河北省八年级数学下册 16 二次根式检测卷练习
- 格式:ppt
- 大小:14.97 MB
- 文档页数:28
一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
八年级下册数学第十六章二次根式练习题(附解析)学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、计算的结果是A.﹣3 B.3 C.﹣9 D.92、下列运算正确的是A.a+a=a 2B.a6÷a3=a2C.(π﹣3.14)0=0 D.3、下列等式成立的是A.a2•a5=a10B.C.(﹣a3)6=a18D.4、化简的结果是()A.B.2 C.D.15、的平方根是()A.2 B.±2 C.D.±6、下列命题中正确的是()A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1 D.负数的立方根是负数7、下列运算正确的是()A.B.C.D.8、在这四个实数中,最大的是()A.B.C.D.09、下列各数中,是无理数的是()A.﹣2 B.0 C.D.10、如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1 B.2 C.3 D.411、若式子在实数范围内有意义,则x的取值范围是A.x≥3B.x≤3C.x>3 D.x<312、下列计算中,正确的是A.B.C.D.13、函数中自变量x的取值范围是A.x>1 B.x ≥1C.x≤1D.x≠114、函数中,自变量x的取值范围是A.x>1 B.x≥1C.x>-2 D.x≥―215、的平方根是()A.4 B.±4 C.2 D.±216、计算的结果为A.﹣1 B.1 C.D.717、函数中自变量x的取值范围是A.x≥﹣3 B.x≥3C.x≥0且x≠1D.x≥﹣3且x≠118、下列计算正确的是( )A.B.C.D.19、下列各式中最简二次根式为( )A.B.C.D.20、以下不能构成三角形三边长的数组是()A.(1,,2)B.(,,)C.(3,4,5)D.(32,42,52)分卷II分卷II 注释评卷人得分二、填空题(注释)21、若在实数范围内有意义,则x的取值范围是.22、若x3=8,则x=.23、若在实数范围内有意义,则x的取值范围是.24、请将这三个数用“>”连结起来.25、4的算术平方根是.26、若整数x满足|x|≤3,则使为整数的x的值是(只需填一个).27、实数中的无理数是.28、的立方根是.29、计算=.30、已知一个正数的平方根是x+7和3x﹣3,则这个正数是.评卷人得分三、计算题(注释)31、32、;33、计算:.34、计算35、先化简,再求值:其中x=36、计算:|-2|-(3-π)0+2.37、计算(每题5分,共10分)(1)(2)38、计算:(1);(2).39、(1)(2)(3)(4)40、+|-2|++(-1)2011评卷人得分四、解答题(注释)41、已知实数x,y满足y= + —28, 求42、(1)计算:(2)化简分式,并从中选一个你认为适合的整数代人求值.43、计算:.44、(1)计算:;(2)解方程组:45、先化简,再求值:÷(2x —)其中,x=+1.46、(1)计算:()-2-+;(2)先化简,再求值:-÷,其中a是方程x2+3x+1=0的根.47、计算:+()-1+(2-π)0-()2.48、(1)计算:;(2)解不等式:,并把解集在数轴上表示出来.49、计算:.50、计算:.试卷答案1.B2.D3.C4.C5.D6.D7.C8.A9.C10.B11.A12.B13.B14.A15.D16.B17.D18.B19.A(或B)20.D21.22.223.24.25.226.﹣2(答案不唯一)27.28.29.30.3631.132.033.34.35.36.1+37.(1)(2)138.;-239.(1)10.7, (2)-4, (3),(4)040.741.x=1;y= —28;= —342.(1)(2)043.44.(1)1;(2)45.46.(1)1+;(2)-.47.048.(1)1;(2)49.50.6。
人教版八年级数学下册第16章二次根式经典好题专题训练(附答案)1.下列二次根式中,能与合并的是( )A.B.C.D.2.下列等式正确的是( )A.=3B.=﹣3C.=3D.=﹣3 3.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+44.式子在实数范围内有意义,则x的取值范围是( )A.x≤1B.x<1C.x>1D.x≥1 5.若,,则x与y关系是( )A.xy=1B.x>y C.x<y D.x=y6.+()2的值为( )A.0B.2a﹣4C.4﹣2a D.2a﹣4或4﹣2a7.设,,则a、b的大小关系是( )A.a=b B.a>b C.a<b D.a+b=08.若x=2﹣5,则x2+10x﹣2的值为( )A.10+1B.10C.﹣13D.19.若代数式有意义,则x的取值范围是( )A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣310.若实数x、y满足:y=++,则xy= .11.若有意义,则x的取值范围为 .12.若x=+1,y=﹣1,则的值为 .13.计算的结果是 .14.