2y ax bx c =++开口向下,顶点是抛物线的最高点,抛物线在对称轴(即直线2bx a=-)左侧的部分是上升的,在对称轴右侧的部分是下降的. 【考点剖析】题型1:二次函数平移例1.将抛物线2y ax bx c =++(0a ≠)向下平移3个单位,再向左平移4个单位 得到抛物线2245y x x =--+,则原抛物线的顶点坐标是____________.题型2:二次函数一般式转化为顶点式例2.用配方法把下列函数解析式化为()2y a x m k =++的形式. (1)24y x x =+; (2)2368y x x =-+-.【变式1】()()2121y x x =-++化成()2y a x m k =++的形式为( )A .23252416y x ⎛⎫=+- ⎪⎝⎭B .2317248y x ⎛⎫=-- ⎪⎝⎭C .2317248y x ⎛⎫=+- ⎪⎝⎭D .2317248y x ⎛⎫=++ ⎪⎝⎭题型3:二次函数开口方向、顶点坐标、对称轴及函数的最值例3.通过配方,确定抛物线2246y x x =-++的开口方向、对称轴和顶点坐标,再描点画图.【变式1】二次函数2y ax bx c =++图像上部分点的坐标满足下表:则该函数图像的顶点坐标为____________.【变式2】二次函数2252y x x =-+的对称轴为__________,顶点坐标为__________;二次函数25222y x x =-+的对称轴为__________,顶点坐标为__________. 【变式3】二次函数()21145m y m x x m +=-+-的图像的对称轴为直线( )A .x = 1B .x =1-C .x = 2D .x =2-【变式4】对于二次函数2288y x x =-+-:(1)求出图像的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少? (2)求出此抛物线与x 、y 轴的交点坐标; (3)当x 取何值时,y 随着x 的增大而减小.【变式5】已知抛物线2y x mx n =-+-的对称轴为3x =-,且过点(0,4),求m 、n 的 值.【变式6】已知一次函数2y x c =-+与二次函数24y ax bx =+-的图像都过点A (1,1-), 二次函数的对称轴是直线x =1-,请求出一次函数和二次函数的解析式.题型4:利用各项系数符号判断二次函数图象例4.已知二次函数2y ax bx c =++,若0a <,0b <,0c >,那么它的图像大致是 ( )【变式】二次函数2y ax bx c =++中,0a >,0b <,0c =,则其图像的顶点在第____ 象限. 题型5:二次函数与一次函数综合A .B .C .D .xyxyxyxy例5.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠) 的图像可能是( )题型6:求二次函数解析式例 6.已知一次函数2y x c =-+与二次函数24y ax bx =+-的图像都过点A (1,1-), 二次函数的对称轴是直线x =1-,请求出一次函数和二次函数的解析式.题型7:与二次函数有关动态问题例7.将抛物线244y x x =-+沿y 轴向下平移后,所得抛物线与x 轴交于点A 、B , 顶点为C .如果ABC ∆是等腰直角三角形,求顶点C 的坐标.【过关检测】一、单选题1.(2020·上海市曹杨二中附属江桥实验中学九年级期中)如果二次函数2(0)y ax bx c a =++≠的图像如A .B .C .D .xyxyxyx y图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><2.(2020·上海市静安区实验中学九年级期中)如果将抛物线y =x 2向上平移1个单位,那么所得抛物线对应的函数关系式是( ) A .y =x 2+1B .y =x 2﹣1C .y =(x +1)2D .y =(x ﹣1)23.(2021·上海九年级一模)关于抛物线2y x x ,下列说法中,正确的是( )A .经过坐标原点B .顶点是坐标原点C .有最高点D .对称轴是直线1x =4.(2021·上海九年级一模)抛物线243y x x =-+-不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2021·上海九年级一模)已知点A(1,2)、B(2,3)、C(2,1),那么抛物线21y ax bx =++可以经过的点是( ) A .点A 、B 、CB .点A 、BC .点A 、CD .点B 、C6.(2021·上海九年级一模)将抛物线22(1)3y x =+-平移后与抛物线22y x =重合,那么平移的方法可以是( )A .向右平移1个单位,再向上平移3个单位B .向右平移1个单位,再向下平移3个单位C .向左平移1个单位,再向上平移3个单位D .向左平移1个单位,再向下平移3个单位7.(2021·上海九年级一模)如图所示是二次函数()20y ax bx c a =++≠图像的一部分,那么下列说法中不正确的是( ).A .0ac <B .抛物线的对称轴为直线1x =C .0a b c -+=D .点()12,y -和()22,y 在拋物线上,则12y y >二、填空题8.(2021·上海九年级二模)如果抛物线y =ax 2+bx +c 在对称轴左侧呈上升趋势,那么a 的取值范围是_____.9.(2021·上海九年级一模)函数2245y x x =+-的图象与y 轴的交点的坐标为_________.10.(2021·上海九年级一模)如果二次函数221y mx x m =++-的图像经过点()1,2P ,那么 m 的值为_______________________.11.(2020·上海民办华二浦东实验学校九年级期中)抛物线24y x x =+的最低点坐标是__________.12.(2021·上海九年级一模)二次函数223y x x =-图像的开口方向是____.13.(2021·上海九年级一模)如果抛物线l 经过点()2,0A -和()5,0B ,那么该抛物线的对称轴是直线________.三、解答题14.(2020·上海)已知抛物线2246y x x =--.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x 轴向左平移()0m m >个单位后经过原点,求m 的值.15.(2020·上海市曹杨二中附属江桥实验中学九年级期中)用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.16.(2021·上海九年级一模)将二次函数223y x x =++的图像向右平移3个单位,求所得图像的函数解析式:请结合以上两个函数图像,指出当自变量x 在什么取值范围内时,上述两个函数中恰好其中一个的函数图像是上升的,而另一个的函数图像是下降的.17.(2021·上海九年级一模)已知抛物线223y x x m =++-的顶点在第二象限,求m 的取值范围.18.(2021·上海九年级一模)用配方法把二次函数2365y x x =-+化为2()y a x m k =++的形式,并指出这个函数图像的开口方向、对称轴和顶点坐标.19.(2020·上海)已知在平面直角坐标系xOy中,二次函数y=2x2﹣12x+10的图象与x轴相交于点A和点B(点A在点B的左边),与y轴相交于点C,求△ABC的面积.。
初高中天衣无缝衔接教程(2020版)专题04二次函数y=ax2+bx+c的图像和性质本专题在初中、高中扮演的角色确定二次函数的图象,主要应抓住:抛物线的开口方向、顶点位置、对称轴以及与两坐标轴的交点.解决二次函数的问题,通常利用配方法和数形结合思想求解,先画出二次函数的图象,根据题中所给的区间观察函数的单调区间,再利用函数的单调区间研究最值等问题.二次函数是初中数学的一个重要内容,是中考重点考查的内容,也是高考必考内容,同时还是一个研究函数性质的很好的载体,因此做好二次函数的初高中衔接至关重要,初中阶段对二次函数的要求,是立足于用代数方法来研究,比如配方结合顶点式,描述函数图象的某些特征(开口方向、顶点坐标、对称轴、最值)等;再比如待定系数法,通过解方程组的形式来求二次函数的解析式.高中的函数立足于集合观点,对二次函数的学习要求明显提高,二次函数的研究更侧重于数形结合、分类讨论等思想方法.高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x2,y=-2x2的图象,并研究这两个函数图象与函数y=x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x 2,y=﹣3x 2,y=﹣x 2,y=2x 2的图象开口最大的是y=x 2, 故选A . 高中必备知识点2:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系? 同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x=-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a-.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C1沿x 轴翻折,得到抛物线C 2 (1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4), ∴抛物线C 2的函数表达式为y =x 2﹣4;(2)存在连接AN,NE,EM,MA,依题意可得:M(﹣m,4),N(m,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y =﹣x 2+2x+3;(2)把x =﹣2代入y =﹣x 2+2x+3得y =﹣4﹣4+3=﹣5, 点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1), 所以需将抛物线向上平移4个单位.专题验收测试题1.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <0【答案】D 【解析】根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.2.将抛物线y =ax 2+bx +c 向左平移2个单位,再向下平移3个单位得抛物线y =﹣(x +2)2+3,则( ) A .a =﹣1,b =﹣8,c =﹣10 B .a =﹣1,b =﹣8,c =﹣16 C .a =﹣1,b =0,c =0 D .a =﹣1,b =0,c =6【答案】D 【解析】∵y =-(x +2)2+3,∴抛物线的顶点坐标为(-2, 3),∵抛物线y=ax 2+bx+c 向左平移 2 个单位,再向下平移 3个单位长度得抛物线y =-(x +2)2+3, -2+2=0,3+3=6,∴平移前抛物线顶点坐标为(0,6), ∴平移前抛物线为y=-x 2+6,∴a =-1,b =0,c =6. 故选D.3.如图为二次函数y =ax 2+bx+c 的图象,在下列说法中:①ac <0;②方程ax 2+bx+c =0的根是x 1=﹣1,x2=3;③a+b+c <0;④当x >1时,y 随x 的增大而减小;⑤2a ﹣b =0;⑥b 2﹣4ac >0.下列结论一定成立的是( )A .①②④⑥B .①②③⑥C .②③④⑤⑥D .