GOCAD中文手册
- 格式:doc
- 大小:3.00 MB
- 文档页数:89
GOCAD综合地质与储层建模软件简易操作手册美国PST油藏技术公司PetroSolution Tech,Inc.目录第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78GOCAD综合地质与储层建模软件操作手册第一节GOCAD综合地质与储层建模软件简介Gocad是国际上公认的主流建模软件,在众多油公司和服务公司得到了广泛的应用。
A GOCAD Object file consists of three parts: the Header, the Body and the End marker. A GOCAD Object file may also containused to call up the correct GOCAD Object Reader when the file isvalues, which include the0.44704*meters/seconds0.3048*meters/seconds0.3048*seconds*metersRestrictions: at most one scalar in front, at most one division.A.2 ObjectThe Object file elements define the Object style and the Object coordinate space and Units. Style AttributesThe HEADER block, delimited by {and}, contains the Style definition. Each line defines an Attribute of an Object. Attributes are strictly optional, except for the name of the Object. An Object must have a name.If preferred, an Attribute can be given on a separate line outside of the HEADER block; in that case the line should begin with the HDR keyword as shown in Example 3 (page 4).An example of Object Style element is:A.2.1 Coordinate SystemThe Object Coordinate System paragraph is optional for allobjects. If the paragraph is not present, the object is loaded inthe default coordinate system in the current session.The coordinate system description must be given after theHEADER block and before any other keyword giving the geometryof the object such as VRTX, PVRTX, ORIGIN, AXIS ....The Coordinate System must be given as follows:GOCAD_ORIGINAL_COORDINATE_SYSTEMNAME nameAXIS_NAME name_u name_v name_wAXIS_UNIT unit_u unit_v unit_wZPOSITIVE keywordEND_ORIGINAL_COORDINATE_SYSTEMIt is imperative that the Coordinate System definition is enclosed between the keywordsGOCAD_ORIGINAL_COORIDNATE_SYSTEM and END_ORIGINAL_COORDINATE_SYSTEM.The NAME and AXIS_NAME values are information string which gives the name of the local object coordinate system and its axes. The values must be specified by strings of characters enclosed in double-quotes, i.e. AXIS_NAME "X" "Y" "Z" or AXIS_NAME "X" "Y" "T"The AXIS_UNIT specifies the unit for each axes. The axis unit for the U and V axes must be identical, the axis unit for the W axis can be different from the unit of the U and V. It is possible to define units as AXIS_UNIT "m" "m" "m" or AXIS_UNIT "m" "m" "ft" but a definition such as AXIS_UNIT "m" "ft" 'km" is invalid. The AXIS_UNIT values must be specified by strings of characters enclosed by double-quotes.The ZPOSITIVE value indicates the direction of the Z axis. The values allowed for the keyword after ZPOSITIVE are either Depth (Z is increasing downwards) or Elevation (Z is increasing upwards)The coordinates are read in double precision converted to simple precision after coordinate system conversion. When an object is loaded into Gocad, its local coordinate system is compared with the current global coordinate system: if needed, the object geometrical coordinates are converted internally. When the coordinates are displayed, for example, for a picking in the 3D camera, the coordinates displayed are in the session coordinate system. When the object is saved back to a stand alone file, its geometrical coordinates are restored in its original coordinates system.A.3 AtomicThe Atomic data format defines the points, locations and Property values, of an Atomic (currently, this includes PointsSet, Curve, Surface, Solid and GShape). The Atomic inherits all of the Object file format elements, plus Atomic data.A.3.1 AtomicThis section describes the recommended Atomic file format.Since Property values are optional, a basic Atomic data line consists of three parts: Type, ID number, and data: VRTX ID X Y Z [CN]where the XYZ describes the location of that point. Additional information maybe attached at the end of each VRTX line to specify the Interpolation Restriction on that Atom (Control Node information).For example:A.3.1.1 Properties definitionIf there are Properties, they must bedeclared after the HEADER block andbefore the first point data line as:PROPERTIES Pname1 Pname2...PROPERTY_CLASSES class_name1class_name2 (optional, but if youdeclare one, you must declare all)UNITS unit1 unit2...(optional, but if youdeclare one, you must declare all)NO_DATA_VALUES v1 v2...(optional,but if you declare one, you mustdeclare all)ESIZES esize_1 esize_2... (optional, but if you declare one, you must declare all)The PROPERTIES line list all the properties that will be attached to the point. The ordering of the properties on the line correspond to the ordering of the properties values associated to the point definition.The PROPERTY_CLASSES line lists the property class names for each property defined in the PROPERTIES list. If one property class must be listed all property classes must be listed.The NO_DATA_VALUES line lists the no-data-values for each of the property defined in the property list. For vectorial properties, there is only one no-data-value and each property vector element should be equal to this value if it is to be treated as a no-data-value vectorial property.The UNITS line lists the units for each of the property defined in the property list (See Units for format specification of Units).The ESIZES line lists the dimension of each property defined in the property list. By default the dimension of a property is 1, but for example a property representing a 3D vector will be of dimension 3. For example. if you have a set of points with a 1 dimensional property (called "porosity") and a 3D vectorial property called "throw", the definition of the properties and one point will look like:PROPERTIES porosity throw ESIZES 1 3 PVRTX 1 X Y Z porosity_value throw_x throw_y throw_zwhere throw_x, throw_y and throw_z are the three components of the throw vector at the specified location.A.3.1.2 Point location and properties definitionThe data line which defines a point location and its properties look likes:PVRTX ID X Y Z PV1 PV2...where PV1, PV2... are Property values. For example.A.3.2 Parts (Subset)An Atomic Object can have its VRTXgrouped into subsets. In a VSet, the keywordis SUBVSET; in PLine, it is ILINE; in TSurf, itis TFACE; and in TSOLID, it is TVOLUME.A.3.3 Atomic-Old from C-GOCADThis section describes an older Atomicformat, mainly made to be compatiblewith C-GOCAD file format.The format consists of two sections, thelocation section and the Propertysection. The Property section isoptional.The location section is identical to thenew format:VRTX ID X Y ZThe Property value section contains a header and the list of Property values associated to a point defined in the previous section. The header defines the names of the DataPack Fields (Properties) associated with the Atomic. The following example Example 5 (page 8)declares three properties.FIELDS Pname1 Pname2(or PROPERTIES Pname1 Pname2...)PROPERTY_CLASSES class_name1 class_name2 (optional, but if you declare one, you must declare all)UNITS unit1 unit2...