计算(﹣)×的结果为 .15.已知a+b=﹣8,ab=6,则的值为 .16.已知实数a满足+|2020﹣a|=a,则a﹣20202= .17.化简﹣()2的结果是 .18.已知y=+﹣,则x2021•y2020= .19.若x=3+,y=3﹣,则x2+2xy+y2= .20.如果=,则a的取值范围是 .21.当b<0时,化简= .22.计算:(1)2•÷5;(2).23.24.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.25.先化简,再求值:(+)﹣(+),其中x=,y=27.26.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.27.已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.28.已知关于x、y的二元一次方程组,它的解是正数.(1)求m的取值范围;(2)化简:.参考答案1.解:A、不能与合并,本选项不合题意;B、==2,不能与合并,本选项不合题意;C、==2,不能与合并,本选项不合题意;D、==2,能与合并,本选项符合题意;故选:D.2.解:A、()2=3,本选项计算正确;B、=3,故本选项计算错误;C、==3,故本选项计算错误;D、(﹣)2=3,故本选项计算错误;故选:A.3.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.4.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.5.解:∵==2+,,∴x=y.故选:D.6.解:要使有意义,必须2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.7.解:a=(﹣)2=3,b==3,则a=b,故选:A.8.解:x2+10x﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=2﹣5时,原式=(2﹣5+5)2﹣27=28﹣27=1,故选:D.9.解:由题意得,3x﹣2≥0,x﹣3≠0,解得,x≥且x≠3,故选:C.10.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.11.解:由题意得:1﹣2x≥0,且x+1≠0,解得:x≤且x≠﹣1,故答案为:x≤且x≠﹣1.12.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.13.解:﹣4=3﹣2=,故答案为:.14.解:(﹣)×=×﹣×=4﹣=3.故答案为:3.15.解:∵a+b=﹣8,ab=6,∴a<0,b<0,∴+=﹣﹣=﹣×=﹣×()=,故答案为:.16.解:要使有意义,则a﹣2021≥0,解得,a≥2021,∴+a﹣2020=a,∴=2020,∴a=20202+2021,∴a﹣20202=2021,故答案为:2021.17.解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.18.解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,则y=﹣,∴x2021•y2020=x•x2020•y2020=2×(﹣×2)2020=2,故答案为:2.19.解:x+y=3++3﹣=6,∴x2+2xy+y2=(x+y)2=62=36,故答案为:36.20.解:∵=,∴a﹣5≥0,且6﹣a≥0,∴5≤a≤6,则a的取值范围是5≤a≤6.故答案为:5≤a≤6.21.解:当b<0时,==﹣b.故答案为:﹣b .22.解:(1)原式=4••=;(2)原式=(6×﹣5×)(×2﹣)=(3﹣)(﹣)=3﹣6﹣+=﹣.23.解:原式=5+(24﹣3)﹣(27﹣6+2)=5+21﹣29+6=6﹣3.24.解:(1)x ===2+,则=2﹣,∴x +=2++2﹣=4;(2)(7﹣4)x 2+(2﹣)x +=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.25.解:原式=6x ×+×y ﹣4y ×﹣6=6+3﹣4﹣6=﹣,当x =,y =27时,原式=﹣=﹣=﹣3.26.解:(1)由题意得,x ﹣2020≥0,2020﹣x ≥0,解得,x =2020,则y =﹣2019,∴x +y =2020﹣2019=1,∵1的平方根是±1,∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0,解得,a =﹣,则a +2=﹣+2=﹣,∴x=(﹣)2=.27.解:(1)m2+4m+4=(m+2)2,当m=﹣1时,原式=(﹣1+2)2=(+1)2=3+2;(2)∵m=﹣1,∴m+1=,∴m3+m2﹣3m+2020=m3+2m2+m﹣m2﹣4m+2020=m(m+1)2﹣m2﹣4m+2020=2m﹣m2﹣4m+2020=﹣m2﹣2m﹣1+2021=﹣(m+1)2+2021=﹣2+2021=2019.28.解:(1)解关于x、y的二元一次方程组,得,∵方程组的解是一对正数,∴,解得;(2),当时,m﹣2<0,m+1>0,m﹣1<0,∴=2﹣m﹣(m+1)﹣(1﹣m)=2﹣m﹣m﹣1﹣1+m=﹣m;当时,m﹣2<0,m+1>0,m﹣1≥0,∴=2﹣m﹣(m+1)﹣(m﹣1)=2﹣m﹣m﹣1﹣m+1=2﹣3m.。
