北师大版七年级数学下册期末复习专项测试题三及答案解析
- 格式:docx
- 大小:181.50 KB
- 文档页数:15
北师大版七年级下册数学总复习卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分一、选择题(共10小题,每小题3分,共30分)1.如图,某同学把一块三角形的玻璃打碎了,同在要到玻璃店配一块完全一样的玻璃,那么最省事的办法是( )A.带①去 B. 带②去 C. 带③去 D. 带①②去2.下列运算正确的是( )A.x2+ x3 B.(x+y)2=x2 + y2C.(2 x y2)3=6 x3 y6 D.-( x-y)= - x+y3. 成人每天维生素D的摄入旺约为0.0000046克。
数据0.00000046用科学记数法表示()A.46×10-7 B. 4.6×10-7 C. 4.6×10-6 D. 0.46×10-54. 如图,向高为h的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是()5. 如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠NB.AB=CDC.AM=CND.AM//CN6. 如图玲玲在美术课上画了一个“2”,已知AB//DE,∠ACE=110°,则∠E的度数为()A.30° B. 150° C. 120° D. 100°1、只要朝着一个方向努力,一切都会变得得心应手。
21.4.64.6.202109:2109:21:45Apr-2109:212、心不清则无以见道,志不确则无以定功。
二〇二一年四月六日2021年4月6日星期二3、有勇气承担命运这才是英雄好汉。
09:214.6.202109:214.6.202109:2109:21:454.6.202109:214.6.20214、与肝胆人共事,无字句处读书。
4.6.20214.6.202109:2109:2109:21:4509:21:455、阅读使人充实,会谈使人敏捷,写作使人精确。
北师大版七年级数学下册期末综合复习 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列说法中正确的是( ) A .锐角的2倍是钝角B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC =BC ,则点C 是线段AB 的中点 2、如图,在A 、B 两地之间要修条笔直的公路,从A 地测得公路走向是北偏东48︒,A ,B 两地同时开工,若干天后公路准确接通,若公路AB 长8千米,另一条公路BC 长是6千米,且从B 地测得公路BC 的走向是北偏西42︒,则A 地到公路BC 的距离是( ) A .6千米B .8千米C .10千米D .14千米 3、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是( )·线○封○密○外A.有症状早就医B.打喷捂口鼻C.防控疫情我们在一起D.勤洗手勤通风4、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()A.12B.13C.14D.255、如图, BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为()A.2 B.4 C.6 D.106、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 117、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A .B .C .D . 8、如图,直线AB 与CD 相交于点O ,OE 平分∠AOC ,且∠BOE =140°,则∠BOC 为( ) A .140°B .100°C .80°D .40°9、若2x +m 与x +3的乘积中不含x 的一次项,则m 的值为( ) A .﹣6B .0C .﹣2D .3 10、在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球,从袋中任意摸出一个球,是白球的概率为( ) A .79 B .49 C .13 D .29 第Ⅱ卷(非选择题 70分) 二、填空题(10小题,每小题3分,共计30分) 1、按下面的运算程序,输入一个实数3x =,那么输出值y =______.2、将长为23cm 、宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 的函数关系式为___________.·线○封○密○外3、如图所示,用数字表示的8个角中,若同位角有a 对,内错角有b 对,同旁内角有c 对,则ab ﹣c =___.4、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是____________.5、若3x ﹣2=y ,则8x ÷2y =_____.6、一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,则用列举法,利用概率公式__________的方式得出概率.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过______来估计概率,即在同样条件下,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的_______.7、如图,把一张长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点'D 落在∠BAC 的内部,若∠CAE =2∠'BAD ,且∠'CAD =15°,则∠DAE 的度数为____________.8、若实数m ,n 满足m 2﹣m +3n 2+3n =﹣1,则m ﹣2﹣n 0=_____.9、计算:()202π-+-=__________.10、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有____个.三、解答题(5小题,每小题8分,共计40分)1、如图,长方形纸片ABCD ,点E ,F 分别在边,AB CD 上,连接EF .将BEF ∠对折,点B 落在直线EF 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN ,求NEM ∠的度数.2、如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD =CD . (1)求证:△ABD ≌△CFD ; (2)已知BC =9,AD =6,求AF 的长.3、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先拿出每种颜色的乒乓球各一个(不放回),再任意拿出一个乒乓球是红色的概率是多少?4、已知点P 在MON ∠内.如图,点P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,连接OG 、OH 、OP . ·线○封○密·○外(1)若50MON ∠=︒,则GOH ∠= ;(2)若5PO =,连接GH ,请说明当MON ∠为多少度时,10GH =.5、某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)-参考答案-一、单选题1、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C 在线段AB 上,若AC =BC ,则点C 是线段AB 的中点,故不符合题意;故选:B .【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质. 2、B 【分析】 根据方位角的概念,图中给出的信息,再根据已知转向的角度求解. 【详解】 解:根据两直线平行,内错角相等,可得∠ABG =48°, ∵∠ABC =180°−∠ABG −∠EBC =180°−48°−42°=90°, ∴AB ⊥BC , ∴A 地到公路BC 的距离是AB =8千米, 故选B .【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想. 3、C 【分析】 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫·线○封○密·○外做轴对称图形进行解答即可.【详解】解:A 、不是轴对称图形,故A 不符合题意;B 、不是轴对称图形,故B 不符合题意;C 、是轴对称图形,故C 符合题意;D 、不是轴对称图形,故D 不符合题意.故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.4、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是2163=. 故选:B .【点睛】本题考查概率的求法,注意掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5、A【分析】根据题意可得,AD CD =,△ABD 和△BCD 的周长差为线段AB BC 、的差,即可求解.【详解】解:根据题意可得,AD CD =△ABD 的周长为AB AD BD ++,△BCD 的周长为BC BD CD ++△ABD 和△BCD 的周长差为()2AB AD BD BC BD CD AB BC ++-++=-=故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键.6、C【分析】 根据三角形的任意两边之和大于第三边对各选项分析判断求解即可. 【详解】 解:A .∵3+4<8, ∴不能组成三角形,故本选项不符合题意; B .∵4+4<10, ∴不能组成三角形,故本选项不符合题意; C .∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键. ·线○封○密·○外7、C【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.8、B【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.9、A【分析】根据多项式乘以多项式展开,合并同类项后,让一次项系数为0即可得.【详解】 解:()()()223263x m x x m x m ++=+++, ∵2x m +与3x +的乘积中不含x 的一次项, ∴60m +=, 解得:6m =-. 故选:A . 【点睛】 本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应合并同类项后,让这一项的系数为0是解题关键. 10、D 【分析】 根据袋子中共有9个小球,其中白球有2个,即可得. 【详解】 解:∵袋子中共有9个小球,其中白球有2个, ∴摸出一个球是白球的概率是29, 故选D . 【点睛】 本题考查了概率,解题的关键是找出符合题目条件的情况数. 二、填空题 ·线○封○密○外1、9【分析】先根据图表列出函数关系式,然后计算当3x =时y 的值.【详解】当3x =时,(1)25(31)259y x .故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.2、y=21x+2【分析】等量关系为:纸条总长度=23×纸条的张数-(纸条张数-1)×2,把相关数值代入即可求解.【详解】每张纸条的长度是23cm ,x 张应是23xcm ,由图中可以看出4张纸条之间有3个粘合部分,那么x 张纸条之间有(x-1)个粘合,应从总长度中减去.∴y 与x 的函数关系式为:y=23x-(x-1)×2=21x+2.故答案为:y=21x+2.【点睛】此题考查函数关系式,找到纸条总长度和纸条张数的等量关系是解题的关键.3、9【分析】位于两条被截直线的同侧,截线的同旁的角是同位角,位于两条被截直线的内部,截线的两旁的角是内错角,位于两条被截直线的内部,截线的同旁的角是同旁内角,根据同位角,内错角,同旁内角概念结合图形找出各对角类型的角得出a, b, c的值,然后代入计算即可.【详解】解:同位角有∠1与∠6,2与∠5,∠3与∠7,∠4与∠8,同位角有4对,∴a=4,内错角有∠1与∠4,2与∠7,3与∠5,∠8与∠6,内错角4对,∴b=4,同旁内角有∠1与∠8,∠1与∠7,∠7与∠8,∠2与∠4,∠2与∠3,∠3与∠4,∠3与∠8,同旁内角有7对,∴c=7,∴ab﹣c=4×4-7=16-7=9,故答案为9.【点睛】本题考查同位角,内错角,同旁内角,以及代数式求值,掌握同位角,内错角,同旁内角概念,得出a=4,b=4,c=7是解题关键.4、11 17【分析】设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,求出活到25岁的数量与活到20岁的数量的比值,即可求解.【详解】解:设这种动物出生时的数量为a,则活到20岁的数量为0.85a,活到25岁的数量为0.55a,∴现年20岁的这种动物活到25岁的概率是0.5511 0.8517aa.故答案为:11 17·线○封○密○外【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键.5、4【分析】由3x ﹣2=y 可得3x ﹣y =2,再根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】解:因为3x ﹣2=y ,所以3x ﹣y =2,所以8x ÷2y =23x ÷2y =23x ﹣y =22=4.故答案是:4.【点睛】本题主要考查了幂的乘方运算法则和同底数幂的除法法则,灵活运用相关运算法则成为解答本题的关键.6、P (A )=m n统计频率 概率 【详解】略7、39︒【分析】由折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,再根据长方形的性质可知90DAE D AE BAD ''∠++∠=︒,结合题意整理即可求出BAD '∠的大小,从而即可求出DAE ∠的大小. 