①②③④【答案】B 【解析】①由图象可得,a >0,c <0,∴ac <0,故①正确,②方程当y=0时,代入y=ax 2+bx+c ,求得根是x 1=-1,x 2=3,故②正确, ③当x=1时,y=a+b+c <0,故③正确, ④∵该抛物线的对称轴是直线x=1312-+= ∴当x >1时,y 随x 的增大而增大,故④错误, ⑤12ba-=则2a=-b,那么2a+b=0,故⑤错误, ⑥∵抛物线与x 轴两个交点,∴b 2-4ac >0,故⑥正确, 故正确的为. ①②③⑥选:B .4.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( )A .B .C .D .【答案】C【解析】由方程组2y ax bx y bx a⎧=+⎨=-⎩得ax 2=−a ,∵a≠0∴x 2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B .A :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;但是一次函数b 为一次项系数,图象显示从左向右上升,b >0,两者矛盾,故A 错;C :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;b 为一次函数的一次项系数,图象显示从左向右下降,b <0,两者相符,故C 正确;D :二次函数的图象应过原点,此选项不符,故D 错.故选C .5.在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使2121y y x x --<0成立的是( ) A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =﹣3x(x >0) D .y =x 2﹣4x +1(x <0) 【答案】D【解析】A 、∵k =3>0∴y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2∴当x <0时,2121y y x x -->0,故A 选项不符合;B 、∵对称轴为直线x =1,∴当0<x <1时y 随x 的增大而增大,当x >1时y 随x 的增大而减小,∴当0<x <1时:当x 1>x 2时,必有y 1>y 2 此时2121y y x x -->0, 故B 选项不符合;C 、当x >0时,y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 此时2121y y x x -->0, 故C 选项不符合;D 、∵对称轴为直线x =2,∴当x <0时y 随x 的增大而减小,即当x 1>x 2时,必有y 1<y 2 此时2121y y x x --<0, 故D 选项符合;故选:D .6.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3【答案】D【解析】∵y=2x 2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D .7.下列关于二次函数y =x 2﹣3的图象与性质的描述,不正确的是( )A .该函数图象的开口向上B .函数值y 随着自变量x 的值的增大而增大C .该函数图象关于y 轴对称D .该函数图象可由函数y =x 2的图象平移得到【答案】B【解析】A .由a =1>0知抛物线开口向上,此选项描述正确;B .∵抛物线的开口向上且对称轴为y 轴,∴当x >0时,y 随x 的增大而证得:故此选项描述错误; 由y =﹣x 2+2x =﹣(x ﹣1)2+1知抛物线的顶点坐标为(1,1),此选项错误;C .∵抛物线的对称轴为y 轴,∴该函数图象关于y 轴对称,此选项描述正确;D .该函数图象可由函数y =x 2的图象向下平移3个单位得到,此选项描述正确.故选:B .8.对于抛物线y =ax 2+2ax ,当x =1时,y >0,则这条抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】把x=1,y>0,代入解析式可得,a+2a>0,解得a>0, 对称轴:2b x a=-=-1<0, y=4?4ac b a -=04?4a a -=-a<0, ∴这条抛物线的顶点一定在第三象限故选C .9.如图,若抛物线y =﹣12x 2+3与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =k x(x >0)的图象是( )A.B.C.D.【答案】C【解析】抛物线y=﹣12x2+3,当y=0时,x=±6;当x=0时,y=3,则抛物线y=﹣12x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.10.关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是()A.对任意实数k,函数图象与x轴都没有交点B.对任意实数k,函数图象没有唯一的定点C.对任意实数k,函数图象的顶点在抛物线y=﹣x2﹣x﹣1上运动D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大【答案】C【解析】A 、△=24k ﹣4(k ﹣1)=22k 1(﹣)+3>0,抛物线与x 轴有两个交点,所以A 选项错误; B 、k (2x+1)=y+1﹣2x ,k 为任意实数,则2x+1=0,y+1﹣2x =0,所以抛物线经过定点(﹣12,﹣34),所以B 选项错误; C 、y =2x k +()﹣2k +k ﹣1,抛物线的顶点坐标为(﹣k ,﹣2k +k ﹣1),则抛物线的顶点在抛物线y =﹣2x ﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =﹣22k =﹣k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误.故选:C .11.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3 【答案】C【解析】 ∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >.∴3204a ->,∴a 83>;∵当x=-1和x=2时的函数值分别为m 和n ,∴m=n=2a-2,∴m+n=4a-4203>;故③错误故选:C .12.二次函数y=3(x ﹣h )2+k 的图象如图所示,下列判断正确的是( )A .h >0,k >0B .h >0,k <0C .h <0,k >0D .h <0,k <0【答案】B【解析】观察函数图象可知:顶点(h ,k )在第四象限,∴h >0,k <0,故选B .13.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是()A .bc 0<B .a b c 0++>C .2a b 0+=D .24ac b >【答案】C【解析】∵抛物线开口向上,∴a >0,∵对称轴在y 轴的右侧,∴a 和b 异号,∴b <0,∵抛物线与x 轴的交点在x 轴下方,∴c <0,∴bc >0,所以A 选项错误;∵当x=1时,y <0,∴a+b+c <0,所以B 选项错误;∵抛物线经过点(-1,0)和点(3,0),∴抛物线的对称轴为直线x=1, 即-b 2a=1, ∴2a+b=0,所以C 选项正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即4ac <b 2,所以D 选项错误.故选:C .14.如图,抛物线y =2ax +bx +c(a≠0)与x 轴交于点A(1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0;②4a -2b +c >0;③2a -b >0;④3a +c >0.其中正确结论的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】∵抛物线开口向下,∴a<0,∵点C 在y 轴左边,∴02b a-<,即b<0 ,∴abc >0,故①正确;当x=-2时,y=4a-2b+c>0,故②正确;对称轴在-1右侧,∴12b a->- ∴b>2a,即2a-b<0,故③错误;当x=1时,抛物线过x 轴,即a+b+c=0,∴-b=a+c ,又2a-b<0,∴2a+a+c<0,即3a+c<0,故④错误;故答案选:B .15.二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①abc>0;②4a +2b+c<0;③9a-b+c=0;④若方程a (x+5)(x-1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1;⑤若方程|ax 2+bx+c|=1有四个根,则这四个根的和为-8,其中正确的结论有( )个.A .2B .3C .4D .5【答案】B【解析】 函数的顶点坐标为(-2,-9a )则22b a -=- ,2494ac b a a-=- 则b=4a ,c=-5a函数开口向上,a >0,则b >0,c <0则abc <0,①错误把x=2代入二次函数表达式,则42y a b c =++=7a >0,②错误9y a b c =-+=0,③正确a (x+5)(x-1)=-1展开后得24510ax ax a +-+=函数2y ax bx c =++向上平移一个单位变成21y ax bx c =+++=2451ax ax a +-+其与x 轴的两个交点的横坐标1x 和2x 就是方程24510ax ax a +-+=的两个解而2y ax bx c =++与x 轴的交点的坐标为(-5,0),(1,0)因为y=2451ax ax a +-+在2y ax bx c =++的上方,所以-5<1x <2x <1,④正确21ax bx c ++= 化简为21ax bx c ++=或21ax bx c ++=-21ax bx c ++=的两解为1x 和2x由韦达定理1x +2x =b a-=-4 21ax bx c ++=-的两个解设为3x 和4x由韦达定理3x +4x =b a-=-4 故1x +2x +3x +4x =-8,⑤正确故本题答案为B .16.从﹣2,0,1,32,52,3这六个数中,随机抽取一个数记为a ,则使关于x 的二次函数y =x 2+(3﹣a )x ﹣1在x <﹣1的范围内y 随x 的增大而减小,且使关于x 的分式方程2﹣3x a x --=3a x -的解为正数的a 共有( )A .2个B .3个C .4个D .1个【答案】A【解析】 ∵关于x 的二次函数y =x 2+(3﹣a )x ﹣1在x <﹣1的范围内y 随x 的增大而减小,∴抛物线对称轴方程x =32a -, 即32a -<﹣1, 解得a <1,∵关于x 的分式方程2﹣3x a x --=3a x -的解为正数, ∴x >0,解分式方程,得x =2a+6,∴2a+6>0,解得a >﹣3,∴﹣3<a <1,∵从﹣2,0,1,32,52,3这六个数中,随机抽取一个数记为a , ∴符合条件的正数a 共有2个,为﹣2,0.故选:A .17.已知抛物线2y x bx c =++经过点()0,5A、()4,5B ,那么此抛物线的对称轴是___________. 【答案】直线2x =【解析】∵点()0,5A 、()4,5B 的纵坐标都是5相同, ∴抛物线的对称轴为直线0422x +==. 