2022-2023学年人教版八年级数学下册《16.2二次根式的乘除》同步练习题(附答案)一.选择题1.下列运算中不正确的是()A.B.C.D.2.计算的结果是()A.16B.±16C.4D.±43.下列运算中,正确的是()A.B.C.(a3b4)2=a6b8D.4.下列根式中的最简二次根式是()A.B.C.D.5.下列二次根式中,属于最简二次根式的是()A.B.C.D.6.下列说法:(1)无理数包含正无理数、零、负无理数;(2)的算术平方根为2;(3)为最简二次根式;(4)实数和数轴上的点是一一对应的;(5)﹣a2一定有平方根,其中正确的有()A.1个B.2个C.3个D.4个7.的倒数是()A.B.C.D.8.的一个有理化因式是()A.B.+C.﹣D.二.填空题9.二次根式中:、、、是最简二次根式的是.10.化简为最简二次根式的结果是.11.化简:=.12.计算:=.13.计算:=.14.化简的结果是.15.分母有理化:=.16.将(a>0,b>0)化为最简二次根式:.17.化简:=.18.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.19.已知等式成立,化简|x﹣6|+的结果为.三.解答题20.计算:(1);(2).21.计算:÷.22.计算:2×÷.23.计算:×4÷.24.计算:3÷(•).25.计算:.26.请阅读下列材料:形如的式子的化简,我们只要找到两个正数a,b,使a+b=m,ab=n,即,那么便有(a >b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,所以.请根据材料解答下列问题:(1)填空:=.(2)化简:(请写出计算过程).参考答案一.选择题1.解:根据二次根式的性质知,A、B、C都正确,D.表示4的算术平方根,则=2,故D错误,符合题意.故选:D.2.解:原式===4.故选:C.3.解:A、,故A不符合题意;B、,故B不符合题意;C、(a3b4)2=a6b8,故C符合题意;D、a6bc÷a﹣2b=a8c,故D不符合题意;故选:C.4.解:A.符合最简二次根式的定义,因此是最简二次根式,所以选项A符合题意;B.=2,因此选项B不符合题意;C.=,因此选项C不符合题意;D.=|m|,因此选项D不符合题意;故选:A.5.解:A.==3,选项A不符合题意;B.==,选项B不符合题意;C.是最简二次根式,选项C符合题意;D.==a2,选项D不符合题意;故选:C.6.解:(1)无理数包含正无理数和负无理数,故(1)不正确;(2)的算术平方根为2,故(2)正确;(3)==,故(3)不正确;(4)实数和数轴上的点是一一对应的,故(4)正确;(5)﹣a2一定有平方根,故(5)正确;所以,上列说法其中正确的有3个,故选:C.7.解:+1的倒数是=﹣1.故选:C.8.解:A.,那么是的一个有理化因式,故A符合题意.B.根据二次根式的乘法法则,不是的一个有理化因式,故B不符合题意.C.根据二次根式的乘法法则,不是的一个有理化因式,故C不符合题意.D.根据二次根式的乘法法则,,得不是的一个有理化因式,故D不符合题意.故选:A.二.填空题9.解:==,被开方数含分母,不是最简二次根式,=2,=|x|,被开方数中含能开得尽方的因数或因式,不是最简二次根式,是最简二次根式,故答案为:.10.解:6===2.故答案为:2.11.解:原式===6.故答案为:6.12.解:原式===6x.故答案为:6x.13.解:原式=×=2=2×=1.故答案为:1.14.解:===.故答案为:.15.解:原式==﹣3﹣,故答案为:﹣3﹣.16.解:∵a>0,b>0,∴=.故答案为:.17.解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.18.解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.19.解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.三.解答题20.解:(1)原式===6;(2)原式===3.21.解:原式=÷=•=.22.解:2×÷=2=2=.23.解:原式=2×4×÷4=8÷4=2.24.解:原式=÷=.25.解:原式=÷•2m=.26.解:(1)==;故答案为:﹣;(2)首先把化为,这里m=21,n=108,∵9+12=21,9×12=108,即,∴.。
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