【详解】根据折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,由长方形的性质可知90DAB ∠=︒,即90DAE D AE BAD ''∠++∠=︒,∵2CAE BAD '∠=∠,'15CAD ∠=︒,∴215DAE D AE BAD ''∠=∠=∠+︒,∴22151590BAD BAD BAD '''+︒++∠︒+∠=∠︒,∴12BAD '∠=︒,∴2152121539DAE BAD '∠=∠+︒=⨯︒+︒=︒.故答案为:39︒【点睛】本题考查矩形的性质,折叠的性质.利用数形结合的思想是解答本题的关键.8、3 【分析】 利用完全平方公式分别对等式中的m 、n 配方得到2211()3()022m n -++=,根据平方式的非负性求出m 、n 的值,再代入求解即可. 【详解】 解:由m 2﹣m +3n 2+3n =﹣1,得:m 2﹣m +3n 2+3n +1=0, ∴2211()3()044m m n n -++++=, 即2211()3()022m n -++=, ∵21()02m -≥,213()02n +≥, ∴102m -=,102n +=, 解得:m =12,12n =-, ·线○封○密○外∴m -2﹣n 0=201122-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=4-1=3. 故答案为:3.【点睛】本题考查代数式的求值、完全平方公式、平方式的非负性、负整数指数幂、零指数幂,会利用完全平方公式求解是解答的关键.9、54【分析】根据0指数和负指数的运算方法计算即可.【详解】解:()20152144π-+-=+=, 故答案为:54.【点睛】本题考查了0指数和负指数的运算,解题关键是明确0指数和负指数的运算法则,准确进行计算. 10、4【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形.而三角形不一定是轴对称图形.故答案为:4.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.三、解答题1、90︒【分析】根据折叠的性质可以得到,AEN A EN '∠=∠ ,B EM BEM '∠=∠根据平角可得180,AEN A EN B EM BEM ''∠+∠+∠+∠=︒ 推出()2180,A EN B EM ''∠+∠=︒可得最终结果.【详解】 A NE '是由ANE 沿NE 折叠得到的, ,AEN A EN '∴∠=∠ B ME '是由BME 沿ME 折叠得到的, (),180,2180,90,,90B EM BEM AEN A EN B EM BEM A EN B EM A EN B EM NEM A EN B EM NEM '∴∠=∠''∠+∠+∠+∠=︒''∴∠+∠=︒''∴∠+∠=︒''∠=∠+∠∴∠=︒. 【点睛】 本题主要考查了折叠问题,平角的定义,角的计算,准确找出折叠中重合的角是解题的关键. 2、(1)证明见解析;(2)AF =3【分析】(1)利用同角的余角相等,证明∠BAD =∠FCD ,利用ASA 证明即可;(2)利用全等三角形的性质,得BD =DF ,结合BD =BC ﹣CD ,AF =AD ﹣DF 计算即可.【详解】 ·线○封○密·○外(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,ADB CDF AD DCBAD DCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【点睛】本题考查了ASA证明三角形全等,全等三角形的性质,熟练掌握三角形全等的判定和性质是解题的关键.3、27【分析】根据剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种即可求解.【详解】解:先拿出每种颜色的乒乓球各一个(不放回),则还剩下7个小球,其中红色的球2个,∴剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种,∴再任意拿出一个乒乓球是红色的概率是27 .【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比. 4、(1)100︒;(2)90︒ 【分析】 (1)由题意依据轴对称可得OG =OP ,OM ⊥GP ,即可得到OM 平分∠POG ,ON 平分∠POH ,进而得出∠GOH =2∠MON ; (2)根据题意可知当∠MON =90°时,∠GOH =180°,此时点G ,O ,H 在同一直线上,可得GH =GO +HO =10. 【详解】 解:(1)∵点P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H , ∴OG =OP ,OM ⊥GP , ∴OM 平分∠POG , 同理可得ON 平分∠POH , ∴∠GOH =2∠MON =2×50°=100°, 故答案为:100°; (2)∵5PO =, ∴5GO HO ==, 当90MON ∠=︒时,180GOH ∠=︒, ∴点G ,O ,H 在同一直线上, ∴5510GH GO HO =+=+=. 【点睛】 本题主要考查轴对称图形相关,熟练掌握角平分线性质以及轴对称图形的性质是解题的关键. ·线○封○密○外5、(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量;(2)表格见解析;(3)7000人次.【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论;(3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论;【详解】解:(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.。
总复习专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、如图,已知,,则( ).A.B.C.D.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式7、的次数和项数分别为()A.B.C.D.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个10、如图,已知直线、被直线所截,那么的同位角是()A.C.D.11、若,则()A.B.C.D.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、一个直三棱柱的顶点个数是()A.B.C.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.18、计算__________.19、如图,,其中,则.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.23、计算:(1)(2)总复习专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.【答案】B【解析】解:由题意知,,.只需测出线段的长度即可得出池塘两端,的距离.故答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、如图,已知,,则( ).A.B.C.D.【答案】C【解析】解:,,,.故正确答案是.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定【答案】C【解析】解:由网格中图可知,点为的中点,点为的中点,则、的交点是的重心.5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.【答案】C【解析】解:由题意得,降价后的销售价为.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式【答案】B【解析】解:根据整式的概念可知,单项式和多项式统称为整式,故“整式就是多项式”错误;是单项式,故“是单项式”正确;是次二项式,故“是七次二项式”错误;是多项式,故“是单项式”错误.故正确答案是:是单项式7、的次数和项数分别为()A.B.C.D.【答案】A【解析】解:的次数和项数分别为.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个【答案】B【解析】解:由多边形的概念可知第四个、第五个是多边形共个.9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个【答案】A【解析】解:,是等腰三角形,,平分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,所以共有个等腰三角形.10、如图,已知直线、被直线所截,那么的同位角是()A.B.C.D.【答案】D【解析】解:根据同位角的定义知,的同位角是.11、若,则()A.B.C.D.【答案】A【解析】解:由题意得解得.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数【答案】C【解析】解:的绝对值是,正确;的倒数是,正确;的相反数是,故“的相反数是”错误;是最小的正整数,正确.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、一个直三棱柱的顶点个数是()A.B.C.D.【答案】D【解析】解:一个直三棱柱由两个三边形的底面和个长方形的侧面组成,根据其特征及欧拉公式可知,它有个顶点.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:①棱柱的上、下底面的形状相同,此选项正确;②若,则点为线段的中点,不一定在一条直线上,故此选项错误;③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.故正确的为①⑤,共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.【答案】自变量;因变量;两个变量之间【解析】解:利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示自变量,第二行表示因变量,但它不能全面反映两个变量之间的关系,只能反映其中的一部分.正确答案是:自变量;因变量;两个变量之间.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.【答案】【解析】解:由欧拉公式:,可得:.18、计算__________.【答案】【解析】解:19、如图,,其中,则.【答案】127【解析】解:由,得,,所以.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______组.【答案】【解析】解:根据频数分布直方图可知:后面三组的频数分别为、、,因为共有个数,所以这名学生的成绩的中位数是第和个数的平均数.因为第和个数在第三组,从图中可知这名学生的成绩的中位数在组.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.【解析】解:是的垂直平分线,,而,,已知,,又知,的周长为:.正确答案是:.23、计算:(1)【解析】解:(2)【解析】解:总复习专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以3、含有 _____的等式叫做方程。
北师大版七年级数学下册期末综合复习 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列各组图形中,是全等形的是( ) A .两个含30°角的直角三角形B .一个钝角相等的两个等腰三角形C .边长为5和6的两个等腰三角形D .腰对应相等的两个等腰直角三角形2、下列标志图案属于轴对称图形的是( ) A . B . C . D .3、在平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点是( ) A .(﹣2,﹣3) B .(2,3) C .(﹣3,﹣2) D .(2,﹣3)4、下列关于画图的语句正确的是( ). A .画直线8cm AB ·线○封○密○外OAB.画射线8cmC.已知A、B、C三点,过这三点画一条直线D.过直线AB外一点画一直线与AB平行5、如图,∠1=∠2,∠3=25°,则∠4等于()A.165°B.155°C.145°D.135°6、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为()A.40°B.50°C.140°D.150°7、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为()A.2个B.3个C.4个D.5个8、下列学习用具中,不是轴对称图形的是()A .B .C .D . 9、下列计算正确的是( )A .a +3a =4aB .b 3•b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7 10、下面四个图形是轴对称图形的是( ) A . B . C . D . 第Ⅱ卷(非选择题 70分) 二、填空题(10小题,每小题3分,共计30分)1、已知一个角的余角是35°,那么这个角的度数是_____°.2、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为13,则袋中白球的个数是________.3、小明早上步行去车站,然后坐车去学校.如图象中,能近似的刻画小明离学校的距离随时间变化关系的图象是_____.(填序号) ·线○封○密○外4、某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B 点,选对岸正对的一棵树A ;②沿河岸直走20米有一树C ,继续前行20米到达D 处;③从D 处沿河岸垂直的方向行走,当到达A 树正好被C 树遮挡住的E 处停止行走;④测得DE 的长为5米;则河的宽度为 _____米.5、(﹣2)0+3﹣2=_____.6、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.7、如图,长方形纸片ABCD ,点E ,F 分别在边AB ,AD 上,将长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若BEH ∠比AEF ∠的4倍多12°,则CHG ∠=______°.8、一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出1个球,则摸到一个红球的概率为_____. 