故答案为:直线2x =.18.如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达使为_____________【答案】()2322y x =-+【解析】∵原抛物线解析式为y=3x 2,的顶点坐标是(0,0),平移后抛物线顶点坐标为(2,2),∴平移后的抛物线的表达式为:y=3(x-2)2+2.故答案为:y=3(x-2)2+2.19.抛物线y =x 2﹣4x+2m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______.【答案】(3,0)【解析】把点(1,0)代入抛物线y=x 2-4x+2m 中,得m=6, 所以,原方程为y=x 2-4x+3,令y=0,解方程x 2-4x+3=0,得x 1=1,x 2=3∴抛物线与x 轴的另一个交点的坐标是(3,0).故答案为(3,0). 20.对于每个非零自然数n ,抛物线y =x 2﹣21(1)n n n ++﹣111n n ++与x 轴交于A n ,B n 两点,以A n B n 表示这两点之间的距离,则A 2B 2+…+A 2019B 2019的值是_____. 【答案】10092020【解析】 ∵22211111111(1)11(1)1n y x x x x x x n n n n n n n n n n +⎛⎫⎛⎫⎛⎫=--+=-++=-- ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭, ∴抛物线与x 轴的交点A n 、B n 坐标为(11n +,0),(1n,0), ∴A n B n =111n n -+, ∴A 2B 2=1231-, A 3B 3=1341-, …A 2019B 2019=1120192020-, ∴A 2B 2+…+A 2019B 2019=111111233420192020-+-+⋯+-=11 22020=1009 2020.故答案为:1009 2020.21.已知二次函数y=ax2﹣2ax+c(a<0)图象上的两点(x1,y1)和(3,y2),若y1>y2,则x1的取值范围是_____.【答案】﹣1<x1<3.【解析】∵y1>y2,∴ax12﹣2ax1+c>9a﹣6a+c,∴ax12﹣2ax1﹣3a>0,∵a<0,∴函数y=ax12﹣2ax1﹣3a开口向下,令ax12﹣2ax1﹣3a=0,解得x1=﹣1或3,画出函数图象示意图:由图象可得,当﹣1<x<3时,ax12﹣2ax1﹣3a>0,∴x1的取值范围是﹣1<x1<3,故答案为:﹣1<x1<3.22.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣23;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是_____.【答案】②③.如图,∵抛物线的顶点坐标为(1,n),∴抛物线的对称性为直线x=﹣b2a=1,∴b=﹣2a,∴2a+b=0,所以①错误;∵抛物线与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣2a﹣a=﹣3a,∵抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,即2≤﹣3a≤3,∴﹣1≤a≤﹣23,所以②正确;∵当x=1时,y有最大值,∴a+b+c≥am2+bm+c(m为任意实数),即a(m2﹣1)+b(m﹣1)≤0,所以③正确;∵抛物线的顶点坐标为(1,n),∴直线y=n与抛物线只有一个交点,∴直线y=n+1与抛物线没有公共点,∴关于x的方程ax2+bx+c=n+1没有实数根,所以④错误.故答案为②③.23.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=_.【答案】125. 【解析】联立得2145y x y x x =+⎧⎨=-+⎩, 解得,12x y =⎧⎨=⎩或45x y =⎧⎨=⎩,∴点A 的坐标为()1,2,点B 的坐标为()4,5,∴()()22524132AB =-+-=作点A 关于y 轴的对称点'A ,连接'A B 与y 轴的交于P ,则此时PAB ∆的周长最小,点'A 的坐标为()1,2-,点B 的坐标为()4,5,设直线'A B 的函数解析式为y kx b =+,245k b k b -+=⎧⎨+=⎩,得35135k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线'A B 的函数解析式为31355y x =+, 当0x =时,135y =, 即点P 的坐标为130,5⎛⎫ ⎪⎝⎭, 将0x =代入直线1y x =+中,得1y =,∵直线1y x =+与y 轴的夹角是45︒,∴点P 到直线AB 的距离是:1382421sin 455525⎛⎫-⨯︒=⨯= ⎪⎝⎭, ∴PAB ∆的面积是:423212525⨯=, 故答案为125.24.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣2,0)和B (4,0)、与y 轴交于点C .点M ,Q 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行.当点M 到达原点时,点Q 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴,交AC 或BC 于点P .当t =_____时,△APQ 的面积S 有最大值,为_____.【答案】83;253.【解析】把A(﹣2,0),B(4,0)代入y=ax2+bx+4得:424016440a ba b-+=⎧⎨++=⎩,解得:121ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式是:y=﹣12x2+x+4,∴C(0,4),对称轴为x=1,∴AO=2,CO=BO=4,AB=AO+BO=6,①当0<t≤2时,∵MP∥CO,∴△AMP∽△AOC,∴PM AMCO AO=,∴PM=AM COAO⨯=2t,又AQ=6﹣t,∴S=12PM•AQ=12×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时,S取最大值,最大值为8;②当2<t≤3时,作PM⊥x轴于M,作PF⊥y轴于点F,则FP∥BO,∴△COB∽△CFP,∵CO=OB,∴FP=FC=t﹣2,∴PM=OF=4﹣(t﹣2)=6﹣t,又AQ=4+32(t﹣2)=32t+1,∴S=12PM•AQ=12(6﹣t)(32t+1)=﹣34t2+4t+3=﹣34(t﹣83)2+253,当t=83时,S取最大值,最大值为253,综上所述,当t=83时,S取最大值,最大值为253.故答案为:83;253.25.如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【答案】(1)抛物线的解析式为y=x2-x-2顶点D的坐标为(, -).(2)△ABC是直角三角形,理由见解析;(3).【解析】(1)∵点A(-1,0)在抛物线y=x2 +bx-2上∴×(-1 )2 +b×(-1) –2 = 0解得b =∴抛物线的解析式为y=x2-x-2.y=x2-x-2 =(x2 -3x- 4 ) =(x-)2-,∴顶点D的坐标为(, -).(2)当x = 0时y = -2,∴C(0,-2),OC = 2.当y = 0时,x2-x-2 = 0,∴x1 = -1,x2 = 4∴B (4,0)∴OA =1, OB = 4, AB = 5.∵AB2 = 25, AC2 =OA2 +OC2 = 5, BC2 =OC2 +OB2 = 20,∴AC2 +BC2 =AB2.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC +MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y =kx +n ,则,解得n = 2,. ∴. ∴当y = 0时,,∴. 26.如图,抛物线23y ax bx =+-过A (-1,0)、B (3,0),直线AD 交抛物线于点D ,点D 的横坐标为2,点P (m ,n )是线段AD 上的动点.(1)求抛物线和直线AD 的解析式;(2)过点P 的直线垂直于x 轴,交抛物线于点H ,①求线段PH 的长度l 与m 的关系式;②当PH =2时,求点P 的坐标.【答案】(1)223y x x =--;1y x =--;(2)①22l m m ;②(0,1),12,-P 【解析】(1)把(-1,0),(3,0)代入函数解析式,得309330a b a b --⎧⎨+-⎩== , 解得12a b ⎧⎨-⎩==, 抛物线的解析式为y=x 2-2x-3;当x=2时,y=22-2×2-3,解得y=-3,即D (2,-3).设AD 的解析式为y=kx+n ,将A (-1,0),D (2,-3)代入,得023k n k n -+⎧⎨+-⎩==,解得11k n -⎧⎨-⎩==,直线AD 的解析式为y=-x-1;(2)①设P 点坐标为(m ,-m-1),H (m ,m 2-2m-3),l=(-m-1)-(m 2-2m-3)化简,得l=-m 2+m+2;②∵l=2,∴-m 2+m+2=2,解得m=0或m=1,∴P 的坐标为(0,-1)或(1,-2).27.已知二次函数y=ax 2+bx+c 的图象经过A (n ,b ),B (m ,a )且m+n=1. (1)当b=a 时,直接写出函数图象的对称轴;(2)求b 和c (用只含字母a 、n 的代数式表示):(3)当a<0时,函数有最大值-1,b +c≥a ,n≤13,求a 的取值范围. 【答案】(1)12x =-;(2)b na =-,c na =-;(3)3611- ≤a≤167-. 【解析】(1)由题意可得 抛物线的对称轴为:直线1222b b x a b =-=-=- (2)因为二次函数2y ax bxc =++经过A (n ,b ),B (m ,a ),所以22am bm c a an bn c b ⎧++=⎨++=⎩①②方程组①-②,得22()()a m n b m n a b -+-=-,()[()]m n a m n b a b -++=-,∵m-n=1, a ()m n b a b ++=-,∴(21)a n b a b ++=-,得b na =-,把b na =-代入方程组中②,得c na =-,(3)由(2)可知:+2b c na =- 又b c +≥a2na -≥a ,当a <0时,n≥12-, 由n≤13-得,12-≤n≤13-, ∵224()24b ac b y a x a a-=++,a <0 24=14ac b a-- 24=4ac b a --,且b c na ==-,得24()()4a na na a ---=-,化简得,244na n a +=,∴211(2)14n a =+-, 配方得211(2)14n a =+-, ∵1a 在12-≤n≤13-时随n 的增大而增大 当n=12-时,1716a =-,当n=13-时,11136a =- 3611- ≤a≤167-. 28.