(optional, but if you declare one, you must declare all)NO_DATA_VALUES v1 v2...(optional, but if you declare one, you must declare all)ESIZES esize_1 esize_2... (optional, but if you declare one, you must declare all)The Property section define, for each point defined in the location section, the Property values associated with the Atomic's DataPackFields.REC ID1 ID2 PV1 PV2...Associated with a REC definition are two identifiers needed to be specified for compatibility reasons with earlier version. The two identifiers must be identical.An example of a Object file identical to the one given in Example 5 (page 8), but in this old data format is given below:.A.4 TSurf (Surface)The data file of a TSurf includes the inherited file elements of a Object and of an Atomic. The Atoms (Vertices) of the TSurf must be defined before the triangles.A.4.1 Geologic InformationBefore defining vertices and triangles, geologic information can be given.Geological information consists of GEOLIGICAL_TYPE, GEOLOGICAL_FEATURE and STRATIGRAPHIC_POSITION.The geological type of a TSurf can be specified using the following format:GEOLOGICAL_TYPE geological_type_namewhere geological_type_name can be one the following: top, intraformational, fault, unconformity, intrusive, topography, boundary, and ghost. The information is used during layer construction.The stratigraphic position is specified as follow:STRATIGRAPHIC_POSITION age timewhere age is the name of a stratigraphic unit. time is the numerical value of age (35000, etc.). This information is used during layer computation.The geological feature is specified as follow:GEOLOGICAL_FEATURE geologic_feature_namewhere geologic_feature_name is the name of the geologic feature that the surface represents. This information is used to associate surface to well markers (the geologic feature should have the same name than the well marker). A.4.2 TrianglesTriangles definition must occur after vertices definitions. Each Triangle is then defined by its three Vertices (Atoms) in the following format:TRGL id1 id2 id3where ids are the IDs of the already-defined Atoms (Vertices). For example, the ascii file corresponding to a TSurf named SQUARE, containing four vertices, and two triangles is shown in Figure1.A.4.3 Special Points: VRTX vs. ATOMIn addition to the VRTX or PVRTX point/vertex descriptor find in the Atomic format definition, on can find the additional line inside a TSurf ascii file:ATOM id1 id2 (where id1 > id2)where id1 is the index of the new ATOM and id2 is the index of the already existing VRTX node which XTZ this Atom shares.The goal of the ATOM keyword is to create a new ATOM but which shares an already existing vertex. An Atom node has its one Property values but it is spatially linked to the existing VRTX node. In other word, an ATOM and its referenced VRTX are collocated, but not connected. Triangles construction will use the vertex id or the atom id.An example of the use of such Atom record is given below:The input Tsurf file on the left will create a Surface shown at the center. The Surface has two TFaces, because two Triangles need to share an edge to be considered connected. When the Surface is saved, GOCAD will output the file on the right. It recognizes that the two Triangles both have one vertex at an identical location, but topologically, they can not be the same point. So, GOCAD creates a new point, ATOM 6, that shares the identical location of VRTX 3, but is an independent point in the sense that it has its own Property values (not in this case). However, had you have two more triangles in your input file, TRGL 2 4 3 and TRGL 6 5 1, the ATOM line would not have been created because the four triangles are then connected through direct or indirect edge-sharing.A.4.4 Parts/TFaceThe TFACE keyword is proposed to ensure identical indexing of the VRTX every time you save an Surface whose mesh you have not modified.In Figure2 the file on the right (the one output by GOCAD) not only has the extra ATOM line, it also two TFACE lines to separate VRTX (and ATOM) and TRGL from different TFaces. They arecurrently commented out for their full implementation is still to be determined by the GOCAD Committee.GOCAD will accept the simpler format shown on the right of Figure2 (where all the triangles and VRTX definition of all parts are all merged into one block) but will output the file shown on the right of Figure2.A.4.5 BordersAn edge of a TSurf can be a single piece or can be divided into multiple pieces. Each piece is called a Border, and it is separated from its neighboring Border by a Border Extremity. A Border Extremity is a designated node (VRTX, ATOM) on an edge of a TSurf that separates two Borders.Borders definition should appear at the end of the TSurf file format, in the format shown below:BSTONE atom_vrtx_idBORDER border_id bstone_id_1 bstone_id_2The BSTONE line defines an ATOM/VRTX as a Border Extremity.The BORDER line defines the border, border_id, as starting at vrtx_id1, which must have been declared as a Border Extremity in proceeding BSTONE lines, and continuing in the direction of vrtx_id2, which must be adjacent to vrtx_id1 (this border ends when it runs into another Border Extremity).The Border Extremities are always included in the list of points along the border.A.5 PLine (Curve)The Ascii PLine format inherits from the Object and from the Atomic formats. As for the TSurf, geologic information can be specified (See Geologic Information (PageA10)). For PLine geologic feature is used to relate multiple PLine to the same horizon.The Atoms of the Lines must be defined first. Each Segment in the PLine is then defined by its 2 apices in the following format:SEG id1 id2where ids are the IDs of the already-defined Atoms.For example, the ascii file corresponding to he PLine represented in Figure3 may look like:If no segments information is given, the atoms are assumed to form an open line, from the first atom to the last atom in the file order.If the PLine is composed of multiple parts, the parts can be combined or can be separated into ILines (or Isolated Lines). Each ILine is separated by a ILINE keyword and each ILine specify its own points and segments. In the same manner as for the TSurf, an ILINE keyword is proposed to ensure identical indexing of the VRTX every time you save a line which topology has not modified.A.6 TSolid (Solid)The Ascii TSolid format inherits from the Object and from the Atomic formats. The Atoms of the Atomic must be defined first. Each Tetrahedron in the Solid is then defined by its 4 apices in the following format.: TETRA id1 id2 id3 id4where ids are the IDs of the already-defined Atoms.For example, the ascii file corresponding to he Solid represented in Figure4 may look like:If the TSolid is composed of multiple parts, the parts can be combined or can be separated into TVolumes (or Tetrahedralize volumes). Each TVolume is separated by a TVOLUME keyword and each TVolume specify its own points and tetrahedras.