数学八年级下册人教版第十六章二次根式(满分:120分,时间:90分钟)一、选择题(每小题3分,共30分)1.化简8 ( )A. -2 B 2 C.4 D. 22. 若二次根式1−x在实数范围有意义,则x的取值范围是 ( )A. x≤1B. x<1C. x≥1D. x≠13. 下列各式中属于最简二次根式的是 ( )A.23B.0.5C.16 D34. 下列计算正确的是 ( )A.23−3=2B.2÷2=2C.2+3=5D.(23)2=65.下列式子中一定是二次根式的是 ( )A.−aB.a2C.−a2D.a36. 已知20n是整数,则满足条件的最小正整数n 的值是 ( )A.5B.1C.2D.37.若(3−b)2=b−3,则 ( )A. b>3B. b<3C. b≥3D. b≤38. 下列各式中,与2−3相乘后,积为有理数的是 ( )A.2+3B.2−3C.−2+3 D39. 计算3−33的结果为 ( )A.1−3B.1+3 C3D.−310. 设10的小数部分为b,则(10+3)b的结果是 ( )A.1B.是一个无理数C.3D.无法确定二、填空题(每小题3分,共15分)11. 计算32+8的结果为 .12.化简:2xy⋅8y=¯.13. 已知x=3+1,则x²−2x+1的值为 .14.使代数式x−13−x有意义的x的取值范围是 .15. 已知a+b=23+1,ab=3,则(a+1)(b+1)= .三、解答题(一)(每小题8分,共24分)16. 计算:(1)3×2−122+|−24|;(2)18÷22×1 2 .17. 计算:(48−613)÷3×12.18. 当a=3+1,b=3−1时,求代数式ab+b²的值.四、解答题(二)(每小题9分,共27分)19. 化简求值:a 2−1a2−2a+1+2a−a2a−2÷a,其中a=2+1.20.已知一个三角形的三边长分别为239x,6x4,2x1x,(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.一个矩形的长为a=6+5,宽为b=6−5.(1)求该矩形的面积和周长;(2)求a²+b²的值.五、解答题(三)(每小题12分,共24分)22.已知矩形的周长为( (48+72)cm,一边长为(3+12)cm.(1)求此矩形的另一边长;(2)求此矩形的面积23.小芳在解决问题:已知a=12+3,求2a²−8a+1的值.他是这样分析与解的:a=12+3=2−3(2+3)(2−3)=2−3,∴a=2−3,∴(a−2)²=3,a²−4a+4=3,∴a²−4a=−1,∴2a²−8a+1=2(a²−4α)+1=2×(−1)+1=−1.请你根据小芳的分析过程,解答下列问题:(1)计算(2)若a=12−1①化简α,求4a²−8a−1的值;②求a³−3a²+a+1的值.。
人教版初中数学八年级下册第十六章二次根式达标检测一、单选题:1.在中,是最简二次根式的有()A.2个B.3个C.4个D.5个【答案】B【分析】根据最简二次根式的两个特点“(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式”进行解答即可得.【详解】解:不是二次根式,不符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,不是最简二次根式,不符合题意,不是最简二次根式,不符合题意,综上,是最简二次根式的有3个,故选B.【点睛】本题考查了最简二次根式,解题的关键是熟记二次根式的两个特点.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【答案】C【分析】各项化简后,利用同类二次根式定义判断即可.【详解】A选项:,与的被开方数不同,故不是同类二次根式,故A错误;B选项:与的被开方数不同,故不是同类二次根式,故B错误;C选项:与的被开方数相同,是同类二次根式,故C正确;D选项:与的被开方数不相同,故不是同类二次根式,故D错误.故选C.【点睛】此题考查了同类二次根式,以及最简二次根式,熟练掌握各自的性质是解本题的关键.3.下列各式中,一定能成立的有()①②③④A.①B.①④C.①③④D.①②③④【答案】A【分析】根据开算术平方和平方的概念对4个等式逐一判断.【详解】A.,则A成立;B.当a<0时,不存在,则B等式不成立;C.当x<1时,不存在,则C等式不成立;D.当x<-3时,不存在,则D等式不成立.故选A.【点睛】本题考查开算术平方根和平方之间的等量关系,注意算术平方根下的式子不能小于零的情况,掌握这一点是本题解题关键.4.计算的结果估计在( )A.与之间B.与之间C.与之间D.与之间【答案】C【分析】先根据二次根式的混合运算计算得到,进而估算即可.【详解】解:===,∵∴,故选:C.【点睛】此题考查了二次根式的混合运算和无理数的估算,熟练掌握二次根式混合运算的法则是解题的关键.5.若,则()A.B.C.D.【答案】D【分析】直接利用二次根式的性质求解即可.【详解】解:∵,,∴解得,,故选:D.【点睛】本题主要考查了二次根式的性质,熟练掌握是解答本题的关键.6.若是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】B【分析】先将45写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出n的最小整数值.【详解】解:.由是整数,得,故选:B.【点睛】本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.7.如图,在长方形ABCD中无重叠放入面积分别为和的两张正方形纸片,则图中空白部分的面积为().A.B.C.D.【答案】B【分析】先求得大正方形的边长和小正方形的边长,进而得出空白的长和宽,再计算面积即可.