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标; (3)在线段OC 上是否存在一点M ,使2BM 2+的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)ACP 的面积的最大值为278,此时315(,)24P -;(3)当(0,1)M 时,2BM 2+的最小值为22【解析】(1)∵(3,0)A ,OA 3OB =∴OA=3,OB=1∴(1,0)B -∴设抛物线的交点式为(1)(3)y a x x =+-,将(0,3)C 代入得31(3)a =⋅⋅-,解得1a =-∴21(1)(3)23y x x x x =-+-=-++,即该抛物线的函数关系式为2y x 2x 3=-++.(2)作PD ⊥x 轴,与线段AC 相交于D.设直线AC :y=kx+d将(0,3)C ,(3,0)A 分别代入得303d k d =⎧⎨=+⎩,解得31d k =⎧⎨=-⎩, 所以y=-x+3.设2(,23)P n n n -++,则(,3)D n n -+,2223(3)3DP n n n n n =-++--+=-+设△DCP 以PD 为底时高为h 1,△DAP 以PD 为底时高为h 2,则221212111139()(3)3222222APC DPC DPA S S S PD h PD h PD h h n n n n ∆∆∆=+=⋅⋅+⋅⋅=⋅⋅+=-+⋅=-+因为302-<,所以923232()2n =-=⨯-时取得最大值为278.22331523()23224n n -++=-+⨯+=. 故ACP 的面积的最大值为278,此时315(,)24P -. (3)存在,如下图,作以CM 为斜边的等腰三角形,它的直角顶点为第一象限内的N 点,∵△MCN 为等腰直角三角形,∴MN=22MC ,即要使2BM 2+最短,只需要BM MN +最短为BN 即可, 设(0,)M m 则33,2m MC m EM EN -=-==,33(,)22m m N -+∴222233117(1)()2222m m BN m m -+=++=-+ 当12112m -==-⨯时,2BN 取得最小值为8,即22BN =. 当(0,1)M 时,2BM CM 2+的最小值为22. 29.如图,抛物线y =ax 2+bx+4交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .(1)求此抛物线的表达式;(2)过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)过点P 作PN ⊥BC ,垂足为点N .请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?【答案】(1)2114,33y x x =-++(2)存在,点Q 的坐标为:Q (1,3)或(522,8522-);(3)P N 2(m ﹣2)222,当m =2时,PN 22. 【解析】(1) 抛物线y =ax 2+bx+4交x 轴于A (﹣3,0),B (4,0)两点,设2(3)(4)12,y a x x ax ax a =+-=--即:﹣12a =4,解得:1,3a =-则抛物线的表达式为2114,33y x x =-++ (2)存在,理由:2114,33y x x =-++ ∴ 点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =42,∠OBC =∠OCB =45°,将点B 、C 的坐标代入一次函数表达式:y =kx+b 并解得:y =﹣x+4…①, 同理可得直线AC 的表达式为:443y x =+, ①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:222(7)5,n n -+=解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC ﹣CQ =25, 则QM =MB =8522-, 故点Q (522,8522-); ③当CQ =AQ 时,则Q 在AC 的垂直平分线上,设直线AC 的中点为K (32-,2), 过点Q 与CA 垂直直线的表达式中的k 值为34QK k =-, 直线QK 的表达式为:3748y x =-+ ②, 联立①②并解得:252x =(舍去); 故点Q 的坐标为:Q (1,3)或(522,852-); (3)设点21)1,433(P m m m -++,则点Q (m ,﹣m+4), ∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN ,PN =PQsin ∠PQN =22211222(44)(2),33m m m m -+++-=--+ ∵20,6-< ∴PN 有最大值,当m =2时,PN 的最大值为:223. 30.如图,在矩形ABCD 中,CD =3cm ,BC =4cm ,连接BD ,并过点C 作CN ⊥BD ,垂足为N ,直线l 垂直BC ,分别交BD 、BC 于点P 、Q .直线l 从AB 出发,以每秒1cm 的速度沿BC 方向匀速运动到CD 为止;点M 沿线段DA 以每秒1cm 的速度由点D 向点A 匀速运动,到点A 为止,直线1与点M 同时出发,设运动时间为t 秒(t >0).(1)线段CN = ;(2)连接PM 和QN ,当四边形MPQN 为平行四边形时,求t 的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?【答案】(1)125;(2)t=3625;(3)t=4时,△PMN的面积取得最大值,最大值为5425.【解析】(1)∵四边形ABCD是矩形∴BC=AD=4cm,∠BCD=90°=∠A,∴BD22BC CD+5cm,∵S△BCD=12BC CD=12BD CN∴CN=12 5故答案为:12 5(2)在Rt△CDN中,DN22CD CN-9 5∵四边形MPQN为平行四边形时∴PQ∥MN,且PQ⊥BC,AD∥BC ∴MN⊥AD∴MN∥AB∴△DMN∽△DAB∴DM DN AD BD=即95 45 DM=∴DM=3625cm∴t=36 25(3)∵BD=5,DN=9 5∴BN=9 5如图,过点M作MH⊥BD于点H,∵sin∠MDH=sin∠BDA=AB MH BD MD=∴35MDt =∴MH=3 5 t当0<t<64 25∵BQ=t,∴BP=45t,∴PN=BD﹣BP﹣DN=5﹣95﹣45t=165﹣54t∴S△PMN=12×PN×MH=12×35t×(165﹣54t)=﹣38t2+2425t∴当t=3225s时,S△PMN有最大值,且最大值为384625,当t=6425s时,点P与点N重合,点P,点N,点M不构成三角形;当6425<t≤4时,如图,∴PN=BP﹣BN=54t﹣165∴S△PMN=12×PN×MH=12×35t×(54t﹣165)=38t2﹣2425t当6425<t≤4时,S△PMN随t的增大而增大,∴当t=4时,S△PMN最大值为54 25,∵5425>384625∴综上所述:t=4时,△PMN的面积取得最大值,最大值为54 25.。
【第7讲】 二次函数的图象和性质【基础知识回顾】知识点1 二次函数的图象与解析式 二次函数可以表示成以下两种形式:1.一般式:y =ax 2+bx +c (a ≠0);2.顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ).3.交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.知识点2 二次函数的最值二次函数2(0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础. 在初中阶段大家已经知道:当0a >时,函数在2bx a =-处取得最小值244ac b a -,无最大值; 当0a <时,函数在2bx a =-处取得最大值244ac b a -,无最小值. 今后解决二次函数问题时,要善于借助函数图象,利用数形结合的思想方法解决问题.【合作探究】探究一求二次函数解析式【例1-1】已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.【解析】∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∵顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∵x=1.∵顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a=-+<,∵二次函数的图像经过点(3,-1),∵21(32)1a-=-+,解得a=-2.∵二次函数的解析式为22(2)1y x=--+,即y=-2x2+8x-7.归纳总结:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.【例1-2】已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.【分析一】:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式.【解法一】:∵二次函数的图象过点(-3,0),(1,0),∵可设二次函数为y=a(x+3) (x-1) (a≠0),展开,得y=ax2+2ax-3a,顶点的纵坐标为2212444a aaa--=-,由于二次函数图象的顶点到x轴的距离2,∵|-4a|=2,即a=12±.所以,二次函数的表达式为y=21322x x+-,或y=-21322x x-+.【分析二】:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x=-1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.【解法二】:∵二次函数的图象过点(-3,0),(1,0),∵对称轴为直线x=-1.又顶点到x轴的距离为2,∵顶点的纵坐标为2,或-2.于是可设二次函数为y=a(x+1)2+2,或y=a(x+1)2-2,由于函数图象过点(1,0),∵0=a(1+1)2+2,或0=a(1+1)2-2.∵a=-12,或a=12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.归纳总结:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题. 【例1-3】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.【解析】设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.探究二 二次函数的最值【例2-1】当22x -≤≤时,求函数223y x x =--的最大值和最小值. 【分析】:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.【解析】:方法一:作出函数的图象.当1x =时,min4y =-,当2x =-时,max 5y =.方法二:配方法2223(1)4y x x x =--=-- 当1x =时,min4y =-,当2x =-时,max5y =.【例2-2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 【解析】方法一:作出函数的图象.