2014一元一次不等式的解法和应用复习
- 格式:ppt
- 大小:389.00 KB
- 文档页数:25
数学解一元一次不等式的方法与应用解一元一次不等式的方法与应用一、引言解一元一次不等式是数学中的重要内容之一,也是初中数学中的基础知识。
在生活和实际问题中,我们经常需要解决一元一次不等式,因此掌握解一元一次不等式的方法是必不可少的。
本节将重点介绍解一元一次不等式的常见方法和其在实际问题中的应用。
二、一元一次不等式一元一次不等式是指只含有一个变量及其一次项的不等式。
例如:2x+3>5。
三、解一元一次不等式的基本方法1. 通过移项和化简来解不等式。
2. 当不等式两边都乘以相同的正数时,不等号方向不变。
3. 当不等式两边都乘以相同的负数时,不等号方向反转。
4. 通过绘制数轴来解不等式。
四、一元一次不等式的解题步骤1. 化简不等式。
2. 将不等式转化成一元一次不等式的标准形式,即x<a或x>a。
3. 解一元一次不等式。
4. 根据实际问题确定解的范围及有效性。
五、一元一次不等式的应用1. 解决实际生活问题。
例如:某商品打折促销,打完折后价格必须低于原价的一半,如何确定促销价格的范围?2. 解决实际工程问题。
例如:某建筑工程需要满足一定的条件才能完成,如何确定满足条件的范围?3. 解决实际经济问题。
例如:某企业的成本不能超过收入的一定比例,如何确定成本的上限?六、解一元一次不等式的实例分析例1:解不等式2x+3>5。
解:首先将不等式化简为x>1,然后通过数轴绘制可以得到解的范围为x>1。
例2:一企业需要在某地建设工厂,成本不能超过总投资的一半。
若总投资为100万元,如何确定成本的上限?解:设成本为x万元,则不等式为x<50。
解的范围为x<50,因此成本的上限为50万元。
七、总结解一元一次不等式的方法与应用是数学中的重要内容,掌握这些方法可以帮助我们解决很多实际问题。
通过移项和化简,绘制数轴等方法,我们可以有效地解决一元一次不等式。
在解题过程中,需要根据实际问题确定解的范围及有效性,从而得出准确的解答。
一元一次不等式的解法一元一次不等式是初等数学中重要的一种问题类型,其解法对于理解和掌握代数基础知识至关重要。
本文将介绍一元一次不等式的解法,帮助读者更好地理解和应用于实际问题中。
一、一元一次不等式的定义和性质一元一次不等式的一般形式为ax + b > 0或ax + b < 0,其中a和b是已知常数,x是未知变量。
一元一次不等式的解即是使不等式成立的取值范围。
在解一元一次不等式时,我们可以利用如下性质:1. 若a > b,则ax > bx;2. 若a > 0,则ax与x同号;3. 若a < b,则ax < bx;4. 若a < 0,则ax与x异号;5. 若a = b,则ax与bx同号。
利用以上性质,我们可以进行一元一次不等式的转化和简化操作,从而求得其解。
二、一元一次不等式的解法解一元一次不等式的一般思路是将不等式转化为等价的形式,并确定解的范围。
1. 消去常数项首先,我们可以通过消去常数项的方法简化不等式。
假设要求解的一元一次不等式为ax + b > 0,可以将其转化为ax > -b。
2. 移项与整理接下来,我们需要将x的系数变为正数,使得不等式更加方便计算。
若a < 0,则两边同时乘以-1,得到-a·x < b,将不等号翻转;若a = 0,则无解。
若a > 0,则不需要进行此步骤。
3. 求解接下来,我们将得到的一元一次等式ax < b求解。
若a > 0,则x <b/a;若a < 0,则x > b/a。
4. 确定解集最后,我们需要根据原始不等式的形式,确定解的范围。
若原始不等式为ax + b > 0,根据之前的求解结果,可得x ∈ (-∞, b/a);若原始不等式为ax + b < 0,则x ∈ (b/a, +∞)。
三、实例分析为了更好地理解一元一次不等式的解法,我们以一个具体的例子进行分析。
一元一次不等式的解法在数学中,一元一次不等式是常见的考题类型。
本文将介绍一元一次不等式的解法,帮助读者更好地理解和应用这一知识点。
一、一元一次不等式的定义和性质一元一次不等式是指只含有一个未知数的一次项和常数项,且不等号的系数为1的代数式。
例如:ax + b > c,其中a、b、c为实数,且a≠0。
一元一次不等式的性质包括:可以进行加减法和乘除法运算,如果两个不等式的左边相等,则右边大小关系相同;如果增加或减少两边的数值,则不等式的方向会发生改变。
二、1. 图解法图解法是一种直观、易于理解的解法。
首先将不等式转化为方程,然后在坐标系中绘制出方程对应的直线。
接着根据不等式的符号确定区域,进而确定解的范围。
举例说明:考虑不等式2x - 3 > 5。
首先将不等式转化为方程:2x - 3 = 5,解得x = 4。
然后在坐标系中绘制直线y = 4。
根据不等式的大于号,我们确定直线上方的区域为解的范围。