[DIP azimuth dip][NORM X Y Z][MREF horizon_name][UNIT >rock_layer_name]Additional information (between [and]) can be attached to each Marker. This extra information includes the orientation (given as DIP or NORM) of the Marker, the Marker Reference Horizon (currently not utilized by GOCAD) and the Rock Unit (currently not utilized by GOCAD).The DIP information is given in Grads.What are Grads? It is an ancient French measurement of angles; there are 100 grads in a right angle (as opposed to 90 degrees in a right angle).The NORM information is always given in XYZ, representing the normal vector of the Marker. This is the preferred representation for Marker orientation (this is the way GOCAD will output Marker orientation information, instead of DIP).The optional information can be on the same line as the marker itself, or on lines that immediately follow the marker ascii code (MRKR).New WellMarker dip specificationsDIP angles are to be given in Grads, which is not a unit a lot of people are familiar with. GOCAD introduced a new dip specification DIPDEG where the two angles are given in degree.DIPDEG azimuth dipA.7.3 WellCurvesThe WellCurves section consists of two parts, the WellCurve Header section and the WellCurve Internal Data section. The header section defines the format of the Well Curves. The WellCurve data can be given in the same file, or in an external binary or ascii file.External Binary Data DeclarationIf the WellCurve data are stored in an external binary file, you must provide the name of the file, before any WellCurve Header information, using the following statement:BINARY_DATA_FILE filenameThe above statement gives the name of the binary file in which Well Curves are stored as a series of Z (measured depth) values and data values:P1Z1, P1Z2,...,P1Z20, P1V1, P1V2,...P1V20, P2Z1, P2Z2,...,P2Z12, P2V1, P2V2,..., P2V12, P3Z1,...etc.External ASCII Data DeclarationIf the data are stored in an external ASCII file, you must provide the following information before any WellCurve Header information:ASCII_DATA_FILE filenameDEPTH_COLUMN indexNCOLUMNS ncolNROWS nrowThe data are read in as a matrix of floating-point numbers and records are separated by blanks. The dimension of the matrix is defined by NCOLUMN and NROWs.Each column is a Property and NROWS specifies the number of data points per Property. The DEPTH_COLUMN specifies which column contains the measured depth data, which also means that in the external ASCII format, different Properties must all have data values at the same measured depth point.For example, the following file, named AsciiExample.wl.dat,P1V1 P2V1 P3V1 Z1 P4V1P1V2 P2V2 P3V2 Z2 P4V2P1V3 P2V3 P3V3 Z3 P4V3.....P1200 P2V200 P3V200 Z200 P4V200should be specified asASCII_DATA_FILE AsciiExampleDEPTH_COLUMN 4NCOLUMNS 5NROWS 200WellCurve HeaderEach WellCurve is defined inside a block beginning with WELL_CURVE and ending with END_CURVE. The format of the header is:NPTS nptsThis information will be used to read npts z values and npts data values from the binary file starting at Byte position seekpos. See Well with an External Binary Data File Example.A.7.4 Single Well File ExampleThe first example is a well file that includes the WellCurve data:A.7.5 Well with an External Binary Data File ExampleThe second example is a well with the WellCurve data stored in the external binary file described in External Binary Data Declaration:A.7.6 Well with an External ASCII Data File ExampleThe third example is a well with the WellCurve data stored in the external ASCII file described in External Binary Data Declaration:A.8 Grid3d or VoxetA Voxet is a rigid 3D Grid Object; it can carry multiple Properties. A Property in a Voxet is often referred to as a grid3d. It is derived from the Object Class.A common confusion comes from not realizing that UVW can mean the (i,j,k) indexing of the Voxet Nodes, but it can also mean the coordinate system in which the Voxet resides.In addition to its inherited Object file elements, a Voxet is further defined in two parts: the header section, which defines the geometry, and the grid3d sections which defines the Properties (grid3ds) and the Region section (which gives Region storage and Region information). Each Property in the Voxet has its own grid3d section that defines the Property and Property values.A.8.1 Geometry SectionUVW Coordinate System and Voxet DimensionAXIS_V, AXIS_W are required definitions. They define the coordinate system of the Voxet: represents the origin of the Voxet coordinate system, not the Voxet the origin.).For example, in Seismic AXIS_U represents typically the time or depth axis. An example will be: AXIS_U 0. 