当1x =时,max1y =-,当2x =时,min5y =-.方法二:配方法,215()24y x =-++, 22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩当1x =时,max1y =-,当2x =时,min 5y =-.归纳总结:二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例2-3】当0x ≥时,求函数(2)y x x =--的取值范围.【解析】方法一:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.方法二:22(2)2(1)1y x x x x x =--=-=--,当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例2-4】当1t x t ≤≤+时,求函数225y x x =--的最小值(其中t 为常数). 【分析】由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.【解析】函数225y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 25y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 12156y =-⨯-=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时: 当1x t =+时,22min (1)2(1)56y t t t =+-+-=-.综上所述:2min26,06,0125,1t t y t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩【例2-5】当02x ≤≤时,求函数21y x tx =--的最小值(其中t 为常数).【分析】由于对称轴随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.【解析】函数21y x tx =--的对称轴为2tx =.(1) 当对称轴在所给范围左侧.即0t <时:当0x =时,min1y =-;(2) 当对称轴在所给范围之间.即022t ≤≤,即04t ≤≤时,当2tx =,2min 14t y =--; (3) 当对称轴在所给范围右侧.即4t >时,当2x =时,min32y t =-综上所述:2min1,01,04432,4t t y t t t -<⎧⎪⎪=--≤≤⎨⎪->⎪⎩.【课后作业1】1.选择题:把函数y =-(x -1)2+4的图象的顶点坐标是 ( ) (A )(-1,4) (B )(-1,-4) (C )(1,-4) (D )(1,4) 2.填空:(1)已知某二次函数的图象与x 轴交于A (-2,0),B (1,0),且过点C (2,4),则该二次函数的表达式为 .(2)已知某二次函数的图象过点(-1,0),(0,3),(1,4),则该函数的表达式为 .3.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,1-),B (1,0),C (1-,2); (2)已知抛物线的顶点为(1,3-),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (3-,0),(5,0),且与y 轴交于点(0,3-); (4)已知抛物线的顶点为(3,2-),且与x 轴两交点间的距离为4.4.如图,某农民要用12m 的竹篱笆在墙边围出一块一面为墙、另三面为篱笆的矩形地供他圈养小鸡.已知墙的长度为6m ,问怎样围才能使得该矩形面积最大?5.如图所示,在边长为2的正方形ABCD 的边上有一个动点P,从点A 出发沿折线ABCD 移动一周后,回到A 点.设点A 移动的路程为x ,ΔP AC 的面积为y .(1)求函数y 的解析式; (2)画出函数y 的图像; (3)求函数y 的取值范围.CP图2.2-10【参考答案1】1.(1)D 2.(1)y =x 2+x -2 (2)y =-x 2+2x +3 3.(1).(2).(3).(4)()22115323222y x x x =--=-+ 4.当长为6m ,宽为3m 时,矩形的面积最大.5.(1)函数f (x )的解析式为, 02,4, 24,4, 46,8, 68.x x x x y x x x x <≤⎧⎪-<<⎪=⎨-<≤⎪⎪-<<⎩(2)函数y 的图像如图所示(3)由函数图像可知,函数y 的取值范围是0<y ≤2.1222--=x x y 1843)1(422+-=--=x x x y 35251)5)(3(512--=-+=x x x x y【课后作业2】1.抛物线2(4)23y x m x m=--+-,当m= _____ 时,图象的顶点在y轴上;当m= _____时,图象的顶点在x轴上;当m= _____ 时,图象过原点.2.用一长度为l米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________ .3.求下列二次函数的最值:(1)2245y x x=-+;(2) (1)(2)y x x=-+.4.求二次函数2235y x x=-+在22x-≤≤上的最大值和最小值,并求对应的x的值.5.对于函数2243y x x=+-,当0x≤时,求y的取值范围.6.求函数3 y=7.已知关于x的函数22(21)1y x t x t=+++-,当t取何值时,y的最小值为0?8.已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.9.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.10.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b .11.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.12.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).【参考答案2】1.4 14或2,32 2.2216l m3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值.4.当34x =时,min 318y =;当2x =-时,max 19y =.5.5y ≥-6.当56x =时,min 3y =-;当23x =或1时,max 3y =. 7.当54t =-时,min 0y =.8.(1) 当1x =时,min1y =;当5x =-时,max 37y =.(2) 当0a ≥时,max2710y a =+;当0a <时,max 2710y a =-.9.21m -≤≤-. 10.2,2a b ==-.11.14a =-或1a =-.12.当0t ≤时,max22y t =-,此时1x =;当0t >时,max 22y t =+,此时1x =-.。
2020年中考数学专题培优 二次函数图像和性质(含答案)一、单选题(共有10道小题)1.抛物线247y x x =--的顶点坐标是( )A .(2,-11)B .(-2,7)C .(2,11)D .(2,-3)2.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )A.()2332y x =+- B.()2322y x =++ C.()2332y x =--D.()2332y x =-+3.若抛物线22y x x c =-+与y 轴的交点坐标为(0,-3),则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线x =1C.当x =1时,y 的最大值为-4D.抛物线与x 轴的交点坐标为(-1,0),(3,0)。
4.如图,二次函数()2,0y ax bx c a =++≠的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为(-1,0).则下面的四个结论中正确的个数是()①20a b +=;②420a b c +<-;③0ac >;④当0y <时,1x <-或2x >. A .1 B .2 C .3 D .45.将抛物线216212=-+yx x 向左平移2个单位后,得到新抛物线的解析式为( ) A .21(8)52=-+y x B .21(4)52=-+y x C .21(8)32=-+y x D .21(4)32=-+y x6.已知二次函数()²,0y ax bx c c =++≠的图象如图所示,下列说法错误..的是 ( )A.图像关于直线1x =对称B.函数()²,0y ax bx c c =++≠的最小值是-4C.-1和3是方程()²0,0ax bx c c ++=≠ 的两个根D.当1x <时,y 随x 的增大而增大7.对于二次函数22y x x =-+,有下列四个结论,其中正确的结论的个数为()CA B -1x=1xy O -11-4xyO①它的对称轴是直线1x =;②设221112222,2y x x y x x =-+=-+,则21x x >时,有21y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0) ④当02x << 时,0y > A.1B.2C.3D.48.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x …… -1 0 1 3 …… y …… -3 1 3 1 ……则下列判断中正确的是( )A.抛物线开口向上B.抛物线与y 轴交于负半轴C.图象对称轴为直线x=1D.方程02=++c bx ax 有一个根在3与4之间9.如图,一段抛物线24(22)=-+-yx x ≤≤为1C ,与x 轴交于0A ,1A 两点,顶点为1D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象,垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()Px y ,,与线段12D D 交于点333()P x y ,,设123x x x ,,均为正数,123=++t x x x ,则t 的取值范围是( )A .68t <≤B .68t ≤≤C .1012t <≤D .1012t ≤≤10.在同一平面直角坐标系中,函数y mx m =+,和函数222,)0y mx x m m =-++≠(是常数,且的图象可能是( )二、填空题(共有7道小题) 11.抛物线开口方向对称轴 顶点坐标yxC 2C 1A 0D 2D 1A 1OAx y O B xyO C x yODxyO()232y x =--()2132y x =+12.抛物线()2241y x =--的开口 ,顶点坐标是 ,对称轴是 ; 当x = 时,y 有最 值为 ;在对称轴左侧,即当x 时,y 随x 的增大而 , 在对称轴右侧,即当x 时,y 随x 的增大而 .13.在平面直角坐标系中,若将抛物线()132++-=x y 先向左平移2个单位长度,再向下平移3个单位长度,则经过这两次平移后所得抛物线的顶点坐标是 .14.二次函数422-+=x x y 的图象的开口方向是 ,对称轴是 ,顶点坐标是15.抛物线3422+-=x x y 绕坐标原点旋转180°所得的抛物线的表达式是 .16.若抛物线c x x y +-=42的顶点在直线1+=x y 上,求c 的值______ 17.已知点P (m ,n )在抛物线a x ax y --=2上,当m ≥﹣1时,总有n ≤1成立,则a 的取值范围是 .三、解答题(共有6道小题)18.抛物线()233y x =- 与x 轴交点为A ,与y 轴交点为B ,求A ,B 两点坐标及△AOB 的面积19.已知,在同一平面直角坐标系中,反比例函数xy 5=与二次函数c x x y ++-=22的图象交于点A (-1,m ). (1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标.20.已知抛物线32++=bx ax y 的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x 的方程082=-+bx ax 的一个根为4,求方程的另一个根.21.当k 分别取-1,1,2时,函数()2145y k x x k =--+-都有最大值吗?请写出你的判断,并说明理由;若有最大值,请求出最大值。