2. 代入法代入法是一种简便实用的解法。
首先将不等式转化为方程,然后代入数值进行验证。
通过对不等式两边进行相同的运算得到的解,可以直接验证是否满足原不等式。
举例说明:考虑不等式3x - 2 ≤ 7。
首先将不等式转化为方程:3x -2 = 7,解得x = 3。
然后代入3进行验证:3*3 - 2 = 7,等式成立。
因此,x = 3是不等式的解。
3. 分析法分析法是一种思维灵活的解法。
通过观察和分析不等式的特点,进行变形和运算,逐步确定解的范围。
举例说明:考虑不等式4x + 5 ≥ 17 - 2x。
首先将不等式进行变形:6x ≥ 12,然后将不等式两边同时除以6,得到x ≥ 2。
因此,x ≥ 2是不等式的解。
4. 合并法合并法是一种将多个不等式合并为一个不等式的解法。
通过将多个不等式的解集合并,得到整体的解集。
举例说明:考虑不等式2x - 3 > 5和3x + 1 ≤ 4。
首先解决两个不等式分别的解集,然后进行合并。
2014年中考数学一轮复习讲义:一元一次不等式(组)【考纲要求】1.了解不等式(组)有关的概念.2.理解不等式的基本性质;会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3.能列出一元一次不等式(组)解决实际问题. 【命题趋势】不等式(组)在中考中以解不等式(组)、求不等式(组)的特殊解为主.而紧密联系日常生活实际的不等式(组)的应用,更是中考的热点内容,且难度大,综合性强.【知识梳理】 一、一元一次不等式: 1、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 注意问题:一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式); ②只含有一个未知数; ③未知数的最高次数为1. 2、一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集.注意问题:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.二、一元一次不等式组:1、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.2、解一元一次不等式组的解集一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.3、一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.4、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注意问题: (1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.三、不等式(组)的应用:1、列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.2、列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)检验解是否符合实际情况;(7)写出答案(包括单位名称).题型分类 、深度剖析: 考点一、不等式的性质:【例1】已知a ,b ,c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( ) A .a +c >b +c B .c -a <c -b C .a c 2>b c2 D .a 2>ab >b 2解析:∵a >b ,∴-a <-b ,根据不等式性质一知,A ,B 均正确.∵c ≠0,∴c 2>0,根据不等式性质二知C 项正确.D 项中当a =1,b =-2时,a 2<b 2,故D 不正确.答案:D方法总结 不等式的基本性质是不等式变形的依据,是我们应掌握的基本知识.特别要注意的是,不等式的两边同乘以(或除以)同一个负数,不等号的方向要改变.触类旁通1 下列不等式变形正确的是( )A .由a >b ,得ac >bcB .由a >b ,得-2a <-2bC .由a >b ,得-a >-bD .由a >b ,得a -2<b -2 考点二、不等式(组)的解集的数轴表示:【例2】不等式8-2x >0的解集在数轴上表示正确的是( )解析:不等式8-2x >0的解集是x <4,故选C. 答案:C方法总结 不等式(组)的解集可以在数轴上直观地表示出来,具体表示方法是先确定边界点,解集包含边界点,则边界点是实心圆点;解集不包含边界点,则边界点是空心圆圈;再确定方向,大向右,小向左.触类旁通2 不等式组⎩⎪⎨⎪⎧2x +1≤3,x >-3的解集在数轴上表示正确的是( )考点三、不等式(组)的解法:【例3】解不等式组,并把解集在数轴上表示出来⎩⎪⎨⎪⎧-3x -2≤4-x ,1+2x3>x -1.