9、如图,在ABC 中,∠BAC =80°,∠C =45°,AD 是ABC 的角平分线,那么∠ADB =_____度. 10、已知盒子里有6个黑色球和n 个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是12,则n 是______.三、解答题(5小题,每小题8分,共计40分) 1、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3. (1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少? 2、下表是小华做观察水的沸腾实验时所记录的数据:(1)时间是8分钟时,水的温度为_____;·线○封○密○外(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;3、如图,直线AB 与CD 相交于点O ,OC 平分∠BOE ,OF ⊥CD ,垂足为点O .(1)写出∠AOF 的一个余角和一个补角.(2)若∠BOE =60°,求∠AOD 的度数.(3)∠AOF 与∠EOF 相等吗?说明理由.4、威宁粮食二库需要把晾晒场上的120吨苞谷入库封存.受设备影响,每天只能入库15吨.入库所用的时间为x (单位:天),未入库苞谷数量为y (单位:吨).(1)直接写出y 和x 间的关系式为:______.(2)二库职工经过钻研,改进了入库设备,现在每天能比原来多入库5吨.则①直接写出现在y 和x 间的关系式为:______.②求将120吨苞谷入库封存所需天数现在比原来少多少天?5、化简:()()()2212x x x +----参考答案-一、单选题1、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS ,SAS ,AAS ,SAS ,HL 逐个判断得结论.【详解】解:A 、两个含30°角的直角三角形,缺少对应边相等,故选项A 不全等;B 、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B 不全等;C 、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C 不全等;D 、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D 是全等形.故选:D .【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系. 2、B 【分析】 根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴. 【详解】 选项B 能找到这样的一条直线,使图形沿着一条直线对折后两部分完全重合, 选项A 、C 、D 均不能找到这样的一条直线,所以不是轴对称图形, 故选:B . 【点睛】 本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 3、A 【分析】 根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论. ·线○封○密○外【详解】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3)故选A .【点睛】本题考查的是求一个点关于x 轴对称点的坐标,掌握关于x 轴对称的两点坐标关系是解题的关键.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、B【分析】设∠4的补角为5∠,利用∠1=∠2求证a b ∥,进而得到35∠=∠,最后即可求出∠4.【详解】解:设∠4的补角为5∠,如下图所示:∠1=∠2, a b ∥, 3525∴∠=∠=︒, 41805155∴∠=︒-∠=︒. 故选:B . 【点睛】 本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键. 6、D 【分析】 由于拐弯前、后的两条路平行,可考虑用平行线的性质解答. 【详解】 解:∵拐弯前、后的两条路平行, ∴∠B =∠C =150°(两直线平行,内错角相等). 故选:D . 【点睛】 本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解. 7、 D ·线○·封○密○外【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.8、B【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一分析即可.【详解】解:选项A中的图形是轴对称图形,故A不符合题意;选项B中的图形不是轴对称图形,故B符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.9、A【分析】根据合并同类项判断A 选项;根据同底数幂的乘法判断B 选项;根据同底数幂的除法判断C 选项;根据幂的乘方判断D 选项. 【详解】解:A 选项,原式=4a ,故该选项符合题意;B 选项,原式=b 6,故该选项不符合题意;C 选项,原式=a 2,故该选项不符合题意;D 选项,原式=a 10,故该选项不符合题意;故选:A .【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.10、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析. 【详解】 解:A 、不是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项符合题意; C 、不是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项不合题意; 故选:B . ·线○封○密·○外【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题1、55【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.【详解】解:这个角的是90°-35°=55°,故答案为:55.【点睛】此题主要考查了余角,解题的关键是明确两个角互余,和为90°.2、6【分析】 随机摸出一个球是红球的概率是133n=,可以得到球的总个数,进而得出白球的个数. 【详解】解:记摸出一个球是红球为事件A 13()3P A n== 9n ∴=∴白球有936-=个 故答案为:6.【点睛】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.3、④【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快. 【详解】 ①距离越来越大,选项错误; ②距离越来越小,但前后变化快慢一样,选项错误; ③距离越来越大,选项错误; ④距离越来越小,且距离先变化慢,后变化快,选项正确; 故答案为:④. 【点睛】 本题考查了函数图象,观察距离随时间的变化是解题关键. 4、5 【分析】 将题目中的实际问题转化为数学问题,利用全等三角形的判定方法证得两个三角形全等即可得出答案. 【详解】 解:由题意知,在Rt ABC 和Rt EDC 中, 90ABC EDC BC DC ACB ECD∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ·线○封○密○外Rt ABC Rt EDC ≅,∴5AB ED ==,即河的宽度是5米,故答案为:5.【点睛】题目主要考查全等三角形的应用,熟练应用全等三角形的判定定理和性质是解题关键.5、119##【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:(﹣2)0+3﹣2=1+19=119. 故答案为:119.【点睛】本题考查零指数幂和负指数幂,根据性质化简即可,难度一般.6、23【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出黑球的概率是:42423=+.故答案为:23. 【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7、124【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,同位角相等”可求出∠CHG 的度数.【详解】解:由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF +12°,∠AEF +∠FEH +∠BEH =180°, ∴∠AEF +∠AEF +4∠AEF +12°=180°, ∴∠AEF =16×(180°-12°)=28°, ∴∠BEH =4∠AEF +12°=124°. ∵AB ∥CD , ∴∠CHG =∠BEH =124°. 故答案为:124. 【点睛】 本题主要考查了平行线的性质、折叠的性质以及对顶角,牢记“两直线平行,同位角相等”是解题的关键. 8、12 【分析】 结合题意,根据概率公式的性质计算,即可得到答案. ·线○封○密○外【详解】∵2个红球,1个白球,1个黑球∴中随机摸出1个球,则摸到一个红球的概率为:212112=++ 故答案为:12.【点睛】本题考查了概率的知识;解题的关键是熟练掌握利用概率公式计算概率的性质,从而完成求解. 9、85【分析】 根据角平分线的定义求得12DAC BAC ∠=∠,进而根据三角形的外角性质即可求得ADB ∠的度数. 【详解】∠BAC =80°,AD 是ABC 的角平分线,1402DAC BAC ∴∠=∠=︒ 又∠C =45°404585DAB DAC C ∴∠=∠+∠=︒+︒=︒故答案为:85【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键.10、6【分析】根据概率公式计算即可;【详解】由题可得,取出红色球的概率是162n n =+, ∴26n n =+,∴6n =,经检验,6n =是方程的解;故答案是:6.【点睛】本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.三、解答题1、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6. 【分析】 设这种动物有x 只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率 【详解】 解:设这种动物有x 只,则活到20岁的只数为0.8x ,活到25岁的只数为0.5x ,活到30岁的只数为0.3x . (1)现年20岁的这种动物活到25岁的概率为0.50.8x x =0.625. (2)现年25岁的这种动物活到30岁的概率为0.30.5x x =0.6. 【点睛】本题考查了概率的计算,正确理解概率的含义是解决本题的关键.概率等于所求情况数与总情况数之比. 2、(1)100℃;(2)温度,时间,时间,温度 ·线○封○密○外【分析】(1)根据表格中的数据求解即可;(2)观察表格可知,反映的是温度随时间的变化而变化由此即可得到答案.【详解】解:(1)观察表格可知:第8分钟时水的温度为100℃;(2)观察表格可知反映的是温度随着时间的变化而变化的,时间是自变量,温度是因变量;故答案为(1)100℃;(2)温度,时间,时间,温度.【点睛】本题主要考查了用表格表示变量之间的关系,解题的关键在于能够熟练掌握自变量与因变量的定义.3、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC 平分∠BOE ,∴∠COE =∠BOC ,∴∠AOF +∠COE =90°;∴∠AOF 的余角是,∠COE ,∠BOC ,∠AOD ;∵∠AOF +∠BOF =180°,∴∠AOF 的补角是∠BOF ;(2)∵OC 平分∠BOE ,∠BOE =60°,∴∠BOC =30°,又∵∠AOD =∠BOC , ∴∠AOD =30°; (3)∠AOF =∠EOF ,理由如下: 由(1)可得∠AOD =∠BOC =∠COE , ∵OF ⊥OC , ∴∠DOF =∠COF =90°, ∴∠AOD +∠AOF =∠EOF +∠COE =90°, ∴∠AOF =∠EOF .【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补. 4、(1)y =120-15x ;(2)①y =120-20x ;②2 【分析】 (1)入库所用的时间为x ,未入库苞谷数量为y 的函数关系式为y =120-15x ; ·线○封○密·○外(2)①改进了入库设备,每天入库15+5=20吨;y 和x 间的关系式为:y =120-20x ;②120吨苞谷入库封存现在所需天数一原来所需天数,即可求得答案.【详解】解:(1)晾晒场上的120吨苞谷入库封存,每天只能入库15吨,入库所用的时间为x ,未入库苞谷数量为y 的函数关系式为y =120-15x ;故答案为:y =120-15x ;(2)①改进了入库设备,则每天入库20吨;y 和x 间的关系式为:y =120-20x ;故答案为:y =120-20x ; ②12012021520-= 答:求将120吨苞谷入库封存所需天数现在比原来少2天.【点睛】主要考查了函数的实际应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.5、72x +【分析】先用完全平方公式和多项式乘法法则去括号,再合并同类项即可.【详解】解:()()()2212x x x +---,=()224432x x x x ++--+ =224432x x x x ++-+-=72x +.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式和多项式相乘法则,准确进行计算.·线○封○密○外。