【详解】解:∵大正方形的面积为,∴大正方形的边长=,∵小正方形的面积为,∴小正方形的边长=,∴空白的长为:,空白的高为:,∴空白面积=故选:B.【点睛】本题考查了二次根式及其应用,掌握二次根式的性质是解题关键.8.已知,,则代数式的值为()A.9B.C.3D.5【答案】C【分析】计算出m−n及mn的值,再运用完全平方公式可把根号内的算式用m−n及mn的代数式表示,整体代入即可完成求值.【详解】∵,,∴,mn=-1,∴=3.故选:C.【点睛】本题考查了求代数式的值,二次根式的混合运算,完全平方公式的应用,对被开方数进行变形并运用整体代入法求值是关键.9.已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【详解】解:∵,,,又,∴.故选:A.【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.10.设S=,则不大于S的最大整数[S]等于( ) A.98B.99C.100D.101【答案】B【分析】由,代入数值,求出S=+++ …+ =99+1-,由此能求出不大于S的最大整数为99.【详解】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道是解答本题的基础.二、填空题:11.如果分式有意义,那么x的取值范围是_______.【答案】且x≠4【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】∵二次根式的被开方数是非负数,∴2x+3≥0,解得x≥-,又分母不等于零,∴x≠4,∴x≥-且x≠4.故答案为x≥-且x≠4.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,该题属于易错题,同学们往往忽略了分母不等于零这一条件,错解为x≥-.12.计算:______.【答案】##【分析】利用二次根式的混合运算法则计算即可.【详解】解:==.故答案为:.【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.若的整数部分是a,小数部分是b,则的值是___________.【答案】【分析】首先根据的取值范围得出a,b的值进而求出即可.【详解】解:∵,的整数部分是a,小数部分是b,∴a=1,b=∴故答案为:【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.14.若,则的值是_________.【答案】4【分析】根据被开方数大于等于0列式求x,再求出y,然后相加计算即可得解.【详解】解:由题意得,﹣2﹣x≥0且3x+6≥0,解得x≤﹣2且x≥﹣2,∴x=﹣2,∴y=6,∴x+y=﹣2+6=4.故答案为:4.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,熟练掌握二次根式有意义的条件是解决本题的关键.15.若最简二次根式与是同类根式,则2a﹣b=___.【答案】9【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.16.计算的值为__________.【答案】2【分析】先根据积的乘方的逆运算,再合并同类二次根式即可;【详解】解:原式==;故答案为:2【点睛】本题考查了积的乘方的逆运算、二次根式的混合运算,熟练掌握运算法则是解题的关键17.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.18.设、、是的三边的长,化简的结果是________.【答案】【分析】根据三角形的三边关系:两边之和大于第三边,依此对原式进行去根号和去绝对值.【详解】解:∵a,b,c是△ABC的三边的长,∴a<b+c,a+c>b,∴a-b-c<0,a-b+c>0,∴故答案为:.【点睛】本题考查了二次根式的化简和三角形的三边关系定理,关键是根据三角形的性质:两边之和大于第三边去根号和去绝对值解答.19.观察下列各式:,,,……请你将发现的规律用含自然数n (n≥1)的等式表示出来_________.【答案】【分析】根据等式的左边根号内整数部分为自然数加上,右边为,据此即可求解.【详解】解:∵第1个式子为:,第2个式子为:,第3个式子为:,……∴第个式子为:.故答案为:.【点睛】本题考查了二次根式的规律题,找到规律是解题的关键.20.已知,化简得____________.【答案】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案.【详解】∵0<a<1∴>1∴===故答案为【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:21.当x是怎样的实数时,下列各式在实数范围内有意义?(1);(2);(3);(4).【答案】(1);(2);(3);(4)【分析】(1)根据二次根式有意义的条件可得不等式3+x≥0,再解不等式即可;(2)根据二次根式有意义及分式有意义的条件可得不等式2x-1>0,再解不等式即可;(3)根据二次根式有意义及分式有意义的条件可得不等式2-3x>0,再解不等式即可;(4)根据二次根式有意义及分式有意义的条件可得不等式x≠0.