Spectropolarimetric investigation of the propagation of magnetoacoustic waves and shock for
- 格式:pdf
- 大小:626.53 KB
- 文档页数:32
自动旋光仪测定味精中谷氨酸钠含量的不确定度评定张涵璐,晁 盛(北京市食品安全监控和风险评估中心(北京市食品检验所),北京 100094)摘 要:本文依据《食品安全国家标准味精中麸氨酸钠(谷氨酸钠)的测定》(GB 5009.43—2016)中第二法旋光法,通过分析检验过程中的影响因素,对用旋光法测定味精中谷氨酸钠含量进行不确定度评定。
结果表明,自动旋光仪测定味精中谷氨酸钠含量的不确定度结果报告为(99.3±0.24)%,k=2。
对不确定度影响因素进行分析评定,可减少实验误差,提高测定结果准确性。
关键词:谷氨酸钠;自动旋光仪;不确定度Determination of Monosodium Glutamate by Automatic Polarimeter Uncertainty Evaluation of Sodium Glutamate ContentZHANG Hanlu, CHAO Sheng(Beijing Food Safety Monitoring and Risk Assessment Center (Beijing Food Inspection Institute), Beijing100094, China)Abstract: In this paper, based on GB 5009.43—2016 second method of optical polarimetry, by analyzing the influencing factors in the inspection process, the uncertainty of the determination of sodium glutamate content in monosodium glutamate by optical polarimetry is evaluated. The results show that the uncertainty of the content of sodium glutamate in monosodium glutamate determined by automatic polarimeter is reported as (99.3±0.24)%, k=2. The analysis and evaluation of the factors affecting the uncertainty can reduce the experimental error and improve the accuracy of the measurement results.Keywords: sodium glutamate; automatic polarimeter; uncertainty味精的主要成分是谷氨酸的钠盐,又称谷氨酸钠,化学式为C5H8NNaO4,化学名为α-氨基戊二酸一钠。
引用格式:李傲, 肖文波, 张濬哲, 等. 太阳能电池阻抗谱测量方法及其应用进展[J]. 中国测试,2024, 50(1): 1-8. LI Ao, XIAO Wenbo, ZHANG Junzhe, et al. Research progress of solar cell impedance spectroscopy measurement method and its application[J].China Measurement & Test, 2024, 50(1): 1-8. DOI: 10.11857/j.issn.1674-5124.2022080063太阳能电池阻抗谱测量方法及其应用进展李 傲1, 肖文波1, 张濬哲2, 吴华明1, 王树鹏3(1. 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063; 2. 南昌航空大学材料科学与工程学院,江西 南昌330063; 3. 中国航发沈阳黎明航空发动机有限责任公司,辽宁 沈阳 110043)摘 要: 阻抗谱测量技术是研究太阳能电池的重要手段。
该文首先对近几年提出的阻抗谱测量方法进行评述,分析各类方法的优缺点。
通过对阻抗谱测量方法的研究,发现不同测量方法之间的差异主要体现在其效率、精度以及成本等方面。
其次,分析阻抗谱在太阳电池故障检测、电子输运、界面研究等方面的应用情况,指出它们评价电池动态行为时存在的不足之处。
最后,总结阻抗谱测量方法未来发展方向及应用需求。