z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
七年级(下)期末数学测试试卷(三)一、选择题(本大题共10个小题,每小题3分,共30分)1.下列运算正确的是()A、(a-b)2=a2-b2B、a3-a2=aC、(2a+1)(2a-1)=4a-1D、(-2a3)2=4a62.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A、0.8×10-7米B、8×10-7米C、8×10-8米D、8×10-9米3.下列长度的3条线段,能首尾依次相接组成三角形的是()A、1,3,5B、3,4,6C、5,6,11D、8,5,24.下列图形中,有无数条对称轴的是()A、等边三角形B、平行四边形C、等腰梯形D、圆5.下列乘法中,不能运用平方差公式进行运算的是()A、(x+a)(x-a)B、(a+b)(-a-b)C、(-x-b)(x-b)D、(b+m)(m-b)6.能判断两个三个角形全等的条件是()A、已知两角及一边相等B、已知两边及一角对应相等C、已知三条边对应相等D、已知三个角对应相等7.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A、三角形的稳定性B、长方形的对称性C、长方形的四个角都是直角D、两点之间线段最短7题图8题图9题图8.已知:如图,FD∥BE,则∠1+∠2-∠A=()A、90°B、135°C、150°D、180°9.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A、SASB、ASAC、AASD、SSS10.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()二.填空题:(本大题共7个小题,每小题4分,共28分)11.(12)-2+(-2)3-20150=.12.从一个袋子中摸出红球的概率为15,已知袋子中红球有5个,则袋子中共有球的个数为.13.如图所示,若∠1+∠2=180°,∠3=75°,则∠4=度.14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为cm.15.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为.16.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED 的条件为.(注:把你认为正确的答案序号都填上)17.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是°.三、解答题(本大题共6个小题,共54分)18.计算(1)(a2)6÷a8+(-2a)2(-12a2)(2)(x+1)(x-1)-(x+2)2.19.先化简,再求值:x(x+2y)-(x+1)2+2x,其中x=1,y=-3.320.解答题(1)已知a+b=3,a2+b2=5,求ab的值;(2)若3m=8,3n=2,求32m-3n+1的值.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF ⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.22.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)11时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?23.如图,四边形ABCD中,E是AD中点,CE交BA延长线于点F.此时E也是CF中点(1)判断CD与FB的位置关系并说明理由;(2)若BC=BF,试说明:BE⊥CF.24.已知x+y=3,x2+y2-3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.25.操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C 的理由;探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E 为AB的中点,AB=BC,CE⊥BD.(1)BE与AD是否相等,为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;(3)∠DBC与∠DCB相等吗试?说明理由.26.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案一、选择题1.D.2.C.3.B.4.D .5.B.6.D.7.A.8.D.9.D.10.A.二、填空题11.-5.12.25.13.105.14.4.15.1516.①③④17.105.三、解答题18. 解:(1)原式=a12÷a8+4a2•(-12a2)=a4-2a4=-a4;(2)原式=x2-1-x2-4x-4=-4x-5.19. 解:原式=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1,把x=13,y=-3代入,得原式=2xy-1=2×13×(-3)-1=-3.20. 解:(1)[(a+b)2-(a2+b2)]÷2=[9-5]÷2=2;(2)∵3m=8,3n=2∴32m-3n+1=(3m)2÷(3n)3×3=64÷8×3=24.21. (1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.22. (1)根据图示知,图象表示的两个变量是:时间与距离,其中时间是自变量,距离是因变量;(2)根据图示知,到达离家最远的时间是12时,离家30千米;(3)根据图示知,11时到12时,他行驶了13千米;(4)根据图示知,他可能在12时到13时间休息,吃午餐;(5)共用了2时,因此平均速度为30÷2=15千米/时.23. 解:(1)判断:CD∥FB.证明如下:∵E是AD中点,∴AE=DE,∵E是CF中点,∴CE=EF ,在△DEC 和△AEF 中,AE DE AEF DEC CE EF =∠=∠=⎧⎪⎨⎪⎩, ∴△DEC ≌△AEF (SAS ), ∴∠DCE=∠F ,∴CD ∥FB ;(2)∵BC=BF ,CE=EF ,∴BE ⊥CF (等腰三角形三线合一).24. 解:(1)∵x+y=3,∴(x+y )2=9,∴x 2+y 2+2xy=9,∴x 2+y 2=9-2xy ,代入x 2+y 2-3xy=4,∴9-2xy-3xy=4,解得:xy=1.(2)∵x 2+y 2-3xy=4,xy=1,∴x 2+y 2=7,又∵x 3y+xy 3=xy (x 2+y 2), ∴x 3y+xy 3=1×7=7.25. 思考验证:过A 点作AD ⊥BC 于D , ∴∠ADB=∠ADC=90°, 在Rt △ABD 和Rt △ACD 中, AB AC AD AD ==⎧⎨⎩, ∴△ABD ≌△ACD (HL ), ∴∠B=∠C ;探究应用:(1)说明:因为BD ⊥EC , ∴∠CEB+∠1=90°, ∠1+∠ADB=90°, ∴∠ADB=∠BEC ,在△ADB 和△BEC 中90ADB BEC AB BC DAB EBC ∠=∠=∠=∠=︒⎧⎪⎨⎪⎩, ∴△DAB ≌△EBC (ASA ).∴DA=BE .(2)∵E 是AB 中点,∴AE=BE .∵AD=BE ,∴AE=AD .在△ABC 中,因为AB=BC ,∴∠BAC=∠BCA .∵AD ∥BC ,∴∠DAC=∠BCA .∴∠BAC=∠DAC .在△ADC 和△AEC 中,AD AE DAC EAC AC AC =⎧∠=∠=⎪⎨⎪⎩, ∴△ADC ≌△AEC (SAS ).∴DC=CE .∴C 在线段DE 的垂直平分线上.∵AD=AE ,∴A 在线段DE 的垂直平分线上.∴AC 垂直平分DE .(3)∵AC 是线段DE 的垂直平分线,∴CD=CE .∵△ADB ≌△BEC ,∴DB=CE .∴CD=BD .∴∠DBC=∠DCB .26.解:(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D 为AB 中点,∴BD=10(厘米)又∵PC=BC-BP=16-6=10(厘米)∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C PC BD ⎧=∠=∠=⎪⎨⎪⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP≠CQ,又因为∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=8,即△BPD≌△CPQ,故CQ=BD=10.所以点P、Q的运动时间t=84663BP==(秒),此时V Q=1043CQt==7.5(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得152x=6x+2×20,解得x=803(秒)此时P运动了803×6=160(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.。
答案解析一、选择题(本题满分24分,共有8道小题,每小题3分)1—4 CACD 5—8 BDCA二、填空题(本题满分18分,共有6道小题,每小题3分)9. 3;10. 16; 11. y=30-3x ; 12. 12;13. -6; 14. 270; 15. 9; 16. 153. 三、作图题(本题满分4分)17、作图略 正确作图;------3分写结论。
------4分18、计算: ((1)、(2)、(3)各4分;(4)6分)(1)222(3)×xy x y =4229xy x y× 2分 =5318x y 4分(2)()(2)(2)(2)x y x y x y x y +---+=222222(4)x xy xy y x y -+--- 2分=2222224x xy xy y x y -+--+ 3分=22x xy -+ 4分(3)用简便方法计算:2201620172015-?=22016(20161)(20161)-+? 1分=222016(20161)-- 2分=22201620161-+ 3分=1 4分(4)先化简再求值:(x -y )2-y (y -2x )-3x ÷(31x ) =222x y 2xy y 2xy 9+--+- 3分=2x 9- 5分当x 2,y 1==-时, 2x 9- = 49- = -5 6分19. (本题满分5分)每空1分.证明:∵∠B+∠BCD=180°(已知), ∴AB ∥CD (同旁内角互补,两直线平行) ∴∠B=∠DCE (两直线平行,同位角相等)又∵∠B=∠D (已知)∴∠DCE= ∠D ( 等量代换 )∴AD ∥BE ( 内错角相等,两直线平行 )∴∠E=∠DFE (两直线平行,内错角相等 )20、(本题满分7分)解:共有8种等可能的结果,甲赢取卡片有4种结果,乙赢取卡2张片有4种结果,甲赢取1张卡片有3种结果; 1分(1)()甲赢取1张卡片P =383分 (2)()乙赢取2张卡片P =125分 (3)()甲赢取卡片P =12 7分21、(本题满分8分)答:(1) ∠A=∠C (2) DF=BE 2分 (3)平行证明:∵AE=CF∴AE+EF=CF+ EF即 AF=CE 4分∵∠D=∠B ,∠AFD=∠CEB∴△ADF ≌△CBE 6分∴∠A=∠C∴AD ∥BC 8分22. (本题满分8分)(1)兔子;1500. 2分(2)700÷2=350米; 1500÷50=30米. 答略 4分(3)700÷30=703(分钟) 6分 (4)50+0.5-2-(1500-700)÷400=46.5(分钟) 8分23. (本题满分10分) 探究三:由题意可得∠O 3BC=34∠ABC ,∠O 3CB=34∠ACB ∴∠O 3BC+∠O 3CB=34(∠ABC+∠ACB )=34(180°-α) ∴∠BO 3C=180°-34(180°-α)=45°+34α 3分问题解决:180n +n n1-α 5分 探究四:180°+α 6分探究五:270°+32α 8分 探究六:(n-1)(90°+12α) 10分24. (本题满分12分)(1)答:相等 证明:∵AC=AB ,∠BAC=90°∴∠B=∠C=45°∵OA=OB=OC∴∠BAO=∠CAO=45°, ∠AOB=∠AOC=90°, 3分∴∠B=∠BAO ,∠B=∠CAO ∵AN=BM∴△AON ≌△BOM (SAS ) 5分∴ON=OM 6分(2)答:垂直证明:∵△AON ≌△BOM∴∠NOA=∠MOB 7分∵∠MOB+∠AOM=90°∴∠NOA+∠AOM=90°即ON ⊥OM 9分(3)答:不变解:∵△AON ≌△BOM∴AON S =BOM S∴AON S +AOM S =BOM S +AOM S即AMON S 四边形=AOB S 11分∴AMON S 四边形=12ABC S =114422×××=42cm 12分 C A B M N O。