【详解】解:(1)根据题意,3+x≥0,解得:x≥-3;(2)根据题意,2x-1>0,解得:x>;(3)根据题意,≥0且2-3x≠0,即2-3x>0,解得:x<;(4)根据题意,≥0且x-1≠0,即x≠1.【点睛】本题主要考查了二次根式有意义及分式有意义的条件,关键是掌握二次根式中的被开方数是非负数和分式的分母不为0.22.化简:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3);(4);(5);(6)【分析】(1)把500因数分解为5×102即可;(2)把12分解为3×22即可;(3)先把被开方数中带分数化为假分数,利用分数的基本性质将分母变平方即可(4)将被开方式中即可;(5)将被开方式即可;(6)将被开方式即可.【详解】解:(1);(2);(3);(4);(5);(6).【点睛】本题考查二次根式化为最简二次根式,掌握最简二次根式定义与化简方法是关键.23.计算:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3)6;(4);(5);(6)【分析】(1)先化简二次根式,再根据二次根式加减运算法则计算即可;(2)先化简二次根式,再根据二次根式乘除运算法则计算即可;(3)利用平方差公式计算即可;(4)先化简二次根式,再合并后计算乘除运算即可;(5)利用完全平方公式进行计算即可;(6)利用完全平方公式进行计算即可;【详解】(1)原式;(2)原式;(3)原式;(4)原式;(5)原式;(6)原式【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.24.先化筒.再求值:,其中,.【答案】,【分析】按照异分母分式运算法则计算即可.【详解】解:原式当,时,原式.【点睛】此题考查了分式的化简求值,掌握异分母分式运算法则是解题的关键.25.已知实数a,b,c在数轴上的位置如图所示,化简:.【答案】【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.26.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【答案】(1)16;(2)﹣8【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【详解】(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.【点睛】本题考查了二次根式的化简求值、完全平方公式、平方差公式,熟记完全平方公式和平方差公式,利用整体思想方法解决问题是解答的关键.27.已知等式|a-2 018|+=a成立,求a-2 0182的值.【答案】2019【分析】由二次根式的意义得到a的范围,再将原等式化简变形.【详解】由题意,得a-2 019≥0.∴a≥2 019.原等式变形为a-2 018+=a.整理,得=2 018.两边平方,得a-2 019=2 0182.∴a-2 0182=2 019.【点睛】本题考查了非负数的性质,代数式求值,二次根式有意义的条件,得到=2 018是解题的关键.28.观察下列等式:①;②;③…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:.【答案】(1);(2)【详解】试题分析:根据分母有理化的性质,由各式的特点,结合平方差公式化简计算即可.试题解析:(1)==;(2)=+…+=.。
八年级数学下册第十六章《二次根式》测试题-人教版(含答案)一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 2.化简16的结果为( ) A .2 B .-4 C .4D .±43. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .56.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤127. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 610.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组二、填空题(每小题 3 分,共 18 分)11. 18_________,2(27)=__________43__________.13. 在实数范围内分解因式x 3-5x =________________. 14. 已知 x =5-1,则 x ²+2x -7=___________. 15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________. 16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: (1) 118288-+; (2) 11(6)2()|32|2--⨯-+-; (3) 231(32)31+---; (4) 20202021(23)(23)-+.18. (8分)先化简,再求值: 3142y xx y x y +-+,其中 x =4,y =19.