解:⎩⎪⎨⎪⎧ -3x -2≤4-x ,1+2x3>x -1.①②解不等式①,得x ≥1, 解不等式②,得x <4.所以,不等式组的解集为1≤x <4. 在数轴上表示为方法总结 1.解不等式与解方程类似,不同之处在于系数化为1时,若不等式两边同时乘(或除)以一个负数,要改变不等号的方向.2.解不等式组的方法是分别解不等式组中各个不等式,再利用数轴求出这些不等式的公共部分.解不等式组与解方程组截然不同,不能将两个不等式相加或相减,否则将可能出现错误.3.在把两个不等式的解集表示在数轴上时,要特别注意是“点”还是“圈”,方向是“向左”还是“向右”.触类旁通3 求满足不等式组⎩⎪⎨⎪⎧ 2x +5>1,3x -8≤10①②的整数解.考点四、确定不等式(组)中字母的取值范围:【例4】关于x 的不等式组⎩⎪⎨⎪⎧x +152>x -3,2x +23<x +a只有4个整数解,则a 的取值范围是( )A .-5≤a ≤-143B .-5≤a <-143C .-5<a ≤-143D .-5<a <-143解析:解原不等式组,得2-3a <x <21.由已知条件可知2-3a <x <21包含4个整数解,这4个整数解应为17,18,19,20,这时2-3a 应满足16≤2-3a <17,解得-5<a ≤-143,故应选C.答案:C方法总结 根据不等式(组)的解集确定待定系数的取值范围,解决此类问题时,一般先求出含有字母系数的不等式(组)的解集,再根据已知不等式(组)的解集情形,求出字母的取值范围.触类旁通4 若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <1 考点五、不等式(组)的应用:【例5】某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?解:(1)设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台.依题意,得⎩⎪⎨⎪⎧15-2x ≤12x ,2 000x +2 400x +1 60015-2x ≤32 400.解得6≤x ≤7.∵x 为正整数,∴x =6或7. 方案1:购进电视机和冰箱各6台,洗衣机3台; 方案2:购进电视机和冰箱各7台,洗衣机1台.(2)方案1需补贴:(6×2 100+6×2 500+3×1 700)×13%=4 251(元);方案2需补贴:(7×2 100+7×2 500+1×1 700)×13%=4 407(元).∴国家财政最多需补贴农民4 407元.方法总结1.利用不等式(组)解决实际问题,关键是要抓住题目中表示不等关系的语句,列出不等式,问题的答案不仅要根据解集,还要根据使实际问题有意义确定.2.在利用不等式组解决实际问题中的方案选择、优化设计以及最大利润等问题时,为防止漏解和便于比较,我们常用分类讨论的思想方法,对方案的优劣进行探讨.触类旁通5 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4 100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?。
一元一次不等式的解法和应用一、不等式的基本概念不等式是数学中用于表示两个数之间大小关系的符号表达式,常用的不等式符号包括小于(<)、大于(>)、小于等于(≤)和大于等于(≥)。
二、一元一次不等式的解法一元一次不等式是指形如ax+b>c或ax+b<c的不等式,其中a、b、c为已知实数,x为未知数。
解一元一次不等式的关键是确定x的取值范围。
我们可以通过以下几种方法来求解一元一次不等式:1. 图解法图解法是通过在数轴上绘制相关的直线和点来找到不等式的解。
其中,大于(>)或小于(<)的不等式以虚线表示,大于等于(≥)或小于等于(≤)的不等式以实线表示。
例如,对于不等式2x+3>5,我们首先画出直线y=2x+3。
然后,我们要找到使得2x+3>5成立的x的取值范围,在数轴上标记点A(1, 5)。
由于不等式的符号是大于,所以我们需要找到大于点A的所有点,即x>1。
因此,不等式2x+3>5的解为x>1。
2. 代数法代数法通过代数运算的方式求解一元一次不等式。
我们可以按照下列步骤进行:步骤一:将不等式转化为简化形式,即将不等式中的系数化简为最简形式。
步骤二:根据不等式的符号,进行分析和变换。
当不等式为大于(>)或小于(<)时,不改变符号直接进行下一步;当不等式为大于等于(≥)或小于等于(≤)时,需要在两边同时加上或减去同一个数,然后不改变符号,进行下一步。
步骤三:根据最简形式确定解的范围,并写出解的形式。
例如,对于不等式2x+3>5,我们首先将系数化简为最简形式,即2x>2。
然后,通过减去3这一常数项,不改变符号,得到2x>2-3,即2x>-1。
最后,根据最简形式确定解的范围,即x>-1/2。
因此,不等式2x+3>5的解为x>-1/2。