北师版七年级下册期末综合复习卷(时间100分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列计算正确的是( )A .x 2+3x 2=4x 4 `B .x 2y ·2x 3=2x 4yC .6x 2y 2÷3x =2x 2 `D .(-3x )2=9x 22.下列图形中,是轴对称图形的是( )3.下列各组数作为三条线段的长,使它们能构成三角形的一组是( )A .2,3,5B .4,4,8C .14,6,7D .15,10,94.如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A .60°B .70°C .80°D .90°5.下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事机B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开七年级下册数学教科书,正好是97页是确定事件D .一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是66. 如图,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3等于( )A .60°B .65°C .70°D .130°7. 下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长=△DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F8.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC9.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后从中随机抽取一张,则抽到的卡片上算式正确的概率是( ) a 2+a 4=a 7 a 8÷a 4=a 2 (a 3)2=a 6 a 2+a 3=2a 5A.14B.12C.34D .1 10.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的图象大致为( )二.填空题(共8小题,3*8=24)11.将方程4x +3y =6变形成用y 的代数式表示x 的形式,则x =_________.12. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是_______克.13.如图,在四边形ABCD 中,∠A =100°,∠C =70°.将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________.14.经测量,人在运动时所能承受的每分钟心跳的最高次数通常和人的年龄有关.如果用x 表示一个人的年龄,用y 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么y =0.8(220-x ).今年上七年级的小虎12岁,据此表达式计算,他运动时所能承受的每分钟的最高心跳次数约是________(取整数)次.15.若3a 4b 3m +2n 与-5a 2m +3n b 6是同类项,则|m +n |=__ __.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°;③若一个三角形的三边长分别为3、5、x ,则x 的取值范围是2<x <8;④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有__________.(填序号)17.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF A的面积是____.18.如图,在△ABC中,AB=AC,AB的垂直平分线DE交BC于E,EC的垂直平分线FM交DE的延长线于M,交EC于F,若∠FMD=40°,则∠C=________.13题图17题图18题图三.解答题(共7小题,66分)19.(8分)(1)计算:2-2-(π-3.14)0+(-0.5)2020×22020.(2) 化简并求值:(3x+2y)2-(3x-2y)2+2(x+y)(x-y)-2x(x+4y)其中,x=1,y=-1.20.(8分) 如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.21.(8分) 小明和小刚做摸纸牌游戏.如图,两组相同的纸牌,每组两张牌面数字分别是2和3.将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.22.(10分) 若一个多边形的所有内角与它的一个外角的和为600°,求这个多边形的边数和内角和.23.(10分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试说明:DE=DF.24.(10分)某医药研究所开发一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:(1)服药后几时血液中含药量最高?每毫升血液中含多少微克?(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?(3)服药后14 h时,每毫升血液中含药量是多少微克?(4)如果每毫升血液中含药量为4微克及以上时,治疗疾病有效,那么有效时间为几时?25.(12分) 在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE =∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是____________,请说明理由;参考答案1-5DADCAC 6-10BCBAB11. 6-3y 412.7.6×10-813. 95°14.16615. 216. ②③⑤17. 1618.40°19. 解:(1)原式=14-1+(-0.5×2)2020=14-1+1=14(2)原式=16xy -2y 2.当x =1,y =-1时,原式=-16-2=-18.20. 解:AB 和CD 平行.理由如下:因为CE 平分∠BCD ,所以∠4=∠1=70°,∠BCD =2∠1=140°.因为∠1=∠2=70°,所以∠4=∠2=70°.所以AD ∥BC .所以∠B =∠3=40°.所以∠B +∠BCD =40°+140°=180°.所以AB ∥CD .21. 解:P (积为奇数)=14,P (积为偶数)=34,∴小明得分:14×2=12(分),小刚得分:34×1=34(分).∵12≠34,∴这个游戏对双方不公平22. 解:设这个多边形的边数为n ,这个外角的度数为α.根据题意,得(n -2)×180°+α=600°,则α=600°-(n -2)×180°.又∵0°<α<180°,∴0°<600°-(n -2)×180°<180°,解得413<n <513.又∵n 为正整数,∴n =5,∴这个多边形为五边形,内角和为(5-2)×180°=540°,而α=600°-540°=60°.23. 解:连接AD ,在△ACD 和△ABD 中,因为AB =AC ,BD =CD ,AD =AD ,所以△ACD △≌ABD (SSS ),所以∠CAD =∠BAD ,所以AD 是∠BAC 的角平分线,又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF24. 解:(1)服药后2 h 血液中含药量最高,每毫升血液中含6 μg .(2)在服药2 h 内,每毫升血液中含药量逐渐升高,在服药2 h 后,每毫升血液中含药量逐渐下降.(3)2 μg(4)8-43=203(h ),即有效时间为203 h .25. 解:(1)α+β=180°理由:因为∠DAE =∠BAC ,所以∠DAE -∠CAD =∠BAC -∠CAD ,即∠BAD =∠CAE .又因为AB =AC ,AD =AE ,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.在△ABC中,∠BAC+∠ABC+∠ACB=180°,∠ABC=∠ACE,所以∠BAC+∠ACB+∠ACE=180°.因为∠ACB+∠ACE=∠DCE=β,所以α+β=180°.(2)α=β理由:因为∠DAE=∠BAC,所以∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.因为∠ABC+∠BAC+∠ACB=180°,∠ACB+∠ACD=180°,所以∠ACD=∠ABC+∠BAC=∠ACE+∠ECD.所以∠BAC=∠ECD.所以α=β.。
北师大版七年级数学下册期末专项测试 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若2x +m 与x +3的乘积中不含x 的一次项,则m 的值为( ) A .﹣6 B .0 C .﹣2 D .3 2、小丽的微信红包原有100元钱,她在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是( ) A .时间 B .小丽 C .80元 D .红包里的钱 3、在下列各题中,属于尺规作图的是( )A .用直尺画一工件边缘的垂线B .用直尺和三角板画平行线C .利用三角板画45 的角D .用圆规在已知直线上截取一条线段等于已知线段4、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )·线○封○密○外A .B .C .D . 5、下列图形中不是轴对称图形的是( ).A .B .C .D .6、下列事件中是不可能事件的是( )A .铁杵成针B .水滴石穿C .水中捞月D .百步穿杨 7、下列图案,是轴对称图形的为( )A .B .C .D . 8、下列运算不正确的是( )A .235x x xB .()326x x =C .3262x x x +=D .()3328x x -=- 9、如图,图形中的x 的值是( )A .50B .60C .70D .8010、圆的周长公式C=2πR 中,下列说法正确的是( )A .π、R 是自变量,2是常量B .C 是因变量,R 是自变量,2π为常量 C .R 为自变量,2π、C 为常量D .C 是自变量,R 为因变量,2π为常量 第Ⅱ卷(非选择题 70分) 二、填空题(10小题,每小题3分,共计30分)1、如图,过直线AB 上一点O 作射线OC ,∠BOC =29°38′,OD 平分∠AOC ,则∠DOC 的度数为 _____.2、一个角的度数是42°36′,则它的余角的度数为_____°.(结果用度表示)3、已知变量y 与x 的部分对应值如表格所示,则y 与x 的关系式是________.4、如图,正三角形△ABC 和△CDE ,A ,C ,E 在同一直线上,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°.成立的结论有 _____.(填序号)5、某商场举办抽奖活动,每张奖券获奖的可能性相同,以10000奖券为一个开奖单位,设特等奖10个,一等奖100个,二等奖500个,则1张奖券中奖的概率是________.·线○封○密○外6、在4张完全一样的纸条上分别写上1、2、3、4,做成4支签,放入一个不透明的盒子中搅匀,则抽到的签是偶数的概率是 ___.7、如图,四边形ABCD 中,AD ∥BC ,直线l 是它的对称轴,∠B =53°,则∠D 的大小为______°.8、某电影院第x 排的座位数为y 个,y 与x 的关系如表格所示,第10排的座位数为___.9、如图,AD 为等腰ABC 的高,其中50,,,ACB AC BC E F ∠=︒=分别为线段,AD AC 上的动点,且AE CF =,当BF CE +取最小值时,AFB ∠的度数为_____.10、若一个三角形底边长是x ,底边上的高为8,则这个三角形的面积y 与底边x 之间的关系式是____.三、解答题(5小题,每小题8分,共计40分)1、(1)已知:如图(甲),等腰三角形的一个内角为锐角α,腰为a ,求作这个等腰三角形;(2)在(1)中,把锐角α变成钝角α,其他条件不变,求作这个等腰三角形. 2、已知,直线AB 、CD 交于点O ,EO ⊥AB ,∠EOC :∠BOD =7:11.(1)如图1,求∠DOE 的度数; (2)如图2,过点O 画出直线CD 的垂线MN ,请直接写出图中所有度数为125°的角. 3、先化简,再求值:()()()235⎡⎤-++-÷⎣⎦x y x y x y x ,其中1x =,5y =. 4、为庆祝党的百年华诞,我校即将举办“学党史·颂党思”的主题活动.学校拟定了A .党史知识比赛;B .视频征集比赛;C .歌曲合唱比赛;D .诗歌创作比赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人必选且只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题 ·线○封○密·○外(1)在扇形统计图中,m的值是;并将条形统计图补充完整;(2)根据本次调查结果,估计全校2000名学生中选择方案D的学生大约有多少人?(3)若从被调查的学生中任意采访一名学生甲,发现他选择的是方案C,那么再采访另一名学生乙时,他的选择也是方案C的概率是多少?5、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).-参考答案-一、单选题1、A【分析】根据多项式乘以多项式展开,合并同类项后,让一次项系数为0即可得.【详解】 解:()()()223263x m x x m x m ++=+++,∵2x m +与3x +的乘积中不含x 的一次项, ∴60m +=, 解得:6m =-. 故选:A . 【点睛】 本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应合并同类项后,让这一项的系数为0是解题关键. 2、A 【分析】 一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有为一得值与其对应,那么我们就说x 是自变量,所以上述过程中,自变量是时间. 【详解】 解:小丽的微信红包原有100元钱,她在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是时间, 故选:A . ·线○封○密·○外【点睛】此题主要考查了自变量的定义,解答此题的关键是要明确自变量的定义,看哪个量随着另一个量变化而变化.3、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D.【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.4、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项符合题意;故选B .【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.5、C【分析】根据称轴的定义进行分析即可.【详解】解:A .是轴对称图形,故本选项不符合题意; B .