第六讲 二次函数专项一 二次函数的图象和性质知识清单一、二次函数的概念一般地,形如 (a ,b ,c 为常数,a≠0)的函数叫做二次函数.其中x是自变量,a ,b ,c 分别是函数解析式的二次项系数、 和常数项. 二、二次函数的图象和性质1. 二次函数的图象是一条 .其一般形式为y =ax 2+bx +c ,由配方法可化成y =a (x -h )2+k 的形式,其中h=2ba-,k=244ac b a -.2. 二次函数y =ax 2+bx +c (a ≠0)的图象和性质3. 二次函数y =ax 2+bx +c (a ≠0)的图象与系数a ,b ,c 符号的关系ab <0(a ,b 异号)对称轴在y 轴右侧 c决定抛物线与y 轴的交点c >0 交点在y 轴正半轴 c =0 交点在原点 c <0交点在y 轴负半轴考点例析例1 抛物线y=ax 2+bx+c 经过点(-1,0),(3,0),且与y 轴交于点(0,-5),则当x=2时,y 的值为( )A .-5B .-3C .-1D .5分析:画出抛物线的大致图象,可知抛物线的对称轴为x=1,根据抛物线的对称性可求出y 的值. 例2 一次函数y=ax+b 的图象如图1所示,则二次函数y=ax 2+bx 的图象可能是( )A B C D分析:根据一次函数y=ax+b 的图象经过的象限得出a <0,b >0,可知二次函数y=ax 2+bx 的图象开口向下,对称轴在y 轴右侧.例3 二次函数y=ax 2+bx+c (a≠0)的图象如图2所示,下列说法中,错误的是( ) A .对称轴是x=12B .当-1<x <2时,y <0C .a+c=bD .a+b >-c图2分析:由图可知,对称轴是x=1+22-=12,选项A 正确;当-1<x <2时,函数图象在x 轴的下方,所以当-1<x <2时,y <0,选项B 正确;当x=-1时,y=a-b+c=0,所以a+c=b ,选项C 正确;当x=1时,y=a+b+c <0,所以a+b <-c ,选项D 错误.例4二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =12,且经过点(2,0).有下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若112y ⎛⎫- ⎪⎝⎭,,252y ⎛⎫ ⎪⎝⎭,是抛物线上的两点,则y 1<y 2;图1⑤14b +c >m (am +b )+c (其中m ≠12).其中正确的有( ) A .2个B .3个C .4个D .5个图3分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而可得abc 的正负;由对称轴x=2b a -=12,得b=-a ,由图象易知当x=-1时,y=a-b+c=﹣2b+c =0;根据抛物线经过点(2,0),可得4a+2b+c=0;根据“开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”可判断y 1与y 2的大小;由图象知当x =12时,y 有最大值为14a+12b+c=14b +c ,由此可判断14b +c 与m (am +b )+c 的大小关系.归纳:(1)几种常见代数式的判断①2a ±b 2b a-与±1比较②a ±b +c 令x =±1,看纵坐标 ③4a ±2b +c 令x =±2,看纵坐标 ④9a ±3b +c令x =±3,看纵坐标⑤3a +c ,3b -2c 等关于a ,c 或b ,c 的代数式 一般由②③④式与①式结合判断(2①当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小.ꎻ②利用抛物线上的对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性比较大小. ③利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小;开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”也可以比较大小. 跟踪训练1.已知二次函数y=(a-1)x 2,当x >0时,y 随x 的增大而增大,则实数a 的取值范围是( ) A .a >0 B .a >1 C .a≠1 D .a <12.二次函数y=x 2+4x+1的图象的对称轴是( )A .x=2B .x=4C .x=-2D .x=-4 3.关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值64.一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A B C D5.如图3,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0),与y轴交于点C.有下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数为()A.1 B.2 C.3 D.4第5题图6.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.专项二确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的解析式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5分析:由抛物线的解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线的顶点坐标,用待定系数法求出新抛物线的解析式.跟踪训练1.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P 关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)2.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了如图所示直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数解析式各不相同,其中a的值最大为()A.52B.32C.56D.12第2题图专项三二次函数图象的平移知识清单二次函数图象的平移规律平移前的解析式平移方向及距离平移后的解析式口诀顶点坐标y=a(x-h)2+k (a≠0)向左平移m个单位长度y=a(x-h+m)2+k左加右减纵坐标不变向平移m个单位长度y=a(x-h-m)2+k向上平移m个单位长度y=a(x-h)2+k+m上加下减横坐标不变向平移m个单位长度y=a(x-h)2+k-m平移前后a值不变例将抛物线y=-x2-2x+3向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线必定经过()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)分析:先将y=-x2-2x+3转化成顶点式y=a(x-h)2+k,再利用二次函数的平移规律:左加右减,上加下减,得出平移后抛物线的解析式,最后把各选项的点代入判断即可.跟踪训练1.将抛物线y=ax2+bx+c(a≠0)向下平移2个单位长度,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.抛物线的函数解析式为y=3(x-2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为()A.y=3(x+1)2+3 B.y=3(x-5)2+3 C.y=3(x-5)2-1 D.y=3(x+1)2-13.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.-1 C.5或1 D.-5或-14.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2 B.-5 C.2 D.-25.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.6.如图,二次函数y=(x-1)(x-a)(a为常数)的图象的对称轴为x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的解析式.第6题图专项四二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:Δ=b2-4ac一元二次方程ax2+bx+c=0根的情况二次函数y=ax2+bx+c的图象与x轴的位置关系Δ>0有两个不等的实数根有两个不同的公共点Δ=0有两个相等的实数根只有唯一的公共点Δ<0无实数根没有公共点考点例析例已知关于x的一元二次方程x2+x-m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方程x2+x-m=0的解.分析:(1)由方程x2+x-m=0有两个不相等的实数根,可得Δ>0,列不等式即可求出m的取值范围;(2)根据二次函数图象的对称性,可得二次函数y=x2+x-m的图象与x轴的另一个交点,从而得到一元二次方程x2+x-m=0的解.解:跟踪训练1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A.0 B.1 C.2 D.1或22.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,有下列结论:①c=2;②b2-4ac>0;③方程ax2+bx=0的两根为x1=-2,x2=0;④7a+c<0.其中正确的有()3.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.4.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.5.武汉)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是.