三、一元一次不等式的应用一元一次不等式在实际生活中有许多应用,特别是在解决实际问题时。
一元一次不等式的解法及应用不等式是数学中的一个重要概念,它描述了一组数之间的大小关系。
在一元一次不等式中,方程中只包含一个变量的一次项,例如:ax + b > 0。
解一元一次不等式的方法多种多样,本文将介绍几种常见的解法,并探讨其应用。
一、图像法解一元一次不等式图像法是一种直观、易于理解的方法,它可以帮助我们在平面直角坐标系上找到不等式的解集。
以不等式2x - 3 > 0为例,我们可以先将其转化为方程2x - 3 = 0,求得x = 1.5。
接下来,在坐标系上绘制直线y = 2x - 3,并标记出x = 1.5对应的点。
由于不等式要求2x - 3大于0,即y大于0,因此我们只需要关注直线在x轴上方的部分。
从图像中可以观察到,x大于1.5时,直线上的点坐标都满足不等式。
因此,不等式的解集为x > 1.5。
二、代入法解一元一次不等式代入法是一种常用的解不等式的方法,它适用于一些较为简单的一元一次不等式。
例如,求解不等式3x - 5 ≤ 4x + 2。
我们可以先假设x = 0,然后代入不等式,得到3(0) - 5 ≤ 4(0) + 2,即-5 ≤ 2,这显然不成立。
接着,我们再假设x = 1,代入不等式,得到3(1) - 5 ≤ 4(1) + 2,即-2 ≤ 6,此时不等式成立。
通过多次尝试,我们可以得到一个结论:当x ≥ 1时,不等式3x - 5 ≤ 4x + 2成立。
因此,不等式的解集为x ≥ 1。
三、符号法解一元一次不等式符号法是一种系统化的解不等式的方法,它根据不等式中的系数进行分类讨论,从而得到准确的解集。
考虑不等式2x - 3 < 4 - x,我们可以将其重写为3x < 7,然后根据x 的系数分类讨论:1. 当x > 0时,不等式成立;2. 当x = 0时,不等式不成立;3. 当x < 0时,不等式不成立。
结合以上三种情况,我们可以得到不等式的解集为x > 0。
一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a xa ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘)去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) < > ≤ ≥①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图: 同大取大 同小取小③⎩⎨⎧<>b x a x 的解集是b x a <<,如下图: ④⎩⎨⎧><b x a x 无解,如下图: 大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
知识点一、不等式的基本概念1、不等式:用连接起来的式子叫做不等式2、不等式的解:使不等式成立的值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的叫做不等式的解集【谈重点】1、常用的不等号有等2、不等式的解与解集是不同的两个概念,不等式的解是单独的未知数的值,而解集是一个范围的未知数的值组成的集合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。
注意“>”“<”在数轴上表示为,而“≥”“≤”在数轴上表示为。
知识点二、不等式的基本性质基本性质1:不等式两边都加上(或减去)同一个或同一个不等号的方向,即:若a<b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c>0则a c b c(或acbc)基本性质3:不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b ,c <0则a c b c(或acbc)知识点三、一元一次不等式及其解法2014年中考总复习一元一次不等式(组)1、定义:只含有一个未知数,并且未知数的次数是 且系数 的不等式叫一元一次不等式,其一般形式为 或 。
2、一元一次不等式的解法步骤和一元一次方程的解法相同,即包含 、 、 、 、 五个步骤。
知识点四、一元一次不等式组及其解法1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中各个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a<b )1、 2、3、4、【谈重点】1、求不等式的解集,一般要体现在数轴上,这样不容易出错。
2、一元一次不等式组求解过程中往常出现求特殊解的问题,比如:整数解、非负数解等,这时要注意不要漏了解,特别当出现“≥”或“≤”时要注意两头的数值是否在取值的范围内。