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6,求长方形内阴影部分的面积S.20. (8分)已知实数23+的整数部分为x,小数部分为y,求224x yx y+-+的值.21. (8分)已知x3+1,y31,求:(1)代数式xy的值; (2)代数式x3+x2y+xy2+y3的值.22. (10分)(1) 已知:a32,b3+2,求代数式a2b-ab2 的值;(2)运用乘法公式计算:①2+.(32)(23)(32)(2233);②2(3)已知实数x、y满足x2+10x4y-=-25 ,则(x+y)2021的值是多少?23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(1)423+________526-=__________;(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).24.(12分)对于任意正实数a、b,均有2()a b≥0,∴a-ab b≥0,∴a+b≥ab当且仅当a=b时,等号成立. 结论:在a+b≥ab a、b均为正实数)中,若ab为定值p,只有当a=b时,a+b有最小值p根据上述内容,回答下列问题:(1)初步探究:若n>0,只有当n=_______ 时,n+1n有最小值;(2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形,矩形的长和宽分别为a、b . 试利用大正方形与四个矩形的面积的大小关系,验证a+b≥ab并指出等号成立时的条件;(3)拓宽延伸:如图,已知A(-6,0),B(0,-8),点P是第一象限内的一个动点,过P 点向坐标轴作垂线,分别交x轴和y轴于C、D两点,矩形OCPD的面积始终为 48,求四边形ABCD面积的最小值以及此时P点的坐标.……ABC yD O Px参考答案一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 【答案】A .2.化简16的结果为( ) A .2 B .-4 C .4 D .±4【答案】C .3. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 【答案】C .4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=【答案】A .5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .5【答案】A .6.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤12【答案】D .7. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -【答案】B .8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -【答案】B . 9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 6【答案】D . 提示:2211()()4a a aa-=+-=10-4=6,∴1a a-=±6.10.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组【答案】A . 提示:由已知等式,得b 2+22b =ac +(a +c )2,∵a 、b 、c 为有理数, 比较上述等式的两边,得:b 2=ac ,2b =a +c .由2b =a +c ,得4b 2=(a +c )2,把b 2=ac 代入,得4ac =(a +c )2,∴(a -c )2=0, ∴a =c ,与题设a ≠c 不符,故选A .二、填空题(每小题 3 分,共 18 分)11. 计算:18=_________,2(27)=__________,43=__________. 【答案】32, 28,233.12. 若45n 是整数,则正整数 n 的最小值为___________. 【答案】5.13. 在实数范围内分解因式x 3-5x =________________.【答案】x (x +5)(x -5). 提示:原式=x (x 2-5)=x (x +5)(x -5). 14. 已知 x =5-1,则 x ²+2x -7=___________.【答案】-3. 提示:移项得:x +1=5,两边平方,得 x 2+2x +1=5,∴x 2+2x =4, 则x ²+2x -7=4-7=-3.15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________.【答案】-3a . 提示: 由数轴,知a <b <0,∴a +b <0,-a +2>0,b -2<0, ∴原式=|a |+|a + b | +| −a +2|-|b -2|=-a -(a +b )+(-a +2)+(b -2)=-3a .16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.【答案】1+1(1)n n +. 提示:22222222(1)(1)(1)(1)n n n n n a n n n n +++=+++=222222(1)(1)(1)n n n n n n +++++=22222(1)221(1)n n n n n n +++++=2222(1)2(1)1(1)n n n n n n +++++=222[(1)1](1)n n n n +++,∴a n =(1)1(1)n n n n +++=1+1(1)n n +.