关键词: 太阳能电池; 阻抗谱; 故障评估; 电子输运; 界面研究中图分类号: TM930.12;TB9文献标志码: A文章编号: 1674–5124(2024)01–0001–08Research progress of solar cell impedance spectroscopy measurementmethod and its applicationLI Ao 1, XIAO Wenbo 1, ZHANG Junzhe 2, WU Huaming 1, WANG Shupeng 3(1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China; 2. Material Science and Engineering Institute, Nanchang Hangkong University, Nanchang 330063,China; 3. AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China)Abstract : Impedance spectroscopy is an important means of studying solar cells. Firstly, this paper reviews the impedance spectroscopy measurement methods proposed in recent years, and analyzes the advantages and disadvantages of each method. Through the study of impedance spectroscopy measurement methods, it is found that the differences between different measurement methods are mainly reflected in their efficiency,accuracy and cost. Secondly, the application of impedance spectroscopy in fault detection, electron transport,and interface research are analyzed, and their shortcomings in evaluating the dynamic behavior of cells are pointed out. Finally, the future development direction and application requirements of impedance spectroscopy measurement methods are summarized and analyzed.Keywords : solar cells; impedance spectrum; failure assessment; electron transport; interface research收稿日期: 2022-08-11;收到修改稿日期: 2022-10-05基金项目: 国家自然科学基金(12064027,62065014);研究生创新专项资金(YC2022-118,YC2022-113)作者简介: 李 傲(1999-),男,河北保定市人,硕士研究生,专业方向为光伏检测技术。
第6卷 第4期2013年8月 中国光学 Chinese Optics Vol.6 No.4Aug.2013 收稿日期:2013⁃04⁃11;修订日期:2013⁃06⁃13 基金项目:国家自然科学基金面上项目(No.31270680,No.61076064);江苏省“六大高峰人才”资助项目(No.2011⁃XCL⁃018);江苏高校优势学科建设工程资助项目文章编号 1674⁃2915(2013)04⁃0490⁃11激光诱导击穿光谱技术及应用研究进展侯冠宇1,王 平1∗,佟存柱2(1.南京林业大学化学工程学院,江苏南京210037;2.中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林长春130033)摘要:激光诱导击穿光谱(LIBS)技术是一种基于原子发射光谱学的元素定性、定量检测手段。
本文介绍了LIBS 技术的原理、应用方式、检测元素种类及检测极限;综述了该项技术在固体、液体、气体组分检测方面的技术发展,以及在环境检测、食品安全、生物医药、材料、军事、太空领域的应用进展。
最后,提出了高功率、高稳定的激光光源和准确的定量分析方法是LIBS 技术目前所面临的问题和挑战。