0.0004 (in A common confusion comes from not realizing that this set of vectors, AXES_OUVW, only defines the UVW coordinateThe upper two are the most common cases; i.e. the AXES UVW either define the entire volume dimension or they define a cell dimension. When GOCAD outputs a Voxet file, it uses the upper most format; i.e. the UVW axes define the entire volume.REGION region_name region_bit_marker_position_number (must be less than number_of_bits) An example of an Voxet ASCII file with Region information is given below:....AXIS_N 10 10 10FLAGS_ARRAY_LENGTH 1000FLAGS_BIT_LENGTH 10FLAGS_ESIZE 2FLAGS_OFFSET 0FLAGS_FILE v1__flags@@REGION RegionExample 6REGION HighPorosity 7REGION LowPerm 8REGION BadBuy 9ENDA.8.3 Grid3d/Property SectionThe grid3d section defines the property. Currently, Region information must be given before Property information.For each property there is a unique identifier, id, which is used to relate different Property statements to the same Property. The data can be in an external file in a binary format, or inside the file in ascii format.For each Property, the declaration must be the first line (PROPERTY id "property name") and the Property file name (PROP_FILE id filename) or data (DATA) must be the last line.PROPERTY id "property name"PROPERTY_CLASS id "property-class_name"PROP_UNIT id "unit"PROP_LEGAL_RANGE id min max (where min/max is a float or **none**PROP_SAMPLE_STATS id n x x2 min maxPROP_NO_DATA_VALUE id valuePROP_SAMPLE_STATS id n x x2 min maxPROP_ETYPE id data_type (either IEEE or IBM)PROP_FORMAT id file_format (either RAW or SEGY)PROP_ESIZE id element_size (either 1 or 4)PROP_FILE id filenamePROP_OFFSET id offsetDATAPROP_OFFSET indicates that the array of float value begins at the given offset (in bytes, = number of data points x PROP_ESIZE) in the PROP_FILE.PROP_ETYPE specifies the type of floating point value that is in the file. It can be IBM floating point value or IEEE floating point value.PROP_FORMAT specifies the format of the file. SEGY format implies that the data resides in a standard SEGY file. RAW specifies that the data is formatted as a C array where the fast axis is the Axis_U.The token DATA, if present, indicates that the Property data is to be read following that token. If this is the case, the floating point array of data must be in ascii RAW format.A.8.4 ExampleAn example of a Voxet file with an external Property file:GOCAD Voxet 0.01AXIS_O 2128403. -79200. 0.AXIS_U 0. 0. 55.AXIS_V 0. 220. 0.AXIS_W 220. 0. 0.AXIS_MIN 0.0 0.0 0.0AXIS_MAX 549. 227. 149.AXIS_N 550 228 150AXIS_D 1. 1. 1.AXIS_NAME "Z" "Y" "X"AXIS_UNIT "m" "m" "m"AXIS_TYPE even even evenPROPERTY 1 "Seismic"PROP_UNIT 1 " "PROP_ESIZE 1 4PROP_ETYPE 1 IEEEPROP_FILE 1 /tmp/seismic.nohdrA.9.1 Header SectionREGION_FLAGS_ARRAY_LENGTH length_of_the _array REGION_FLAGS_BIT_LENGTH number_of_bits (at least 1greater than the number of Regions) REGION_FLAGS_ESIZE number_of_bytes (should equal (number_of_bits+1)/8rounded up) REGION_FLAGS_OFFSET offset_inside_the_binary_file_for_the_first_data_point REGION_FLAGS_FILEbinary_file_name (values in the file increase first in U, then V, then W)An example of an SGrid file with Region information is given below:AXIS_N 41 21 31.....FLAGS_FILE MySGrid__flags@@REGION Reg_top_1 0REGION Reg_1_2 1REGION Reg_2_bot 2REGION Facies_Region_1 3REGION Facies_Region_2 4REGION Facies_Region_3 5REGION Facies_Region_4 6REGION Facies_Region_5 7REGION Facies_Region_6 8REGION BM_Inactive_Region 9REGION_FLAGS_ARRAY_LENGTH 26691REGION_FLAGS_BIT_LENGTH 10REGION_FLAGS_ESIZE 2REGION_FLAGS_OFFSET 0REGION_FLAGS_FILE MySGrid__region_flags@@PROPERTY 1 "Geol_Facies_1"PROPERTY_CLASS 1 "facgm".....A.9.3 Property SectionThe Property section defines the property at each node. Currently, Region information must be given before Property information. Each Property has its unique identifier, id, which is used to relate different Property statements to that Property. The data can be in an external file in a ascii or binary format.For each Property, the declaration must be the first line (PROPERTY id "property name") and theProperty file name (PROP_FILE id filename) or data (DATA) must be the last line.The definitions of the Property format is identical to Voxet. Please see Grid3d/Property Section (PageA31).PROPERTY id "property name"PROPERTY_CLASS id "property_class_name"PROP_UNIT id "unit"PROP_LEGAL_RANGE id min max (where min/max is a float or none)PROP_NO_DATA_VALUE id valuePROP_SAMPLE_STATS id n x x2 min maxPROP_ETYPE id data_type (must be IEEE, IBM, or SEGY)PROP_ESIZE id element_size (either 1 or 4)PROP_FILE id filenamePROP_NO_DATA_VALUE id no_data_valuePROP_OFFSET id offsetDATAThe fast axis is Axis_U. The data are specified as a C array.If the SGrid is cell-centered the size of the point array will be NX*NY*NZ but the size of the Property arrays will be (NX-1)*(NY-1)*(NZ-1).A.9.4 Ascii External FileThe geometry and the properties can both be read from an ASCII data file. First this file must be specified in the header as follows:ASCII_DATA_FILE filenameThe format of that file is:x y z p1 p2 p3... flag u v wwhere x, y, z specifies the location of that node; p1, p2, p3,... are the Property values at that node; flag specifies the connectivity flag of that node; and u, v, w specifies the index of the node.A.9.5 Split NodesIntroductionA node is a corner of a cell that is usually shared between 8 cells except when a fault affect this area (and on theborder where less cells are available).Faulting introduces split nodes.The ascii or binary file describing the geometry contains one x,y,z location. When a grid is faulted the nodes affected by the faulting have several x,y,z ; additional x,y,z information (the first one is in the ascii or binary file describing the geometry) is stored in the SGrid header file (usually defined with the extension ?s .sg ?t). The following set of examples are linked with the following SGrid depicted in Figure10FormatHere is an example of split node description :SPLIT 59 19 3 -225.76 177.902 1407.1 36 1 0 0 0 1 0 0 0 1This corresponds to the following information :SPLIT U V W X Y Z id Cell(u,v,w) Cell(u-1,v,w) Cell(u,v-1,w) Cell(u-1,v-1,w), Cell(u,v,w-1) Cell(u-1,v,w-1) Cell(u,v-1,w-1) Cell(u-1,v-1,w-1)This split node is attached to the grid regular node U V W. The first occurrence of a split node U V W means that the regular node is split. There can be up to 7 SPLIT lines per U V W.All the Cell(u,v,w) are boolean values (0 or 1).If Cell(u-1,v-1,w) is equal to 1, then this node (SPLIT) is a corner of the Cell(u_1,v-1,w).Remark : when a node is on the external border of the grid, it does not have 8 neighbor cells. For the missing cells the boolean value is set to 1Split FaceNodes are split along faces. When a face is split, split faces can be gathered in FaceSets. A FaceSet is described as: FACET_SET name number_of_faces cell_uvw_1 face_dir_1.... cell_uvw_2 face_dir_2where cell_uvw represents the cell number (U+V*NU+W*NU*NV) and face_dir is the face indicator (U=0, V=1, W=2).A.9.6 ExamplesA.9.6.1 External Binary filesAn example of an SGrid with one Property and external binary files (lines that start with an * are optional Attribute lines):GOCAD SGrid 0.01HEADER {name:s3}AXIS_N 32 32 32PROP_ALIGNMENT CELLSPOINTS_OFFSET 0POINTS_FILE s3__points@@FLAGS_OFFSET 0FLAGS_FILE s3__flags@@PROPERTY 1 "SGS_simulation_1"PROPERTY_CLASS 1 "porndx"PROP_UNIT 1 nonePROP_SAMPLE_STATS 1 62883 0.24624 0.000661522 0 0.415PROP_ESIZE 1 4PROP_ETYPE 1 IEEEPROP_ALIGNMENT 1 CELLSPROP_OFFSET 1 0PROP_FILE 1 s3_SGS_simulation_1@@ENDA.9.6.2 External Ascii FileBelow is the header file for the SGrid with one property.GOCAD SGrid 0.01 HEADER { name:s3 *painted:on } AXIS_N 32 32 32 PROP_ALIGNMENT CELLS ASCII_DATA_FILE s3__ascii@@ PROPERTY 1 "SGS_simulation_1" PROPERTY_CLASS 1 "porndx" PROP_UNIT 1 nonePROP_SAMPLE_STATS 1 29791 0.247145 0.000618586 0.154 0.414999 PROPERTY_CLASS_HEADER 1 "porndx" {*low_clip:0.183077 *high_clip:0.311214 *pclip:99 } ENDBelow are the first lines off an ASCII external file* * X Y Z SGS_simulation_1 Flag I J K * 145745 9416230 -3458.3147 0.229000002 1031 0 0 0 145995 9416230 -3459.58105 0.229790032 1039 1 0 0 146245 9416230 -3460.82251 0.229000002 1039 2 0 0 146495 9416230 -3462.18555 0.228938624 1039 3 0 0。