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: 118288 (2) 11(6)2()32|2--+; (3) 231(32)31+- (4) 20202021(23)23). 【答案】(1)原式=2124711247 (2)原式=-32+(23=-3(3)原式=(3-34)2(31)(31)(31)+-+7-3423+=7-3235-3(4)原式=20202020(23)(23)(23)=2020(23)(23)-23.18. (8分)先化简,再求值: 3142y xy x ++,其中 x =4,y =19. 122x y x y 132x y当x =4,y =19114329=1+1=2.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6, 求长方形内阴影部分的面积S .【答案】依题意,AM 2,DM =CD 6AD 26 ∴长方形ABCD 626, 则S 626-2-6=3 2. 方法2:S =AM ·AB -22·62=3 2.20. (8分)已知实数23+ 的整数部分为x ,小数部分为y ,求224x yx y +-+ 的值.23+23,∴023+1,∴x =0,y =23∴ 224x y x y +-+02(23)02(23)4+---+2(23)4234--++2(23)23-233-233-21. (8分)已知x 3+1,y 31,求:(1)代数式xy 的值; (2)代数式x 3+x 2y +xy 2+y 3的值. 【答案】(1) xy =33-1)=3-1=2. (2) x +y =31)+31)=3原式=x 2(x +y )+y 2(x +y )=(x +y )(x 2+y 2)=(x +y )[(x +y )2-2xy ] =332-2×2]=3-4)=322. (10分)(1) 已知: a 32,b 3+2,求代数式 a 2b -ab 2 的值; 【答案】a -b =-4,ab =332)=3-4=-1, ∴原式=ab (a -b )=-1×(-4)=4.(2)运用乘法公式计算:①2(2233); ②2(32)(23)(32)+. 【答案】①原式=8+627=35+6②原式=4-3+(3-62)=1+5-66-6(3)已知实数 x 、y 满足 x 2+10x 4y -=-25 ,则(x +y )2021的值是多少? 【答案】由已知条件,得 (x +5)24y -0,∵(x +5)2≥04y -0,∴(x +5)2=04y -0, ∴x =-5,y =4,∴(x +y )2021=(-5+4)2021=-1.23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).【答案】42331+52632-2m n ±2a b ab +±2()a b ±a b(3)∵32221+52632+721243+ 21+32+43+54+98+ =21)+32)+43+54+…+98) =-191+3=2.24.(12分)对于任意正实数 a 、b ,均有2()a b ≥0,∴a -ab b ≥0,∴a +b ≥ab 当且仅当 a =b 时,等号成立. 结论:在 a +b ≥ab a 、b 均为正实数)中,若 ab 为定 值p ,只有当a =b 时,a +b 有最小值p 根据上述内容,回答下列问题: (1)初步探究:若 n >0,只有当 n =_______ 时,n +1n有最小值; (2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形, 矩形的长和宽分别为 a 、b . 试利用大正方形与四个矩形的面积的大小关系,验证 a +b ≥ab 并指出等号成立时的条件;(3)拓宽延伸:如图,已知 A (-6,0),B (0,-8),点 P 是第一象限内的一个动点,过 P 点向坐标轴作垂线,分别交 x 轴和 y 轴于 C 、D 两点,矩形 OCPD 的面积始终为 48, 求四边形 ABCD 面积的最小值以及此时 P 点的坐标.【答案】(1) n =1. 提示: 根据a +b ≥ab 112n n nn+≥⋅当且仅当n =1n时成立,此时n =1.……ABCy DOP x(2) 大正方形的边长为a+b,中空小正方形的边长为b-a,由图形的面积,得:(a+b)2-4ab=(b-a)2≥0,∴(a+b)2-4ab≥0,∴(a+b)2≥4ab,则a+b≥ab显然,只有当a=b时,上述各式中等号成立.(3) 设P(x,y),则OC=x,OD=y,xy=48.∵A(-6,0),B(0,-8),∴OA=6,OB=8,∴四边形ABCD的面积为S=12AC·BE=12(x+6)(y+8)=12(xy+8x+6y+48)=12(48+8x+6y+48)=4x+3y+48≥43x y⋅+48=3xy48=348⨯48=96.取等号时,4x=3y,又xy=48,∴x=6,y=8,∴P(6,8).∴四边形ABCD面积的最小值为96,此时P点的坐标为P(6,8).。