(填序号)专项五二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数解析式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?分析:(1)根据“该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件”列出y与x的函数解析式;(2)设每个月的销售利润为w元,根据等量关系“利润=(售价-进价)×销量”列出函数解析式,配方后根据二次函数的性质求解.解:例2某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数解析式为y=-16(x-5)2+6.(1)求雕塑高OA;(2)求落水点C,D之间的距离;(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.分析:(1)根据给出的抛物线的函数解析式,令x=0,求出点A的纵坐标,可得出雕塑高OA;(2)根据给出的抛物线的函数解析式,令y=0,求出点D的横坐标,可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)将x=10代入函数解析式y=-16(x-5)2+6求出y的值,将求出的y值与1.8比较后即可得出顶部F是否会碰到水柱.解:跟踪训练1.某快餐店销售A,B两种快餐,每份利润分别为12元,8元,每天卖出份数分别为40份,80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数解析式;(2)设销售收入为p(万元),求p与x之间的函数解析式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入-总支出)第2题图3. 如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系. (1)求桥拱顶部O 离水面的距离.(2)如图②,桥面上方有3根高度均为4 m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m . ①求出其中一条钢缆抛物线的函数解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.① ②第3题图专项六 二次函数中的分类讨论思想分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.我们在运用分类讨论思想时,必须遵循下列两个原则:一是要有分类意识,善于从问题的情境中抓住分类对象;二是要找出科学合理的分类标准,应当满足互斥、无漏、最简原则. 引起分类讨论的因素较多,归纳起来主要有以下几个方面:①由数学概念、性质、定理、公式的限制条件引起的讨论;②由数学变形所需要的限制条件引起的讨论;③由图形的不确定性引起的讨论;④由于题目含有字母引起的讨论等等. 考点例析例 已知关于x 的二次函数y 1=x 2+bx+c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的解析式; (2)若b 2-c=0,当b-3≤x≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x+m ,若在(1)的条件下,当0≤x≤1时,总有y 2≥y 1,求实数m 的最小值.分析:(1)将(0,4)代入二次函数y 1=x 2+bx+c ,可求得c ,由对称轴为x=-2b=1,可求出b ;(2)二次函数y 1=x 2+bx+c 图象的对称轴为x=-2b ,需要分三种情况:b <-2b ,b-3>-2b 和b-3≤-2b≤b 进行分类讨论;(3)设函数y 3=y 2-y 1,根据二次函数图象的增减性进行求解. 解:跟踪训练科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数解析式;(2)求出y2与x之间的函数解析式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?参考答案专项一二次函数的图象和性质例1 A 例2 D 例3 D 例4 B1.B 2.C 3.D 4.C 5.B6.①②③专项二确定二次函数的解析式例 A1.A 2.A专项三二次函数图象的平移例 B1.D 2.C 3.C 4.B 5.y=2x2+4x6. 解:(1)因为y=(x-1)(x-a)=x2-(a+1)x+a,图象的对称轴为x=2,所以+12a=2,解得a=3.(2)由(1),知a=3,则该二次函数的解析式为y=x²-4x+3.所以二次函数的图象向下平移3个单位后经过原点.所以平移后图象所对应的二次函数的解析式是y=x²-4x.专项四二次函数与一元二次方程的关系例(1)由题意,知Δ>0,即1+4m>0,解得m>-14.(2)二次函数y=x2+x-m图象的对称轴为x=-12,所以该函数图象与x轴的两个交点关于直线x=-12对称.由图可知抛物线与x轴的一个交点为(1,0),所以另一个交点为(-2,0).所以一元二次方程x2+x-m=0的解为x1=1,x2=-2.1.C 2.B 3.1 4.①②④专项五二次函数的应用例1 (1)y=300-10(x-60)=-10x+900.(2)设每个月的销售利润为w元.由(1),知w=(x-50)y=(x-50)(-10x+900)=-10x2+1400x-45 000=-10(x-70)2+4000.因为-10<0,所以当x=70时,w有最大值为4000.所以该商品每件的销售价为70元时,每个月的销售利润最大,最大利润是4000元.x2=11.所以OD=11 m..因为从A点向四周喷水,喷出的水柱为抛物线,且形状相同,所以OC=OD=11 m.所以CD=OC+OD=22 m1.12642.解:(1)设y与x之间的函数解析式为y=kx+b.w(万元).(3)设销售利润为所以原料的质量x为24吨时,所获销售利润最大,最大销售利润是65.2万元.3. 解:(1)根据题意,知点F的坐标为(6,-1.5),可设拱桥侧面所在抛物线的函数解析式为y1=a1x2.=a2(x-6)2+1.(2)①根据题意,知右边钢缆所在抛物线的顶点坐标为(6,1),可设其解析式为y2②设彩带的长度为L m.所以当x=4时,L 最小值=2.答:彩带长度的最小值是2 m .专项六 二次函数中的分类讨论思想例 (1)因为二次函数的图象经过点(0,4),所以c=4.(2)当b 2-c=0时,b 2=c ,此时函数的解析式为y 1=x 2+bx+b 2. 根据题意,分三种情况:所以(b-3)2+b (b-3)+b 2=21,解得b 3=4,b 4=-1(舍去).(3)由(1),知二次函数的解析式为y 1=x 2-2x+4.设函数y 3=y 2-y 1=x 2+3x+m-4. 所以当x=0时,y 3即y 2-y 1有最小值m-4,所以m-4≥0,即m≥4.所以m 的最小值为4. 跟踪训练解:(1)y 1=5x+30.(2)当x=6时,y 1=5×6+30=60.因为y 2的图象是过原点的抛物线,所以可设y 2=ax 2+bx . 因为点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,所以=35366=60.a b a b ++⎧⎨⎩,解得=5=40.a b ⎩-⎧⎨,所以y 2=-5x 2+40x .所以y 2与x 的函数解析式为y 2=-5x 2+40x . (3)设小钢球和无人机的高度差为y 米. 令y 2=0,则-5x 2+40x=0,解得x=0或x=8.因为6<x≤8,所以当x=8时,y的最大值为70.70米.。
04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.先列表:x …-3 -2 -1 0 1 2 3 …x2 …9 4 1 0 1 4 9 …2x2…18 8 2 0 2 8 18再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x2,y=-2x2的图象,并研究这两个函数图象与函数y=x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2 (1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣3 ﹣2 ﹣1 0 1 …y…﹣6 0 4 6 6 …从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.52.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣23.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 16.下列函数是二次函数的是( ). A .y =2x B .y =1x+x C .y =x +5D .y =(x +1)(x ﹣3)7.下列对二次函数2y x x =-的图象的描述,正确的是( ) A .经过原点 B .对称轴是y 轴 C .开口向下D .在对称右侧部分是向下的8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是( )A .B .C .D .9.如图,已知抛物线y =ax 2+bx +c 经过点(﹣1,0),以下结论:①2a +b >0;②a +c <0;③4a +2b +c >0;④b 2﹣5a 2>2a c .其中正确的是( )A .①②B .③④C .②③④D .①②③④10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____. 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=32x﹣3交于点C(0,﹣3),直线y=32x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.专题04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.先列表:x …-3 -2 -1 0 1 2 3 …x2 …9 4 1 0 1 4 9 …2x2…18 8 2 0 2 8 18从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x2,y=-2x2的图象,并研究这两个函数图象与函数y=x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2 (1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4), ∴抛物线C 2的函数表达式为y =x 2﹣4; (2)存在连接AN ,NE ,EM ,MA ,依题意可得:M (﹣m ,4),N (m ,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣3 ﹣2 ﹣1 0 1 …y…﹣6 0 4 6 6 …从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.5【答案】C【解析】的对称性,逐一判断.