关 键 词:激光诱导击穿光谱;激光产生等离子体;元素分析;检测限中图分类号:O433.54;O657.319 文献标识码:A doi:10.3788/CO.20130604.0490Progress in laser⁃induced breakdown spectroscopyand its applicationsHOU Guan⁃yu 1,WANG Ping 1∗,TONG Cun⁃zhu 2(1.College of Chemical Engineering ,Nanjing Forestry University ,Nanjing 210037,China ;2.State Key Laboratory of Luminescence and Applications ,Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China )∗Corresponding author ,E⁃mail :wp_lh@ Abstract :Laser⁃induced Breakdown Spectroscopy(LIBS)based on atomic emission spectral technology is a kind of convenient and sensitive approach for the qualitative and quantitative detection of elements.In this pa⁃per,the mechanism,detecting element types,detection limit and the recent progress of LIBS technology are reviewed.The progress of LIBS technology in component testing for solid,liquid and gas samples is expoundedin detail.The applications of LIBS in the environment test,food security,biological and medicines,material sciences,military and space fields are also presented.Finally,the challenges and problems for the LIBS tech⁃nology in high power and stable laser sources and accurately quantitative analysis method are discussed.Key words :laser⁃induced breakdown spectroscopy;laser⁃induced plasmon,element analysis;detection limit1 引 言 激光诱导击穿光谱(Laser⁃Induced Breakdown Spectroscopy,简称LIBS)技术是利用激光照射被测物体表面产生等离子体[1⁃2],通过检测等离子体光谱而获取物质成分和浓度的分析技术。
锂玻璃、蒽闪烁体衰减时间测量
汲长松;王婷婷;张庆威;林德雨
【期刊名称】《核电子学与探测技术》
【年(卷),期】2017(37)5
【摘要】锂玻璃闪烁体是我国于20世纪70年代研制成功的探测中子的闪烁体。
由于闪烁体衰减时间测量涉及光学的跨领域技术,及测量装置的复杂性,长时期以来,锂玻璃闪烁体闪烁衰减时间指标引用国外文献值作为参考。
本工作采用平均波形取样法测量了国产锂玻璃闪烁体,及用作参照标准的蒽闪烁体的闪烁衰减时间。
闪烁衰减时间测量结果:锂玻璃τ_γ=(87±2)ns[^(137)Cs-γ激发]、
τ_α=(93±2)ns[^(210)Po-α激发];蒽晶体:τ=(30.2±0.5)ns。
【总页数】3页(P507-509)
【关键词】闪烁体;闪烁衰减时间;蒽晶体闪烁体;锂玻璃闪烁体
【作者】汲长松;王婷婷;张庆威;林德雨
【作者单位】中核控制系统工程有限公司
【正文语种】中文
【中图分类】TL812.1
【相关文献】
1.Ce~(3+)激活的锂-6玻璃闪烁体发光及核物理性能的研究 [J], 朱永昌;高祀建;欧阳世翕;腾伟峰
2.几种常用闪烁体衰减时间常数的实验测量 [J], 李忠宝;彭太平;胡孟春;唐登攀;张
建华;陈钰钰
3.锂玻璃闪烁体在中子水分仪上的应用研究 [J], 罗克勇;扈尚泽
4.用铈激活的锂玻璃闪烁体 [J], 北京核仪器厂锂玻璃闪烁体研制组
5.基于单光子技术的闪烁体衰减时间常数测量 [J], 王强;王璐;屈菁菁;丁雨憧因版权原因,仅展示原文概要,查看原文内容请购买。
太赫兹光谱检测被动式
被动式太赫兹人体安检成像系统不对被检测人发射太赫兹波,而是完全利用人体本身的辐射对被检测人进行成像。
它主要由准光系统、太赫兹探测器和信号图像处理系统组成。
被动式太赫兹人体安检成像系统原理图根据黑体辐射的普朗克公式计算,人体(37℃)发射功率的峰值位于电磁波谱中的远红外波段。
以350GHz中心频率为例计算,人体发射功率在50GHz的带宽内与一个20℃物体的差值仅有10nW/cm²,要实现对差别如此小的功率的探测和进一步的成像是被动式太赫兹成像系统面临的最大困难。