GOCAD 综合地质与储层建模软件 简易操作手册美国 PST 油藏技术公司 PetroSolution Tech,Inc.目录第一节GOCAD 综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1一、GOCAD 特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 二、GOCAD 主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD 安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2一、GOCAD 的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 二、GOCAD 的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD 数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 二、 层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 三、 断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 五、 地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD 构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13一、 准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 二、 构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14 三、 构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节 建立 GOCAD 三维地质模型网格 ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41一、 新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 二、 三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 三、 三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD 储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48一、 建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 二、 属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 三、 属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66 四、 网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD 地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78美国 PST 油藏技术公司GOCAD 操作手册GOCAD 综合地质与储层建模软件操作手册第一节GOCAD 综合地质与储层建模软件简介Gocad 是国际上公认的主流建模软件,在众多油公司和服务公司得到了广 泛的应用。
GOCAD软件简介Gocad地质建模软件是国际上公认的主流建模软件,在众多油公司和服务公司得到了广泛的应用,包括Exxon、Mobile,Chevron、Texaco、BP、Halliburton,Schlumberger等世界著名的油公司和服务公司。
Gocad是以工作流程为核心的新一代地质建模软件,达到了半智能化建模的世界最高水平,具有功能强,界面友好,易学易用,并能在几乎所有硬件平台上(Sun, SGI, PC-Linux, PC-Windows)运行的特点。
Gocad研究思想是1988年法国Nancy大学的J.L. Mallet教授提出的,目的是要开发一种新的地质建模软件,以适应地质、地球物理和油藏工程的需要,为多学科的综合研究提供技术支撑。
在Gocad软件研发中除采用J.L. Mallet 教授提出的离散光滑插值技术(DSI), 还采用了适应能力很强的三角剖分和四面体剖分技术,并独立地开发了软件中的地质统计学部分。
自1990年软件诞生后,得到了国外的许多油公司和地球物理公司的支持,取得了飞速的发展。
从最初的简单构造建模,发展到今天复杂构造建模、复杂三维模型网格生成、储层岩石物理属性模型、岩相模型等,以Gocad为代表的先进地质建模软件大大提高了地质建模的效率和精度,可以满足对复杂地质区域的建模要求。
Gocad建模思想是建立在工作流程之上的,是以地质建模的内在规律和程序为基本框架,为地质师和油藏工程师提供充分的发挥想象力的空间,使人的地质思想得以准确的融合到地质建模过程中,使整个建模过程始终以地质为本。
Gocad构造建模能处理任何复杂的构造模型,并能方便地对三维构造模型和三地质网格模型进行编辑及更新,使用Gocad软件用户能方便地对油藏进行动态跟踪。
Gocad基于流程的属性体建模方法包含几十种地质统计算法,功能强大,使用灵活,并能方便地引入约束条件,将地质家和油藏工程师的认识、大量油藏信息引入到属性体建模中,此外 Gocad建模的许多模块是EDS公司与Chevron、Texaco等油公司联合研发,因此具有很高的实用性。
GOCAD综合地质与储层建模软件简易操作手册美国PST油藏技术公司PetroSolution Tech,Inc.目录第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78GOCAD综合地质与储层建模软件操作手册第一节GOCAD综合地质与储层建模软件简介Gocad是国际上公认的主流建模软件,在众多油公司和服务公司得到了广泛的应用。
gocad2017的操作手册
对于Gocad 2017的操作手册,我可以从多个角度来进行全面的
回答。
首先,Gocad是一款用于地质建模和三维可视化的软件,它
具有丰富的功能和复杂的操作流程。
在操作手册中,通常会包括软
件的安装步骤、界面介绍、基本操作指南、高级功能的使用方法、
数据导入导出等内容。
在操作手册中,可能会包括软件的安装步骤,包括系统要求、
安装程序的下载和安装过程,以及可能遇到的常见问题和解决方法。
此外,手册还会介绍软件的界面布局,各个功能模块的作用和操作
方法,帮助用户快速上手。
操作手册还会详细介绍软件的基本操作指南,如如何创建新项目、导入数据、进行地质建模、进行三维可视化等。
同时,手册还
会介绍软件的高级功能的使用方法,如地质建模的参数设置、模拟
分析的操作流程等。
另外,操作手册可能还会包括数据的导入导出方法,如何将外
部数据导入到软件中进行处理,以及如何将软件中的数据导出到其
他格式进行进一步分析或展示。
总的来说,Gocad 2017的操作手册应该是一本详细、全面的指南,旨在帮助用户快速掌握软件的基本操作和高级功能,实现地质建模和三维可视化的目标。
希望这些信息能够帮助你更好地理解Gocad 2017的操作手册。
Seismic Acoustic Impedance Inversion in Reservoir Characterization Utilizing gOcad By Steven Clawson and Hai-Zui (“Hai-Ray”) Meng, Presented at the 2000 gOcad Users MeetingIntroductionWorkflows for utilizing seismic data inverted to acoustic impedance data in reservoir characterization will be shown. We are using the public domain 3D seismic dataset at Boonsville Field in North-Central Texas for our example. This public domain dataset is fairly complete with seismic, well, and production data:•5.5 sq. Miles of 3D seismic data•Vertical seismic profile (VSP) near center of survey•Digital well logs from 38 wells•Well markers for the bend conglomerate group•Perforations, reservoir pressures, production and Petrophysical data for the 38wellsWe acknowledge Oxy USA, Inc., Enserch, Arch Petroleum, Bureau of Economic Geology, GRI and the DOE as contributing members for making this dataset available. This data is made publicly available as part of the technology transfer activities of the Secondary Gas Recovery (SGR) program funded by the U. S. Department of Energy and the Gas Research Institute.Boonsville Field is in the Fort Worth Basin in North-Central Texas.The main productive interval are clastic sandstones in the Pennsylvanian Atokan Bend Conglomerate Group.A type log shows the interbedded sandstones and shales over about 1300 feet of section. The Bend Conglomerate is underlain by the Marble Falls Limestone, a platform carbonate. The Bend Conglomerates were sourced from the northwest on the Red River Arch as the Fort Worth Basin was forming during the Oachita orogeny. These Bend Conglomerate sandstones then pinchout to the southeast, outside of this project area as they become distal to the source, prograding into the Fort Worth Basin.Historical gas production has been from the lower most sequence in the Vineyard. Additional potential is expected in the middle sequences of the Runaway and Vineyardintervals.Conglomerate Group.This example seismic line shows the Bend Conglomerate Group structure. Most striking are the karst collapse features from dissolution of the underlying Ellenburger Limestone, some 2000 feet below the Atoka. These collapse features are seen to causecompartmentalization in the Bend Conglomerate sand bodies.Previous conclusions from the Bureau of Economic Geology’s GRI study are:1) Karsting from Ellenburger carbonates cause collapse features compartmentalizing thereservoir. Large range of compartment sizes exist.2) Need 3D seismic to image the collapse features.3) Seismic