【详解】根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;根据图表,抛物线与y轴交与(0,6),②正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x=,∴③正确;设抛物线经过点(x,0),∴x=解得:x=3∴抛物线一定经过(3,0),④正确;在对称轴左侧,y随x增大而增大,∴⑤错误,故选C.2.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣2【答案】B【解析】由题意可知,当P在M点时,x1有最小值﹣4,∵M的坐标分别为(﹣1,2),∴x2=2;∴x2与对称轴的距离是3;当P在N点时,x2有最大值,∵N的坐标分别为(1,2),∴x2的最大值为4.故选B.3.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④【答案】C【解析】∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y=2x=1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x的图象大致是()A.B.C.D.【答案】C【解析】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】B【解析】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.6.下列函数是二次函数的是( ).A .y =2xB .y =1x +xC .y =x +5D .y =(x +1)(x ﹣3)【答案】D【解析】 解:A 、y =2x ,是一次函数,故此选项错误;B 、y =1x+x ,不是整式,故此选项错误; C 、y =x +5,是一次函数,故此选项错误;D 、y =(x +1)(x ﹣3),是二次函数,故此选项正确.故选:D .7.下列对二次函数2y x x =-的图象的描述,正确的是( )A .经过原点B .对称轴是y 轴C .开口向下D .在对称右侧部分是向下的【答案】A【解析】解:A 、当x =0时,y =x 2﹣x =0,∴抛物线经过原点,选项A 正确;B 、∵122b a -=, ∴抛物线的对称轴为直线12x =,选项B 不正确; C 、∵a =1>0, ∴抛物线开口向上,选项C 不正确;D 、∵a >0,抛物线的对称轴为直线12x =, ∴当12x >时,y 随x 值的增大而增大,选项D 不正确. 故选:A .8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是()A.B.C.D.【答案】C【解析】解:∵y=(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,∵抛物线的开口向上知二次项系数>0,与y轴的交点为在y轴负半轴上,∴ab<0,∵对称轴在y轴的右侧,二次项系数大于0,∴﹣(a+b)>0.∴a+b<0,∵a>b,∴a>0,b<0,∴y=ax+b的图象是C选项,故选:C.9.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c >0;④b2﹣5a2>2a c.其中正确的是( )A .①②B .③④C .②③④D .①②③④【答案】B【解析】解:由图象可知a <0,0<﹣2ba <1,∴b <﹣2a ,∴2a +b <0,所以①错误; ∵﹣2ba >0,a <0,∴b >0,当x =﹣1时,y 1=a ﹣b +c =0,∴a +c =b >0,所以②错误;∵当x =2时,y >0,∴4a +2b +c >0﹣﹣﹣﹣②,所以③正确;∵过(﹣1,0),代入得a ﹣b +c =0,∴b 2﹣2ac ﹣5a 2=(a +c )2﹣2ac ﹣5a 2=c 2﹣4a 2=(c +2a )(c ﹣2a )又∵4a +2b +c >04a +2(a +c )+c >0即2a +c >0①∵a <0,∴c >0则c ﹣2a >0②由①②知(c +2a )(c ﹣2a )>0,所以b 2﹣2ac ﹣5a 2>0,即b 2﹣5a 2>2ac ,所以④正确.故选:B .10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】 解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ), ∴﹣b 2a -=﹣2,244ac b a-=﹣9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则122x x +=﹣2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =1的两根分别为x 3,x 4,则342x x +=﹣2,可得x 3+x 4=﹣4, 所以这四个根的和为﹣8,故结论⑤错误,故选:A .11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.【答案】y =(x ﹣3)2﹣4【解析】解:y =x 2﹣2x ﹣3的顶点是(1,﹣4),(1,﹣4)关于x =2的对称点是(3,﹣4),y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为y =(x ﹣3)2﹣4,故答案为:y =(x ﹣3)2﹣4.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.【答案】(2,5)【解析】解:∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2, ∴当x =2时,y =ax 2+bx +c =5,∴抛物线的顶点坐标是(2,5).故答案为:(2,5).13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 【答案】12 -2x , 1 【解析】∵y =ax 2+bx +c (a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ∴21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.14.如图,二次函数y=ax2+bx+c(a≠0).图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C.下面三个结论:①2a+b=0;②a+b+c>0;③只有当12a 时,△ABD是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)【答案】①③【解析】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣b2a=1,即2a+b=0.故选项正确;②由抛物线的开口方向向上可推出a>0,而﹣b2a=1,∴b<0,∵对称轴x=1,∴当x=1时,y<0,∴a+b+c<0.故选项错误;③要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;D到x轴的距离就是当x=1时y的值的绝对值.当x=1时,y=a+b+c,即|a+b+c|=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=12,c=﹣32,故选项正确.故答案为:①③.15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.【答案】y=(x+2)2+1或y=x2+2x+5.【解析】∵y=x2+2x+3=(x+1)2+2,∴抛物线y=x2+2x+3先向左平移1个单位,再向下平移1个单位,平移后的函数关系式是:y=(x+2)2+1或y=x2+2x+5.故答案为:y=(x+2)2+1或y=x2+2x+5.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.【答案】4.【解析】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.【答案】(1)证明见解析;(2)m的值为-4或3;(3)a的值是±8.【解析】(1)证明:令y=0,a(x-m)2-a(x-m)=0,△=(-a)2-4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,解得x1=m,x2=m+1,∵x12+x22=25,∴m2+(m+1)2=25,解得m1=-4,m2=3.故m的值为-4或3;(3)解:∵x1=m,x2=m+1,∴AB=(m+1)-m=1,y=a(x-m)2-a(x-m)=a(x-m-12)2-4a,△ABC的面积=12×1×|-4a|=1,解得a=±8.故a的值是±8.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则4 30 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P 的坐标为(2,2).19.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =32x ﹣3交于点C (0,﹣3),直线y =32x ﹣3与x 轴交于点D . (1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【答案】(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,3(﹣2,﹣3. 【解析】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8), 即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--; (2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4, ∴HF =3E 的坐标为(﹣2,﹣3); 同样当点E 在x 轴的上方时,其坐标为(﹣2,3; 故点E 的坐标为(﹣2,3)或(﹣2,﹣3.20.已知抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.【答案】(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n2m-, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ), ∴k =mh 2+nh +1,且h =n 2m-, 又∵二次函数y =x 2+x +1也经过A 点, ∴k =h 2+h +1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>0.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)点P的坐标是(﹣1,4)或(﹣2,3);(3)存在,CQ37-5 2.【解析】解:(1)∵直线y=13x+1与x轴交点为A,∴点A的坐标为(﹣3,0),∵抛物线的对称轴为x=﹣1,∴点C的坐标为(1,0),∵抛物线y=﹣x2+bx+c与x轴分别交于点A、C,∴抛物线为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,∴点D的坐标为(﹣1,0),。