丙氨酸晶体太赫兹振动光谱的实验和理论研究王果1王卫宁2,*(1首都师范大学化学系,北京100048;2首都师范大学物理系,北京市太赫兹波谱与成像重点实验室,教育部太赫兹光电子重点实验室,北京100048)摘要:利用太赫兹时域光谱和低频拉曼光谱仪研究了丙氨酸晶体在0.2-2.6THz 范围内的太赫兹吸收和拉曼散射光谱.研究表明:在该低频范围有四个振动模式,其中两个只具有拉曼活性,其余两个同时具有红外和拉曼活性.基于B3LYP 杂化密度泛函的自洽场晶体轨道法对丙氨酸周期性结构进行了理论研究和光谱计算.通过比较实验和理论结果,指认了实验光谱特征峰所属的不可约表示.通过理论计算得到的图形,得出在此低频范围的振动模式主要包含分子间氢键的扭转和摇摆运动.关键词:丙氨酸晶体;太赫兹吸收光谱;太赫兹拉曼光谱;氢键;密度泛函理论中图分类号:O641;O657.33;O657.37Experimental and Theoretical Investigations on the Terahertz VibrationalSpectroscopy of Alanine CrystalWANG Guo 1WANG Wei-Ning 2,*(1Department of Chemistry,Capital Normal University,Beijing 100048,P .R.China ;2Beijing Key Laboratory for Terahertz Spectroscopy and Imaging,Key Laboratory of Terahertz Optoelectronics,Ministry of Education,Department of Physics,Capital Normal University,Beijing 100048,P .R.China )Abstract:The terahertz absorption and Raman scattering spectra of an alanine crystal in the range of 0.2-2.6THz were obtained using terahertz time-domain spectroscopy and low-frequency Raman spectroscopy.The results indicated that there were four vibrational modes in this low-frequency region.Two modes were Raman active whereas the other two were both infrared and Raman active.A theoretical investigation on the periodic structure of alanine was performed using a self-consistent field crystal orbital method based on the B3LYP hybrid density functional.By comparing the experimental and theoretical results,irreducible representations were assigned to the corresponding peaks in the spectra.It was indicated that the vibrational modes in this low-frequency region were mainly torsion or rocking modes involving inter-molecular hydrogen bonds which have been described using schematic representations.Key Words:Alanine crystal;Terahertz absorption spectrum;Terahertz Raman spectrum;Hydrogen bond;Density functional theory[Article]doi:10.3866/PKU.WHXB201204201物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2012,28(7),1579-1585July Received:January 12,2012;Revised:April 18,2012;Published on Web:April 20,2012.∗Corresponding author.Email:wwn-phy@;Tel:+86-10-68902348.The project was supported by the National Key Basic Research Program of China (973)(2007CB310408).