attributes can sometimes predict the reservoir faciesUpper Caddo: AmplitudeLower Caddo: Inst. FrequencyLower Bend Conglomerate sequences not definitive4) Reservoirs often exist as stacked compartments of genetic sequences.The utility of the seismic attributes derived from the amplitude data are limited and typically very dependant on the particular interval analyzed. In this project we integrate the well log data in with the seismic for a better defined reservoir model. This integration is accomplished by inverting the seismic amplitude data to acoustic impedance (AI) properties and depth converting the seismic so correlation with the well logs is possible. In this presentation I will only highlight the features of Structural Framework and Rock Property modeling in the overall Reservoir Modeling workflows:Structural Framework => Stratigraphic Gridding => Litholgy and Facies Mapping => Pressure Field => Rock Properties => Fracture Network and Stress Field =>Reservoir Fluids and Dynamic Response.Motivation for Reservoir Modeling include:1) Integration of all relevant and available data.2) Merge data of different scales:(Cores, Well logs, Seismic and Production).3) Dynamically update the model as new information becomes available.4) Measurement of errors and uncertainty as well as expected value.The specific workflows used are dependant on number and type of data available. In this case there is substantial well control and the seismic data is of high resolution (80Hz). Structural Framework WorkflowThe Structural Framework Workflow is shown below:Obtaining the Structural Framework from the seismic gives a much better description than from the well control alone. The karst features were not known until the 3D seismic data was acquired.Integration of the well marker tops and the seismic time horizons proceeds by 2 pathways:1) A reference horizon (the Caddo Limestone) was an excellent reflector that also tied the well tops. This is depth converted by a co-located co-Kriging method.2) Time horizons below this reference did not exactly tie the associated well markers due to tuning effects of the thin bedded Bend Conglomerate Group. For these horizons a velocity field was constructed from interpolating the sonic logs, calibrated to the seismic and checkshot survey. The depth was then created by the time and velocity relationship.3)The fault network will be incorporated in the future using a seismic continuity analysis. Depth conversion of the reference horizon is accomplished thru the strong correlation between the time and depth relationship at the well locations.Co-located co-Kriging of the seismic time and well marker depths produces a very accurate depth structure for the Caddo Limestone.Interpolating the sonic logs in the survey a interval velocity field is produced. Converting these interval velocities to average velocities (inverse Dix’s equation) provides the information on depth converting the intervening horizons.And here are the depth converted intervening seismic horizons.Rock Properties WorkflowThis rock property modeling workflow utilizes the seismic information obtained via inversion to acoustic impedance to better control the well log interpolation of rock properties. This is also accomplished with the accurate structural information that the seismic provides. This workflow is necessarily iterative due to the dependency of one data on another and the iteration between time (on the seismic data) and depth (for the log data) referencing.Seismic to Log Calibration is the first step in integrating the seismic amplitude data with the log properties. Starting off one may not know other than by qualitative correlation what the seismic wavelet is. In this case a reserse polarity wavelet is assumed. The synthetic is then tied to the seismic data, performing a constrained stretching and/or squeezing to fit major events. This stretching/squeezing is primarily due to dispersionbetween seismic velocities and sonic log velocities.A final seismic wavelet is then extracted. Always use more than a single seismic to log calibration tie. In this case 4 well ties were averaged for a consistent wavelet showing that the seismic wavelet is nearly –90degrees out of phase and slightly ringy. The ringing suggests that the deconvolution was not sufficient to collapse the source wavelet. Theseismic bandwidth is very good (20-80Hz).A background acoustic impedance model is needed to supply the low frequency component missing from the seismic trace data in the inversion. This first iteration uses asimple gridding of the 4 sonic logs in the survey.A model based inversion using Hampson-Russell Software’s Strata program shows the transform of the qualitative amplitude data into rock property information. The result is very dependant on the background model used and later we’ll see an improvedbackground model for a better result.Checking this inversion at our key well: B Yates 18D the seismic inverted acoustic impedance ties well qualitatively with well log acoustic impedance. Depth converting thisAI volume is also compared to the well log for quality control.Now that we ha ve seismically derived rock properties from the seismic in depth, let’s see how they correlate to the well logs. In general we see that:1) Low AI relates to shales from the gamma ray log.2) High AI relates to resisitve sandstones from the RT log.3) Correlation of AI to the porosity is more complicated since the shales measure a highporosity with low AI and the more porous sandstones are in an intermediate range of AI,while the tight sandstones are resistive and also high AI.properties show a rather low correlation coefficient.An observation of the relative scales of information is needed. The well logs of course are of higher resolution than the seismic data as shown in the lower variance of AI derived by the seismic data than that represented in the well log data. Smoothing the log curves is required to be able to statistically correlate the respective information. This correlation is also stongly influenced by the exact depth conversion of the seismic information to tie the wells. Due to the thin bedded nature of the Bend Conglomerate Group a mistie of only afew feet will severely effect the correlation.Cross-plotting the seismically derived AI to the smoothed well logs (20 feet averaging) increases the correlation, as now the data are on a more equal sample support resolution. These correlations are still low. These seismically derived AI values are also influencedby