是轴对称图形,故本选项不符合题意; C .不是轴对称图形,故本选项符合题意; D .是轴对称图形,故本选项不符合题意; 故选:C . 【点睛】 本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断.【详解】A 、铁杵成针,一定能达到,是必然事件,故选项不符合;B 、水滴石穿, 一定能达到,是必然事件,故选项不符合;C 、水中捞月,一定不能达到,是不可能事件,故选项符合;·线○封○密·○外D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意.D.是轴对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可直接进行排除选项.【详解】解:A、235x x x,原选项正确,故不符合题意;B 、()326x x =,原选项正确,故不符合题意;C 、3x 与2x 不是同类项,不能合并,原选项错误,故符合题意;D 、()3328x x -=-,原选项正确,故不符合题意; 故选C .【点睛】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项是解题的关键. 9、B 【分析】 根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可. 【详解】 解:由题意得:()1070x x x ++=+ ∴1070x x x ++=+, ∴60x =, 故选B . 【点睛】 本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键. 10、B 【解析】 试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量. 解:圆的周长公式C=2πR 中,C 是因变量,R 是自变量,2π为常量, ·线○封○密·○外故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.二、填空题1、7511'︒【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴1=75112DOC AOC'=︒∠∠,故答案为:7511'︒.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.2、47.4【分析】根据余角的定义即可得到结论.【详解】解:这个角的余角=90°-42°36′=47°24′=47.4°,故答案为:47.4.【点睛】本题考查了余角和补角,熟记余角的定义及度分秒的换算是解题的关键.3、210y x =+【分析】本题考查用关系式法表示变量之间的关系,用关系式表示的变量间关系经常是根据题目中的已知条件和两个变量之间的关系,利用公式、变化规律或者数量关系得到等式. 【详解】 x 每增加1,y 增加2,易得当x =0时y =10,所以y =2x +10. 【点睛】 在做此类题时,如果发现x 增加1时,y 增加的数值固定,那么y=kx+b ,k 就是这个固定的值,b 为x=0时y 对应的值. 4、①②③⑤ 【分析】 ①由于△ABC 和△CDE 是等边三角形,可知AC =BC ,CD =CE ,∠ACB =∠DCE =60°,从而证出△ACD ≌△BCE ,可推知AD =BE ; ③由△ACD ≌△BCE 得∠CBE =∠DAC ,加之∠ACB =∠DCE =60°,AC =BC ,得到△ACP ≌△BCQ (ASA ),所以AP =BQ ;故③正确; ②根据③△CQB ≌△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC =∠DCE ,根据内错角相等,两直线平行,可知②正确; ④根据∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,可知∠DQE ≠∠CDE ,可知④错误; ⑤利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE =∠DEO ,于是∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,可知⑤正确. ·线○封○密○外【详解】解:①∵等边△ABC 和等边△DCE ,∴BC =AC ,DE =DC =CE ,∠DEC =∠BCA =∠DCE =60°,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE DC CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴AD =BE ;故①正确;③∵△ACD ≌△BCE (已证),∴∠CAD =∠CBE ,∵∠ACB =∠ECD =60°(已证),∴∠BCQ =180°﹣60°×2=60°,∴∠ACB =∠BCQ =60°,在△ACP 与△BCQ 中,60CAD CBE AC BC ACB BCO ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ACP ≌△BCQ (ASA ),∴AP =BQ ;故③正确;②∵△ACP ≌△BCQ ,∴PC =QC ,∴△PCQ 是等边三角形,∴∠CPQ =60°,∴∠ACB =∠CPQ ,∴PQ ∥AE ;故②正确;④∵AD =BE ,AP =BQ ,∴AD ﹣AP =BE ﹣BQ , 即DP =QE , ∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°, ∴∠DQE ≠∠CDE , ∴DE ≠QE , ∴DP ≠DE ; 故④错误; ⑤∵∠ACB =∠DCE =60°,∴∠BCD =60°,∵等边△DCE ,∠EDC =60°=∠BCD ,∴BC ∥DE ,∴∠CBE =∠DEO ,∴∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°.·线○封○密·○外故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.5、61 1000【分析】首先确定出10000奖券中能中奖的所有数量,然后根据概率公式求解即可.【详解】解:由题意,10000奖券中,中奖数量为10+100+500=610张,∴根据概率公式可得:1张奖券中奖的概率61061100001000P==,故答案为:61 1000.【点睛】本题考查概率公式,明确题意,分别确定出概率公式中所需的量,熟练使用概率公式是解题关键是解题关键.6、12##【分析】根据题意可知有4种等可能的情况,其中为偶数的有2种可能,进而问题可求解.【详解】解:由题意得:抽到的签是偶数的概率为2142P==;故答案为12.【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.7、127 【分析】 根据轴对称性质得出∠C =∠B =53°,根据平行线性质得出∠C +∠D =180°即可. 【详解】 解:直线l 是四边形ABCD 的对称轴,∠B =53°, ∴∠C =∠B =53°, ∵AD ∥BC , ∴∠C +∠D =180°, ∴∠D=180°-53°=127°. 故答案为:127. 【点睛】 本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角. 8、41 【分析】 根据表格可以发现,当x 每增加1时,y 增加2,由此求解即可得到答案. 【详解】 解:第1排,有23个座位 第2排,有25个座位 ·线○封○密○外第3排,有27个座位第4排,有29个座位由此可以发现,当x 每增加1时,y 增加2∴y =2(x -1)+23把x =10代入上式中得y =2×(10-1)+23=41故答案为:41.【点睛】本题主要考查了用表格表示两个量的关系,解题的关键在于能够根据表格发现两个量的关系规律,由此求解.9、95︒【分析】作CH BC ⊥,且CH BC =,连接BH 交AD 于M ,连接FH ,证明()AEC CFH SAS ≌,得到CE FH =,BF CE BF FH +=+,当F 为AC 与BH 的交点时,即可求出最小值;【详解】解:如图1,作CH BC ⊥,且CH BC =,连接BH 交AD 于M ,连接FH , ABC 是等腰三角形,,,50AD BC AC BC ACB ⊥=∠=︒,40DAC ∴∠=︒,AC CH ∴=,90,50BCH ACB ∠=∠=︒︒,905040ACH ∴∠=︒-︒=︒,40DAC ACH ∴∠=∠=︒,AE CF =,在AEC △与CFH △中,AC CHCAE HCF AE CF =⎧⎪∠=∠⎨⎪=⎩ ()AEC CFH SAS ∴≌, ,CE FH BF CE BF FH ∴=+=+,∴当F 为AC 与BH 的交点时,如图2,BF CE +的值最小, 此时45,50FBC FCB ∠∠=︒=︒, 95AFB ∴∠=︒, 故答案为:95︒. 【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键. 10、y = 4x 【分析】 根据三角形的面积公式求解即可得到答案. 【详解】解:∵三角形底边长是x ,底边上的高为8,三角形的面积为y , ∴1842y x x =⨯=, 故答案为:4y x =.·线○封○密·○外【点睛】本题主要考查了求两个变量之间的关系式,解题的关键在于能够熟练掌握三角形的面积公式.三、解答题1、(1)答案见解析;(2)答案见解析.【分析】(1)分成α是顶角和顶角两种情况进行讨论,当α是底角时,首先作一个∠A=α,在一边上截取AB =a,然后过B作另一边的垂线BR,然后在AR的延长线上截取RC=AR,连接BC,即可得到三角形,当α是顶角时,作∠D=α,在角的两边上截取DE=DF=a,则△DEF就是所求三角形;(2)作∠M=α,在角的边上截取MN=MH,则△MNH就是所求.【详解】(1)如图所示:△ABC和△DEF都是所求的三角形;(2)如图所示:△MNH 是所求的三角形.【点睛】本题考查了三角形的作法,正确进行讨论,理解等腰三角形的性质:三线合一定理,是关键. 2、(1)145°;(2)图中度数为125°的角有:∠EOM ,∠BOC ,∠AOD . 【分析】 (1)由EO ⊥AB ,得到∠BOE =90°,则∠COE +∠BOD =90°,再由∠EOC :∠BOD =7:11,求出∠COE =35°,∠BOD =55°,则∠DOE =∠BOD +∠BOE =145°; (2)由MN ⊥CD ,得到∠COM =90°,则∠EOM =∠COE +∠COM =125°,再由∠BOD =55°,得到∠BOC =180°-∠BOD =125°,则∠AOD =∠BOC =125°. 【详解】 解:(1)∵EO ⊥AB , ∴∠BOE =90°, ∴∠COE +∠BOD =90°, ∵∠EOC :∠BOD =7:11, ∴∠COE =35°,∠BOD =55°, ∴∠DOE =∠BOD +∠BOE =145°; (2)∵MN ⊥CD , ∴∠COM =90°, ·线○封○密○外∴∠EOM =∠COE +∠COM =125°,∵∠BOD =55°,∴∠BOC =180°-∠BOD =125°,∴∠AOD =∠BOC =125°,∴图中度数为125°的角有:∠EOM ,∠BOC ,∠AOD .【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.3、625x y -,-4 【分析】首先利用完全平方公式和平方差公式对括号内的式子进行化简,然后进行整式的除法计算即可化简,然后代入求值.【详解】解:()()()235⎡⎤-++-÷⎣⎦x y x y x y x , ()2222965x xy y x y x =-++-÷,()21065x xy x =-÷,625x y =-, 当1x =,5y =时,原式62152645=⨯-⨯=-=-. 【点睛】本题主要考查了公式法化简求值,完全平方公式和平方差公式的利用,熟记公式并能灵活运用是解题的关键.4、(1)30%,统计图见解析;(2)200人;(3)9 100【分析】(1)根据扇形统计图可得A方案的学生所占百分比,乘以总人数数可得A方案人数,进而根据条形统计图可得C方案学生的人数,即可求得m的值,据此补全统计图即可;(2)根据D方案所占样本的百分比乘以2000即可求得全校选择方案D的学生大约有多少人;(3)根据选择C方案的人数除以总人数可得每一个人选择C方案的概率,即可求得乙选择C方案的概率.【详解】(1)由扇形统计图得A方案的学生所占百分比为20%,总人数为200,∴A方案人数20020%40⨯=(人),则C方案学生的人数为20040802060---=(人),60100%30%200∴⨯=,30m∴=,补全统计图如图,故答案为30,补充图如上.(2)选择D方案的学生有20人,占总人数的20100%10% 200⨯=,·线○封○密○外∴全校2000名学生中选择方案D的学生大约有200010%200⨯=人;(3)每一个人选择C方案的概率为603=20010,则乙选择也是方案C的概率为339=1010100⨯.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,概率的计算,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5、(1)见详解;(2)①见详解;②2,0.【分析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A (1,1),B '(4,-2), ∴可设直线AB '为y =kx +b ,则124k b k b =+⎧⎨-=+⎩, 解得:12k b =-⎧⎨=⎩, ∴y =-x +2, 当y =0时,-x +2=0, 解得x =2, 此时点Q 的坐标为(2,0). 故答案为:2,0. 【点睛】 本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短. ·线○封○密·○外。