国家重点基础研究发展规划项目(973)(2007CB310408)资助ⒸEditorial office of Acta Physico-Chimica Sinica1引言氨基酸残基是蛋白质和酶等生物分子的基本结构单元.这些残基中含有-OH 和-NH 2等质子给体以及O 和N 原子等质子受体,故蛋白质分子之间以及它们与许多的其它生物分子之间通常会形成氢键.与后者相关的简振振动频率甚低,为太赫兹(terahertz,THz)量级.研究某些生物体系在这一低频段的振动特性,将有助于理解发生在酶催化反应中1579Acta Phys.-Chim.Sin.2012Vol.28分子间的弱相互作用、分子自组装和细胞内的相互作用等.1氨基酸分子的化学结构和与其同名残基十分相似,以氢键为结合力的氨基酸晶体制备简单且其结构和光谱也容易进行准确的实验测定.因此,国内外的研究者通常选取氨基酸晶体作为研究生物体系氢键性质的模拟样本.据文献报道,迄今已用THz光谱技术对与蛋白质有关的二十种氨基酸进行过实验研究.2-11然而,其中只有少数几种氨基酸的振动谱峰得以可靠指认.可见,人们对THz振动光谱的理性认知尚亟待进一步深化.本文取丙氨酸晶体为对象,旨在通过实验观测与量子化学计算相结合的途径进行较为深入的研究.丙氨酸是最小的手性氨基酸,与其它氨基酸相比,其成分、几何结构和光谱结构最为简单.对其THz频谱范围的振动光谱进行系统的理论诠释的难度相对较低.其结果可望为研究其它氨基酸和更复杂的生物分子间相互作用体系提供启迪.作为一种在远红外区高效的光谱工具,THz时域光谱由于具有高的信噪比而已经被广泛地应用于生物物理和生物化学领域.而且由于THz波能量较低,可以安全地穿透生物样本,因此可以用于测量生物分子的振动以及分子晶体内部的分子间振动模式.12-14已经有许多生物样本如氨基酸、蛋白质、DNA、RNA以及药物等分子的特征THz光谱被报道,2-11,15-22然而如何解释这些谱峰成为一个具有挑战性的工作.近年来拉曼光谱的低频检测技术也取得了突破性的进展.具有很高抑制弹性散射光的三光栅拉曼光谱仪,可以测量出分子晶体中只有几个波数的低频拉曼位移.在THz时域光谱中,THz吸收光谱的原理与傅里叶变换红外光谱类似.低频拉曼光谱与THz光谱的选择定则不同,它们可以互相补充来研究分子的低频振动模式.8理论计算与实验相结合是一种常见的指认具有特定结构的生物分子振动模式的方法.由于生物分子间特别是在固体状态时常常具有分子间氢键,因此采用单分子模型不能描述这类相互作用,而采用分子簇模型22甚至是周期性结构模型23-28对于正确地描述这些体系是十分必要的.与通常的理论计算相比,精度对于低频振动光谱是十分重要的,所采用的方法模型、能量和结构优化的收敛限都会对这些具有较低能量的振动光谱造成影响.29,30本文用THz时域光谱和低频拉曼光谱仪对丙氨酸多晶粉末的低频振动模式进行了测试研究.通过比较THz吸收和拉曼散射光谱,结合群论对位于0.2-2.6THz范围内的特征峰所属的不可约表示进行了初步指认.通过理论计算对这些振动模式做了进一步的指认,并用直观的图形描述了这些低频振动模式.2实验和理论方法本研究利用自行搭建的THz时域光谱系统进行光谱测试,10锁模钛宝石激光器(MaiTai Laser,美国光谱物理公司)作为泵浦源,其中心波长为810 nm,脉宽100fs,脉冲功率980mW,重复频率82 MHz.THz发射晶体为p-型<100>砷化铟(InAs),产生THz脉冲的频率范围约0.2-3.0THz,光谱分辨率约0.03THz;采用电光取样技术探测,探测晶体为<110>碲化锌(ZnTe).信号由平衡二极管探测器探测,经锁相放大器放大后输入计算机进行处理.丙氨酸为多晶粉末(北京鼎国生物技术有限责任公司,纯度大于99%).THz光谱测试采用丙氨酸与纯聚乙烯粉末(在THz波段几乎透明)混合压片制样,丙氨酸与聚乙烯的质量比为2:1.THz光路和样品罩在充有氮气的箱体内,以减少空气中水分对THz波的吸收并提高信噪比,箱内相对湿度小于4%,温度为室温.拉曼光谱测试直接采用粉末样品.拉曼光谱仪(法国Jobin Yvon拉曼光谱公司,型号JY-T64000)使用氩离子激光器的激发波长分别为488和514.5 nm,用来甄别拉曼散射和荧光信号.激光功率小于0.5mW;实验采用180°背向散射实验配置.氨基酸的低频振动模式可能有多个,为了使理论计算与实验光谱能够进行较好地比较,提高计算的精度是必要的.密度泛函理论在固体领域得到了广泛的发展,由于它包含了电子相关效应,通常比Hartree-Fock方法能够获得更高的精度.科学家们从Kohn-Sham方程的思路出发,用不同的交换-相关函数使得计算精度不断提高.然而精确的相关函数是未知的,而且完全使用精确的交换函数(Hartree-Fock)时找不到合适的相关函数来获得较为准确的结果,实践中通过混合一部分精确的交换函数构造杂化密度泛函如B3LYP泛函31,32可以得到化学水平上的精度,因而得到广泛的应用.