the simple background impedance model used in the inversion.in the survey.The well log acoustic impedance (AI) is highly correlated to the Log10(RT). The spatial variogram shows a fairly long range to the correlation in order to provide a goodbackground AI model for a 2nd iteration of inversion.First Kriging the Log10(RT) logs is performed. Next co_Kriging the 4 wells with acoustic impedance information is run. Spatially this new background impedance model is shown to provide spatial features not available with just the 4 wells with sonic logs. Areas near the well control have very high frequency information content. While away from well control the response is subdued towards an average from the Kriging system. Since the seismic is principally used for interpolating the interwell region this background impedance model is low pass filtered to 20Hz. This way the well control is only adding the very long wavelength trends to the inversion result. And the interwellregion should be justly controlled by the seismic data.rock properties.Qualitative correlation to the key well: B Yates 18D yields similar results as before.Now cross-plotting the seismically derived acoustic impedance and the log properties in depth shows a better correlation. These correlations are good enough to use in a co-located co-Kriging of the well log properties.Rock property models are now generated by co-located co-Kriging of the gamma ray logs for lithology discrimination and resistivity logs controlled by the seismically derived AIproperties.A reservoir model of sandstone porosity can be derived by the relationships of lithology to gamma ray and resistivity. Where these models of gamma ray and resistivity are related back to the seismically derived acoustic impedance.By segmenting the data into a sandstone region defined by where:Gamma ray is less than 90 andLog10(Resistivity) is greater than 0.8A sandstone porosity relationship is defined.Constructing the density model in the sandstone facies then is represented here.。
手把手教你使用Gocad(实例)1、首先通过DXF文件载入等高线,curve—9110、9120,由pointset mode生成等高点,如上图白色的点2、通过wizards生成面在surface creation中选择From data (without internal border)3、点击creat outline curve from points和optiamize outline curve tobetter fit points,同时可以多次点击右侧的螺旋形按钮,多次优化;达到你满意的效果后,如果你需要保存生成outline就要在objects中进行重命名和保存。
4、点击creat surface来生成面,hide constraints用来隐藏不需要看到的contraints5、上面就是生成的带有网格的等高面6、将网格去掉(可以在attributes中去)6、选择我们要载入其他的点(点必须是有坐标xyz),在生成我们向要的地层。
在载入点后,curve mode—new—curvehull—of object来生成outline curve(这是另外一种生成outline curve的方法)7、通过生成的outline curve和载入的点来得到一个面8、这是生成的去掉网格以后的面9、载入其他点,生成其他我们需要的面(古滑坡堆积体层)9、宣威组滑带10、现在我们来生成一个侧面,主要用来作为以后编辑切割其他地层的一个界面。
在camera中仅显示等高面的outline courve,surface mode—new—build informs—tube11、在expansion中键入你需要的值,如需要一个垂直的侧面则只修改Z值就可,同时选择twoway 从正负两个方向在延伸,这种方法还可以生成封闭的面(closed surface),选择seal ends即可12、生成的侧面如图所示,白色的面是等高面的边界线13、这时将刚才生成的洪积层、冰川堆积层、古滑坡面、宣威组滑带面和玄武岩层分别延伸surfacemode—border—expand--one14、在弹出的对话框中键入你要延伸的值15、延伸后得到的面16、将其他面都延伸,并将所有的面都显示出来后的效果17、选择我们就要切割掉我们不需要的部分,surfacemode—edit—cut—by surfaces18、在弹出的对话框中surface内选择被切割的面,在surfaceby中选择切割面,点击ok19、现在将切割掉的不需要的部分移除。
GOCAD地质建模Gocad是以工作流程为核心的一款地质建模软件,达到了半智能化建模的世界最高水平,具有功能强,界面友好,易学易用,并能在几乎所有平台上(Sun, SGI, PC-Linux, PC-Windows)运行的特点。
以下通过一个简单的例子,说明GOCAD地质建模的主要过程。
第一部分GOCAD的启动1、双击桌面上的Gocad启动图标,即可启动Gocad程序。
2、选择New project建立新工程,给工程起个名字,选择路径在文件夹Project中,点击保存,打开下图:3、选择Select All,点击OK即可。
4、弹出选择工程单位窗口如下。
此处选择平面上单位是英尺(Feet),深度单位也是英尺(Feet);时间选择毫秒;深度方向选择向上为增大;z值是时间域或深度域,选择深度域(最终如下图)。
选择完后点击OK。
5、打开如下Gocad主窗口。
第二部分GOCAD数据加载一、地震数据加载以SEGY格式为例,加载三维地震数据选择File > Import objects >Seismic Data > SEG-Y 3D as Voxet。
在Data文件夹下选择文件“tornado.sgy”,点击OK即可加载,如下图。
二、井数据加载1、井位数据加载不同的数据格式有不同的加载方法。
以普通的文本格式为例,包括井名、x坐标、y坐标、补心海拔、井深等。
(1)加载方式是:File > Import objects > Well data > (path)Locations from column-based File ,在Data\Wells文件夹中选择文件“WellPaths”,接受默认,按next两次,打开下图:(2)对问题What information do you have for the path? 选择X-Y-TVDSS-MD。
下来的两个问题各选Feet和Use a Column。
GOCAD地质建模Gocad是以工作流程为核心的一款地质建模软件,达到了半智能化建模的世界最高水平,具有功能强,界面友好,易学易用,并能在几乎所有平台上(Sun, SGI, PC-Linux, PC-Windows)运行的特点。
以下通过一个简单的例子,说明GOCAD地质建模的主要过程。
第一部分GOCAD的启动1、双击桌面上的Gocad启动图标,即可启动Gocad程序。
2、选择New project建立新工程,给工程起个名字,选择路径在文件夹Project中,点击保存,打开下图:3、选择Select All,点击OK即可。
4、弹出选择工程单位窗口如下。
此处选择平面上单位是英尺(Feet),深度单位也是英尺(Feet);时间选择毫秒;深度方向选择向上为增大;z值是时间域或深度域,选择深度域(最终如下图)。
选择完后点击OK。
5、打开如下Gocad主窗口。
第二部分GOCAD数据加载一、地震数据加载以SEGY格式为例,加载三维地震数据选择File > Import objects >Seismic Data > SEG-Y 3D as Voxet。
在Data文件夹下选择文件“tornado.sgy”,点击OK即可加载,如下图。
二、井数据加载1、井位数据加载不同的数据格式有不同的加载方法。
以普通的文本格式为例,包括井名、x坐标、y坐标、补心海拔、井深等。
(1)加载方式是:File > Import objects > Well data > (path)Locations from column-based File ,在Data\Wells文件夹中选择文件“WellPaths”,接受默认,按next两次,打开下图:(2)对问题What information do you have for the path? 选择X-Y-TVDSS-MD。
下来的两个问题各选Feet和Use a Column。
中仿科技公司CnTech Co.,LtdGOCAD 综合地质与储层三维建模软件 简易操作手册中仿科技公司CnTech Co.,Ltd目录第 1 节 GOCAD综合地质与储层建模软件简介....................................................... - 1 1.1、GOCAD特点................................................................................................ - 1 1.2、GOCAD主要模块........................................................................................ - 1 第 2 节 GOCAD安装、启动操作............................................................................... - 2 2.1、GOCAD的安装............................................................................................ - 2 2.2、GOCAD的启动............................................................................................ - 3 第 3 节 GOCAD数据加载........................................................................................... - 5 3.1、井数据加载.............................................................................................. - 5 3.2、层数据加载............................................................................................ - 11 3.3、断层数据加载........................................................................................ - 11 3.4、层面、断层面加载................................................................................ - 12 3.5、地震数据加载........................................................................................ - 12 第 4 节 GOCAD构造建模......................................................................................... - 13 4.1、准备工作................................................................................................ - 13 4.2、构造建模操作流程................................................................................ - 14 4.3、构造建模流程总结................................................................................ - 40 第 5 节 建立GOCAD三维地质模型网格................................................................. - 41 5.1、新建三维地质模型网格流程................................................................ - 41 5.2、三维地质模型网格流程........................................................................ - 41 5.3、三维地质模型网格流程总结................................................................ - 47 第6节 GOCAD储层属性建模............................................................................... - 48 -6.1、建立属性建模新流程............................................................................ - 48 6.2、属性建模操作流程................................................................................ - 48 6.3、属性建模后期处理................................................................................ - 66 6.4、网格粗化................................................................................................ - 73 第7节 GOCAD地质解释和分析........................................................................... - 78 -公 司 介 绍........................................................................................................... - 88 -中仿科技公司 CnTech Co.,Ltd第 1 节 GOCAD 综合地质与储层建模软件简介GOCAD 是国际上公认的主流三维地质建模软件,在地质工程、地球物理勘探、矿业开发、 水利工程中有广泛的应用。
pyautocad文档版本0.2.0 pyautocad库旨在简化用Python为AutoCAD编写ActiveX自动化脚本1.1入门1.1.1安装如果您安装了pip或easy_install,您可以:pip install --upgrade pyautocad或:easy_install -U pyautocad此外,还可以从PyPI pyautocad页面下载Windows安装程序。
1.1.2要求•通信类型注意:如果您使用的是pip或easy_install 安装,那么它将自动安装。
否则您应该手动安装comtypes包。
•可选:用于处理表格的xlrd和tablib1.1.3检索AutoCAD ActiveX文档AutoCAD ActiveX指南和参考的副本可以在AutoCAD安装的帮助目录中找到。
• acad_aag.chm - ActiveX and VBA Developer’s Guide• acadauto.chm - ActiveX and VBA Reference参考也可以在C:\Program Files\Common Files\AutodeskShared\acadauto.chm 中找到 1.1.4下一步是什么?阅读用法部分,或者在源代码分发的examples文件夹中查找真正的应用程序。
注意:示例中的应用程序是特定于俄罗斯工程的,但无论如何,我希望您能在该代码中找到一些有趣的东西。
有关特性的更多信息,请参阅API文档和源代码。
1.2用法1.2.1主界面及类型对于第一个示例,我们将使用Autocad (main Automation object) 和pyautocad.types.APoint为操作与坐标from pyautocad import Autocad, APoint让我们创建AutoCAD应用程序或连接到已运行的应用程序:acad = Autocad(create_if_not_exists=True)acad.prompt("Hello, Autocad from Python\n")print 为了处理AutoCAD文档和对象,我们可以使用ActiveX接口,AutoCAD(从pyautocad)包含了一些简化常见自动化任务的方法,如对象迭代和搜索,从用户选择的对象获取对象,打印消息。
GOCAD软件简介Gocad地质建模软件是国际上公认的主流建模软件,在众多油公司和服务公司得到了广泛的应用,包括Exxon、Mobile,Chevron、Texaco、BP、Halliburton,Schlumberger等世界著名的油公司和服务公司。
Gocad是以工作流程为核心的新一代地质建模软件,达到了半智能化建模的世界最高水平,具有功能强,界面友好,易学易用,并能在几乎所有硬件平台上(Sun, SGI, PC-Linux, PC-Windows)运行的特点。
Gocad研究思想是1988年法国Nancy大学的J.L. Mallet教授提出的,目的是要开发一种新的地质建模软件,以适应地质、地球物理和油藏工程的需要,为多学科的综合研究提供技术支撑。
在Gocad软件研发中除采用J.L. Mallet 教授提出的离散光滑插值技术(DSI), 还采用了适应能力很强的三角剖分和四面体剖分技术,并独立地开发了软件中的地质统计学部分。
自1990年软件诞生后,得到了国外的许多油公司和地球物理公司的支持,取得了飞速的发展。
从最初的简单构造建模,发展到今天复杂构造建模、复杂三维模型网格生成、储层岩石物理属性模型、岩相模型等,以Gocad为代表的先进地质建模软件大大提高了地质建模的效率和精度,可以满足对复杂地质区域的建模要求。
Gocad建模思想是建立在工作流程之上的,是以地质建模的内在规律和程序为基本框架,为地质师和油藏工程师提供充分的发挥想象力的空间,使人的地质思想得以准确的融合到地质建模过程中,使整个建模过程始终以地质为本。
Gocad构造建模能处理任何复杂的构造模型,并能方便地对三维构造模型和三地质网格模型进行编辑及更新,使用Gocad软件用户能方便地对油藏进行动态跟踪。
Gocad基于流程的属性体建模方法包含几十种地质统计算法,功能强大,使用灵活,并能方便地引入约束条件,将地质家和油藏工程师的认识、大量油藏信息引入到属性体建模中,此外 Gocad建模的许多模块是EDS公司与Chevron、Texaco等油公司联合研发,因此具有很高的实用性。
GOCAD综合地质与储层建模软件简易操作手册美国PST油藏技术公司PetroSolution Tech,Inc.目录第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78GOCAD综合地质与储层建模软件操作手册第一节GOCAD综合地质与储层建模软件简介Gocad是国际上公认的主流建模软件,在众多油公司和服务公司得到了广泛的应用。
Gocad是以工作流程为核心的新一代地质建模软件,实现了高水平的半智能化建模,具有功能强,界面友好,易学易用,并能在几乎所有硬件平台上(Sun, SGI, PC-Linux, PC-Windows)运行的特点。
一、GOCAD特点1、构造建模和油藏属性建模都由相应的工作流程驱动,用户只要回答工作流程中的问题和提供相应的参数,就可顺利完成相应的建模工作,大大提高了建模工作的效率。
2、能够建立极为复杂的构造模型。
3、丰富的属性模型建模算法。
4、独特的油藏不确定性分析5、独特的软件开发工具6、极为灵活的硬件平台环境,可运行在Sun, SGI等UNIX平台,或PC-Linux 和PC-Windows环境。
二、GOCAD主要模块:1、油藏建模,包括如下模块:Gocad Base Module-数据加载与管理,构造建模Reservoir Modeling-生成三维油藏模型网格,油藏属性与相建模2、地震解释与地震属性分析,包括以下模块:Seismic Interpretation-地震解释与可视化,地震属性计算Velocity Modeling-速度模型建立与时深转换3、地质解释,包括以下模块:Geologic Interpretation-单井解释,联井剖面,平面图等4、井位优化与钻井工程,包括:Drilling Planner-井位优化设计,井轨迹设计,防撞计算等5、油藏不确定性分析-分析建模成果的不确定性,更好的决策6、软件开发工具-Gocad的开发工具包本操作手册主要介绍Gocad油藏建模和地质解释主要模块。
第二节GOCAD安装、启动操作一、GOCAD的安装1、将EarthDecision-suite-2.x.x-windows-i86和Gocadlmd-v9.x–windows- setup 两个安装程序分别运行安装。
2、把Gocad.lic 复制到安装后的目录下:C:\Program Files\EarthDecision \Licenses。
3、选择开始>程序>Earth Decision Sciences License Manager>License Server Configuration Utility。
4、选择config services 打开下图:5、在上图中的第二个Browse单击,在目录:C:\Program Files \EarthDecision\Licenses下选择第2步复制过来的Gocad.lic。
6、将Start Server at Power和Up Use Service选中。
7、选则Save Service,重新启动计算机即可。
二、GOCAD的启动1、双击桌面上的Gocad启动图标,即可启动Gocad程序。
2、选择New project建立新工程,给工程起个名字,点击保存,打开下图:3、选择Select All,点击OK即可。
4、弹出选择工程单位窗口,根据实际情况分别选择平面上(米或英尺)和深度上单位(米或英尺);时间是毫秒或秒;深度方向是向下或向上增大;z值是时间域或深度域。
选择完后点击OK。
5、打开如下Gocad主窗口。
第三节GOCAD数据加载一、井数据加载1、井位加载不同的格式有不同的加载方法。
直井和斜井的井位数据格式一样,以普通的文本格式为例,包括井名、补心海拔、x坐标、y坐标、井深。
下面分直井和斜井两种方式加载(1)直井加载方式是:File > Import objects > Well data > (path)Locations from column-based File ,接受默认,按next两次,打开下图,按数据格式选择合适的选项:下图选择加载井名、X坐标、Y坐标(选yes);补心海拔KB (选yes);总深(Total Depth)。
点击下一步,出现下图窗口,选择创建新井(Create new ones),只添加未加载过的井(only when the well does n’t exist),点下一步。
在start at line 选择数据开始行,用选择对应的列,点击OK即可加载。
(2)斜井加载方式是:对于多口井先加载井轨迹,后加载井位。
加载斜井轨迹:File > Import objects > Well data > (Path)Column-based File ,接受默认,按next两次,打开下图,按数据格式选择合适的选项:井轨迹有三种方式:X-Y-TVD-MD,X-Y-TVD,Inclination-Azimuth-MD,依据实例选择合适的加载格式。
本文选择Inclination-Azimuth-MD,Meter,Use a Column,后点击下一步。
下图将X,Y,Z都先赋0值,在后面的加载斜井井位后将予以校正。
如果只加载单口井,这里可输入正确的坐标井位,后面无需再加载这口井的井位了。
下图选择对应的数据列,点击OK即可加载。
加载斜井井位:同加载直井类似,只是在下图中选择移动已经加载过的井(Move existing ones)和MD。
而直井选择创建新井。
2、测井曲线加载:以las格式为例,选择File > Import objects > Well data > (Logs) LAS。
选择要加载的测井数据点击OK即可。
3、井分层数据的加载:以文本格式为例,数据格式为井名、分层名、深度。
如果有倾角和方位角也可加载。
选择File > Import objects > Well data > (Markers) Column-based File。
点击两次默认next,选择分层测量深度(yes),点击下一步。
如果有倾角和方位角,按下图选择,如果没有可以选择NO,点击下一步。
选择合适的对应数据列,点击OK即可加载。
二、层数据加载:数据格式以文本格式X-Y-Z为例,选择File > Import objects >Horizon Interpretations >(PointsSets) XYZ。
选择要加载的层数据点击OK即可。
也可以选择列加载File > Import objects >Horizon Interpretations > Column-based File,选择合适的选项即可。
三、断层数据加载:数据格式以文本格式X-Y-Z为例,选择File > Import objects >Fault Interpretations > (PointsSets)XYZ。
选择要加载的层数据点击OK即可。
也可以选择列加载File > Import objects >Horizon Interpretations > Column-based File,如下图选择合适的选项即可。
四、层面、断层面加载:从其他第三方软件(如RMS、Petrel、RC2等)导出的层面、断层数据均可在Horizon Surfaces和Fault Surfaces找到相应的加载方式。
五、地震数据加载:以SEGY格式为例,加载三维地震数据选择File > Import objects >Seismic Data > SEG-Y 3D as Voxet。
打开需加载数据,自动读取,点击OK加载。
二位数据选择SEG-Y 2D as Surface 和SEG-Y 2D as SGrid二维地震数据加载选择File > Import objects >Seismic Data >SEG-Y 2D as Surface 或SEG-Y 2D as Sgrid,加载即可。
第四节GOCAD构造建模一、准备工作1、井位群组建立:在做构造建模之前,首先把加载的井数据作个群组(Group),以方便统一修改管理。
右键点击Objects里的图标,选择新建New Group,给群组起个名字,点击OK即可。
本例子写群组名为wellgroup。
右键点击新建立的群组名,选择Add To Group,在弹出的窗口中,将所有井数据添加到Object Add里面去,点击OK即可。