北师大版七年级下学期期末测试数学试卷学校________班级________姓名________成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a62.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠53.下面作三角形最长边上的高正确的是()A. B.C. D.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份x价格y(元/千克)1234567891011125.005.505.004.802.001.501.000.901.503.002.503.50A.x是自变量,y是因变量B.2月份这种蔬菜价格最高,为5.50元/千克9 D.110 C.110 B.1.C.28月份这种蔬菜价格一直在下降D.812月份这种蔬菜价格一直在上升5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A30o B.40o C.50o D.60o6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.7.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”概率为()A.389.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13B.11C.19D.21二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长AB=AC,若∠ABD=50o,则∠CAD=__________.14.在地球某地,温度T(℃)与高度d(m)的关系可以近似用T=10-d50来表示,根据这个关系式,当高度d的值是400时,T的值为_________.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;111112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.三、解答题:本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣12.18.如图,已知∠1=∠2,∠3=100o,∠B=80o,判断CD与EF之间位置关系,并说明理由.的19.如图所示,BC=DE,BE=DC,试说明(1)BC//D E;(2)∠A=∠ADE20.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球3个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.10(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.21.如图,已知∆ABC中,AB=AC,点D,E分别在AB,AC上,且BD=CE,如何说明BE=CD呢?解:因为AB=AC()所以∠ABC=∠ACB()又因为BD=CE()BC=CB()所以∆BCD≌∆CBE()所以BE=CD()22.小明某天上午9时骑自行车离开家,15时回家,他离家的距离与时间的变化情况如图所示.(1)10时时他离家km,他到达离家最远的地方时是时,此时离家km;(2)他可能在哪段时间内休息,并吃午餐?(3)他在出行途中,哪段时间内骑车速度最快,速度是多少?23.如图,已知AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,(1)求∠DBC的度数;(2)若∆DBC的周长为14cm,BC=5cm,求AB的长.24.阅读理解先阅读下面的内容,再解决问题例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0∴m2+2mn+n2+n2-6n+9=0∴(m+n)2+(n-3)2=0∴m+n=0,n-3=0∴m=-3,n=3问题:(1)x2+2y2-2x y+4y+4=0,求x y的值.(2)已知a,b,c是∆ABC的三边长,满足a2+b2=12a+8b-52,求c的范围.25.如图1,点P是线段AB上动点(点P与A,B不重合),分别以AP,PB为边向线段AB的同一侧作正∆APC和正∆PBD.的(1)请你判断AD与BC有怎样的数量关系?请说明理由;(2)连接AD,BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图2,若点P固定,将∆PBD绕点P按顺时针方向旋转(旋转角小于180o),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明).答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a6【答案】D【解析】【分析】根据合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质进行计算判断即可【详解】解:A、3a2-4a2=-a2,所以本选项错误;B、a2 a3=a5,所以本选项错误;C、a10÷a5=a5,所以本选项错误;D、(a2)3=a6,本选项正确.故选D.【点睛】本题考查了合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质等知识,属于基础题型,熟练掌握上述法则与性质是解题的关键.2.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【答案】C【解析】分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.详解:由同位角的定义可知,∠1的同位角是∠4.故选C..点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.下面作三角形最长边上的高正确的是()A.B.C.D.【答案】C【解析】【分析】先找出图形中的最长边和它所对的顶点,过这个顶点向最长边作垂线段,即得答案 【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选 C.【点睛】本题考查三角形高的定义和垂线的定义,无论三角形是什么形状的三角形,其最长边上的高一定在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份 x 价格 y(元/千克)1 2 3 4 5 6 7 8 9 10 11 125.00 5.50 5.00 4.80 2.00 1.50 1.00 0.90 1.50 3.00 2.50 3.50A. x 是自变量, y 是因变量B. 2 月份这种蔬菜价格最高,为 5.50 元/千克C. 2 8 月份这种蔬菜价格一直在下降D.8-12月份这种蔬菜价格一直在上升【答案】D【解析】【分析】根据表格提供数据信息逐一进行判断即可.【详解】解:A、由题意,蔬菜的价格随季节变化而变化,所以月份x是自变量,蔬菜价格y是因变量,所的以A正确;B、观察表格可知,2月份时蔬菜价格为5.50元/千克,是各月份的最高价格,所以B正确;C、2-8月份这种蔬菜由5.50元/千克一直下降到0.90元/千克,所以C正确;D、8-12月份这种蔬菜价格分别是:0.90、1.50、3.00、2.50、3.50(元/千克),不是一直在上升,所以本选项错误.故选D.【点睛】本题考查的是用表格表示变量之间的关系,读懂题意,弄清表格数据所提供的数据信息是解题的关键.5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A.30oB.40oC.50oD.60o【答案】B【解析】【分析】先根据线段垂直平分线的性质和等腰三角形的性质得到∠EAC=∠C,然后根据直角三角形两锐角互余的性质即可求得结果.【详解】解:∵ED是AC的垂直平分线,..∴EA =EC ,∴∠EAC =∠C ,设∠C =x ,则∠BAC =x +10,∵∠BAC +∠C =90°,∴x +x +10=90°,解得 x =40°,即∠C =40°.故选 B.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,属于基础题型,熟知线段垂直平分线的性质和等腰三角形的性质是解此题的关键 6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.容器内水面的高度 h (cm )与注水时间 t (s )之间的函数关系图象大致是()A. B. C. D.【答案】D【解析】【分析】根据图像分析不同时间段的水面上升速度,进而可得出答案.【详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选 D.【点睛】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键 7.下列说法正确的是( )A. 367 人中至少有 2 人生日相同9 D.110 C.110 B.1B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【答案】A【解析】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.38【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=1 10.故选:B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o【答案】B【解析】【分析】先根据折叠的性质和等腰三角形的性质得到∠DFB=∠B,再根据三角形的内角和即可求得结果.【详解】解:由折叠的性质知:DF=DA,∵D为边AB的中点,∴DB=DA,∴DF=DB,∴∠DFB=∠B=65°,∴∠BDF=180°-∠B-∠BFD=180°-65°-65°=50°.故选B.【点睛】本题考查了折叠的性质、等腰三角形的性质和三角形的内角和等知识,由折叠的性质和等腰三角形的性质得出∠DFB=∠B是解答的关键.10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13【答案】C【解析】【分析】B.11C.19D.21设正方形A的边长为a,正方形B的边长为b,根据图形列出a、b的关系式求解即得.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:(a-b)2=3,即a2+b2-2ab=3,由图乙得:(a+b)2-a2-b2=16,整理得2ab=16,所以a2+b2=19.即正方形A、B面积之和为19.故选C.的【点睛】本题主要考查了完全平方公式在几何图形中的应用和整体代入的数学思想,根据图形得出数量关系是解题的关键.二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=【答案】x2-1【解析】原式=x2-12=x2-1.12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【答案】60°【解析】【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,.【详解】解:把 d = 400 代入 T = 10 - ,得 T = 10 - 故答案为:60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长 AB = AC ,若 ∠ABD = 50o ,则∠CAD = __________.【答案】 40o【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余的性质即可求解 【详解】解:∵ AB = AC ,∴∠ABD =∠ACD =50°,由题意得:AD ⊥BC ,∴∠CAD =90°-∠ACD =40°.故答案为 40o .【点睛】本题考查了等腰三角形的性质和直角三角形的性质,属于基础题型,弄清题意,熟练掌握等腰三角形的性质是解题的关键.14.在地球某地,温度T (℃)与高度 d ( m )的关系可以近似用T = 10 -当高度 d 的值是 400 时, T 的值为_________.【答案】2【解析】【分析】d 50来表示,根据这个关系式,把 d = 400 代入 T = 10 - d 50计算即得结果.故答案为 2.d 40050 50= 10 - 8 = 2 .16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;1【点睛】本题考查了代数式求值,难度不大,属于基础题型.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.【答案】16【解析】【分析】由线段垂直平分线上的点到线段两端点的距离相等可求出AE=BE,进而求出△BCE的周长.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AC=10cm,BC=6cm,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+6=16cm.故答案为:16【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△BCE的周长等于AC与BC的和是解题的关键.11112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.【答案】80o2n-1∴∠BA 1A = = = 80o , ∴∠CA 2A 1= = = 40o ; 40o 80o 20o 80o=20°,∠EA 4A 3= 2 【解析】【分析】先根据等腰三角形的性质求出∠ BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3 的度数;找出规律即可得出第 n 个三角形的以 A n 为顶点的内角的度数.【详解】解:∵在△ABA 1 中,∠B =20°,AB =A 1B ,180o - ? B 180o 20o 2 2∵A 1A 2=A 1C ,∠BA 1A 是 △A 1A 2C 的外角,BA A 80o 1 2 2同理可得,∠DA 3A 2=……= = 2 2 2 23 =10°,∴第 n 个三角形的以 A n 为顶点的内角的度数为80o 2n -1.故答案为: 80o 2n -1.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3的度数,找出规律是解答此题的关键.三、解答题:本大题共 9 个小题,共 72 分. 解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中 a=2,b=﹣1 2.【答案】5.【解析】分析:首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入 a 、b 的值,进而可得答案.详解:原式=a 2+2ab+b 2+ab-b 2-4ab=a 2-ab ,当 a=2,b=- 1 2时,原式=4+1=5..( 点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.18.如图,已知 ∠1 = ∠2 , ∠3 = 100o , ∠B = 80o ,判断 CD 与 EF 之间的位置关系,并说明理由.【答案】 EF / /CD ,见解析.【解析】【分析】由 ∠1 = ∠2 可得 AB / /CD ,由∠3、∠B 的关系可判断 AB 与 EF 的关系,进一步即可解答.【详解】解: EF / /CD ,理由如下:因为 ∠1 = ∠2 ,所以 AB / /CD ,又因为 ∠3 = 100o , ∠B = 80o , 所以 ∠3 + ∠B = 180o , 所以 AB / / E F ,所以 EF / /CD .【点睛】本题考查了平行线的判定和平行公理的推论,熟练掌握平行线的判定方法是解题的关键 19.如图所示, BC = DE , BE = DC ,试说明(1) BC / / D E ;(2) ∠A = ∠ADE【答案】 1)见解析;(2)见解析.⎨ D C = BE ⎪ B D = DB ( 【解析】【分析】(1)连接 BD ,先根据 SSS 证明 ∆BCD ≌ ∆DEB ,再根据全等三角形的性质得∠CBD = ∠EDB ,进一步即得结论;(2)由(1),根据平行线的性质即得结论.【详解】解:(1)连接 BD ,在 ∆BCD 和 ∆DEB 中⎧ B C = DE ⎪⎩所以 ∆BCD ≌ ∆DEB ( SSS ),所以 ∠CBD = ∠EDB ,所以 BC / / D E .(2)由(1)知: AC / / D E ,所以 ∠A = ∠ADE .【点睛】本题考查了全等三角形的判定和性质以及平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.20.一个不透明的袋中装有红、黄、白三种颜色的球共 100 个,它们除颜色外都相同,其中黄球的个数是白球个数的 2 倍少 5 个,已知从袋中摸出一个球是红球的概率是 3 10.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走 10 个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【答案】 1)30 个(2)1/4(3)1/3【解析】3 解:(1)根据题意得:100× =30,10答:袋中红球有 30 个.(2)设白球有 x 个,则黄球有(2x -5)个,根据题意得 x +2x -5=100-30,解得 x=25。
七年级下学期期末复习专项测试题三一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列运算式中,正确的是()A. B. C.D.2、如图,工人师傅做了一个长方形窗框,、、、分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. 、两点之间B. 、两点之间C. 、两点之间D. 、两点之间3、如图,图中是同位角关系的是( ).A. 与B. 与C. 与D. 不存在4、当为正整数时,的值是()A. 不能确定B.C.D.5、如图,已知两同心圆,大圆半径为,小圆半径为,则阴影部分的面积为()A. B. C. D.6、附图的长方体与下列选项中的立体图形均是由边长为公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A. B. C. D.7、如果单项式与的和仍然是一个单项式,则、的值是()A. ,B. ,C. ,D. ,8、桌上倒扣着背面相同的张扑克牌,其中张黑桃、张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大9、如图,将的网格图剪去个小正方形后,图中还剩下个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去个小正方形,则应剪去的小正方形的编号是()A. B. C. D.10、下列说法中,正确的是()A. 周长相等的两个三角形一定关于某条直线之间对称B. 面积相等的两个三角形一定关于某条直线之间对称C. 两个全等三角形一定关于某条直线对称D. 关于某条直线对称的两个三角形一定全等11、用统计图来描述某班同学的身高情况,最合适的是()A. 频数分布直方图B. 扇形统计图C. 折线统计图 D. 条形统计图12、下列说法中,正确的有()A. 过两点有且只有一条直线B. 连接两点的线段叫做两点的距离C. 两点之间,直线最短D. ,则点是的中点13、下列各组数据中,互为相反数的是()A. 和B. 和C. 和D. 和14、在,,,的角中,能用一副三角尺画出来的有()A. 个B. 个C. 个D. 个15、在海上有两艘军舰和,测得在的北偏西方向上,则由测得的方向是()A. 南偏东B. 南偏东C. 北偏西D. 北偏西二、填空题(本大题共有5小题,每小题5分,共25分)16、如果一个角的补角是,那么这个角的余角的度数是.17、必然事件发生的可能性用表示,不可能事件发生的可能性用表示,不确定事件发生的可能性在之间.18、如图,,于点,,则.19、在四边形中,已知,,,,,.在四边形内找一点,使它到四边形四个顶点的距离之和最小,则其和的最小值为.20、我县抽考年级有万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这万多名学生的抽考成绩的全体是总体;②每个学生是个体;③名考生是总体的一个样本;④样本容量是.你认为说法正确的有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为、、的箱子按如图所示的方式打包,则打包带的长至少为多少?22、先去括号,再合并同类项:22、先去括号,再合并同类项:23、今年,市政府的一项实事工程就是由政府投入万元资金.对城区万户家庭的老式水龙头和升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内户家庭中的户进行了随机抽样调查,并汇总成如表:(1) 这次抽样调查的个体是什么?样本容量是多少?(2) 在抽样的户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?(3) 改造后,一只水龙头一年大约可节省吨水,一只马桶一年大约可节省吨水.试估计该社区一年共可节约多少吨自来水?答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列运算式中,正确的是()A. B. C.D.【答案】B【解析】解:运算式中正确的是:.故答案为:.2、如图,工人师傅做了一个长方形窗框,、、、分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()3、A. 、两点之间 B. 、两点之间 C. 、两点之间D. 、两点之间【答案】C【解析】解:三角形具有稳定性,因此需要在长方形木框上钉一根木条构成三角形,所以这根木条不应该钉在、之间,故正确答案为:、两点之间.3、如图,图中是同位角关系的是( ).A. 与B. 与C. 与D. 不存在【答案】A【解析】解:如图,和被所截,得到与是同位角.和被所截,得到与是内错角.故答案应选:与.4、当为正整数时,的值是()A. 不能确定B.C.D.【答案】C【解析】解:.5、如图,已知两同心圆,大圆半径为,小圆半径为,则阴影部分的面积为()A. B. C. D.【答案】A【解析】解:阴影部分的面积=大圆面积-小圆面积,∵大圆面积为,小圆面积为,∴阴影部分的面积为.6、附图的长方体与下列选项中的立体图形均是由边长为公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A. B. C.D.【答案】C【解析】解:立体图形均是由边长为公分的小正方体紧密堆砌而成,附图的表面积为:,的表面积为.7、如果单项式与的和仍然是一个单项式,则、的值是()A. ,B. ,C. ,D. ,【答案】C【解析】解:单项式与的和仍然是一个单项式,则与是同类项,可知,,解得,.8、桌上倒扣着背面相同的张扑克牌,其中张黑桃、张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大【答案】B【解析】解:因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故不能够事先确定抽取的扑克牌的花色;因为黑桃的数量最多,所以抽到黑桃的可能性更大;因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大;因为红桃的数量小于黑桃,所以抽到红桃的可能性小.9、如图,将的网格图剪去个小正方形后,图中还剩下个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去个小正方形,则应剪去的小正方形的编号是()A. B. C. D.【答案】B【解析】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是.10、下列说法中,正确的是()A. 周长相等的两个三角形一定关于某条直线之间对称B. 面积相等的两个三角形一定关于某条直线之间对称C. 两个全等三角形一定关于某条直线对称D. 关于某条直线对称的两个三角形一定全等【答案】D【解析】解:根据对称的性质,关于某条直线对称的两个三角形一定全等,正确.11、用统计图来描述某班同学的身高情况,最合适的是()A. 频数分布直方图B. 扇形统计图C. 折线统计图 D. 条形统计图【答案】A【解析】解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.12、下列说法中,正确的有()A. 过两点有且只有一条直线B. 连接两点的线段叫做两点的距离C. 两点之间,直线最短D. ,则点是的中点【答案】A【解析】过两点有且只有一条直线,正确.连接两点的线段的长度叫做两点的距离.两点之间,线段最短.,则点是的中点错误,因为、、三点不一定共线.13、下列各组数据中,互为相反数的是()A. 和B. 和C. 和D. 和【答案】A【解析】解:;,不是相反数;,不是相反数;;,不是相反数;,和互为相反数.14、在,,,的角中,能用一副三角尺画出来的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:,不能画出,,,所以能用一副三角尺画出来的有、,共个.15、在海上有两艘军舰和,测得在的北偏西方向上,则由测得的方向是()A. 南偏东B. 南偏东C. 北偏西D. 北偏西【答案】B【解析】解:如图:,,,由方向角的概念可知由测得的方向是南偏东.二、填空题(本大题共有5小题,每小题5分,共25分)16、如果一个角的补角是,那么这个角的余角的度数是.【答案】60【解析】解:,.所以这个角的余角是.故答案是:17、必然事件发生的可能性用表示,不可能事件发生的可能性用表示,不确定事件发生的可能性在之间.【答案】;;和.【解析】解:必然事件发生的可能性用表示,不可能事件发生的可能性用表示,不确定事件发生的可能性在和之间.故正确答案是:;;和.18、如图,,于点,,则.【答案】148【解析】解:如图所示,延长与交于点。
,,而,已知,,,,即正确答案是:.19、在四边形中,已知,,,,,.在四边形内找一点,使它到四边形四个顶点的距离之和最小,则其和的最小值为.【答案】24【解析】解:两点之间,线段最短,在四边形内找一点,使它到四边形四个顶点的距离之和最小,这个点就是四边形的对角线的交点.对角线,,其和最小值为.20、我县抽考年级有万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这万多名学生的抽考成绩的全体是总体;②每个学生是个体;③名考生是总体的一个样本;④样本容量是.你认为说法正确的有个.【答案】2【解析】解:这万多名学生的抽考成绩的全体是总体,①正确;每个学生的抽考成绩是个体,②错误;名考生的抽考成绩是总体的一个样本,③错误;样本容量是,④正确.故正确的有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为、、的箱子按如图所示的方式打包,则打包带的长至少为多少?【解析】解:需要长为,宽为,高为,则总长为.故打包带的长至少为.22、先去括号,再合并同类项:【解析】解:23、今年,市政府的一项实事工程就是由政府投入万元资金.对城区万户家庭的老式水龙头和升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内户家庭中的户进行了随机抽样调查,并汇总成如表:(1) 这次抽样调查的个体是什么?样本容量是多少?【解析】解:这次抽样调查的个体是该社区每户家庭的老式水龙头和升抽水马桶需要改造的情况,样本容量是;(2) 在抽样的户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?【解析】解:从表中数据可以看出,在这户中,改造水龙头和改造马桶的户数之和为:(户).由于只有户需要对水龙头、马桶进行改造,所以多出的就是既要改造水龙头又要改造马桶的家庭,因此,此类家庭的人数为(户).(3) 改造后,一只水龙头一年大约可节省吨水,一只马桶一年大约可节省吨水.试估计该社区一年共可节约多少吨自来水?【解析】解:由题意得(吨),(吨),所以社区一年共可节约吨自来水.。