本文基于该杂化密度泛函,用自洽场晶体轨道法对丙氨酸晶体的结构进行优化和频率分析.为了满足Bloch定理,基组采用通过Gauss型函数构造的Bloch函数:331580王果等:丙氨酸晶体太赫兹振动光谱的实验和理论研究No.7ϕu(r;k)=∑gφu(r-A u-g)e i k⋅g其中ϕu(r-A u-g)为Gauss型函数,其坐标相对于零参考晶胞中原子核的坐标A u以及晶格向量g,在乘以因子e i k⋅g并对晶格向量g求和后,最终构造出原子u的基函数.周期性结构计算中以6-31G(d,p)基组代指通过分子计算中的Gauss型6-31G(d,p)基组φu(r)构造得到的Bloch函数ϕu(r;k).所有周期性结构的计算通过CRYSTAL06程序33完成.在简谐近似下,体系的频率分析需要在结构的极小点下完成.当结构优化的收敛限不够低时,不仅是计算精度降低,而且在定性上体系没有精确地位于势能面上的极小点,这会造成一些虚频的出现.通常这些虚频在几十cm-1,对于有机官能团的指认来说,这些小的虚频是可以忽略的,因为这并不在官能团的特征振动范围(如大于1000cm-1)内.然而在THz范围内,每出现一个虚频就意味着在该范围内少了一个振动模式,这使得多个振动模式的指认无法完成.对于常规计算,优化的收敛限为均方根梯度小于0.0003a.u.,最大梯度为其1.5倍,33为了精确地得到低频范围内的振动模式,本研究采用0.00001a.u.,将标准提高至30倍来避免虚频的出现.当自洽场计算的精度不够高时,小的误差也会对能量较低的低频振动模式造成影响,甚至导致虚频的出现.对于通常体系,可以接受的自洽场收敛限为10-5hartree,而10-5hartree已经相当于约0.06 THz的能量,为了精确地获得体系的能量以及相关性质,在理论研究中将自洽场收敛限设定为10-9 hartree,精度提高至一万倍.此外,在密度泛函数值积分时原子格点采用径向55个、角向974个(默认434个)来提高能量和频率的计算精度.29,30得到的振动频率采用相似方法B3LYP/6-31G(d)的校正因子(0.9613)34进行校正来获得更为准确的结果.为了与周期性结构的研究相比较,本文还对丙氨酸二聚体结构进行了计算,并对不同基组进行了测试,二聚体的计算使用Gaussian03程序35完成.所有二聚体和周期性结构的计算均在含有两个四核心Xeon E5520CPU的计算机上完成.3结果和讨论丙氨酸多晶粉末在0.2-2.6THz范围内的THz 吸收光谱和拉曼散射光谱如图1所示.从图1中可见,有2个红外活性和4个拉曼活性的振动模式.对丙氨酸二聚体结构的优化表明存在两种稳定的结构.一种具有C1对称性,一分子丙氨酸的羰基氧与另一分子的氨基氢形成氢键,具有线型结构,记为dimer1;另一种具有C2对称性,两个分子中的羰基氧分别与另一分子的氨基氢形成氢键,记为dimer2(如图2所示).通过不同方法计算得到的两种异构体的相对能量(ΔE=E dimer1-E dimer2)以及低频振动频率(小于2.6THz)列于表1中.从表1中可以看出,ΔE始终为正值,表明如图2所示的二聚体间形成两个氢键的dimer2比只形成一个的dimer1更加稳定,假设以MP2/6-311++G(d, p)计算的结果32.1kJ·mol-1作为标准,B3LYP/6-31 G(d,p)得到的能量差21.1kJ·mol-1更接近于该值. MP2/6-311++G(d,p)计算得到的最稳定结构dimer2的分子间氢键键长和键角分别为0.225nm和135.33°,键长中与之偏差最大的为B3LYP/6-21G(d, p)计算的结果,为-0.021nm,相对误差最大为-9%,图1丙氨酸多晶粉末的太赫兹吸收和拉曼光谱Fig.1Terahertz absorption and Raman scattering spectra of alanine polycrystalline powdersThe inset is the molecularstructure.图2丙氨酸二聚体的结构Fig.2Structures of alanine dimers(a)dimer1,(b)dimer21581Acta Phys.-Chim.Sin.2012Vol.28所有方法计算得到的键角与之相差均不大,在5°以内.MP2/6-311++G(d,p)计算得到的最稳定的dimer2的低频振动频率分别为0.92、0.93、1.55和2.27THz,分别属于A、B、A和A不可约表示.以它作为标准,首先MP2/6-311G(d,p)、B3LYP/6-311G(d,p)和B3LYP/ 6-21G(d,p)得到的振动模式所属的不可约表示与其不一致;其次B3LYP/3-21+G(d)得到的振动频率误差比其余的大,最大为-0.36THz,可能是由于该基组没有对第二周期元素加极化函数的原因;然后B3LYP/6-311++G(d,p)、B3LYP/6-311+G(d,p)、B3LYP/ 6-31++G(d,p)和B3LYP/6-31+G(d,p)得到的振动模式多了一个,如只考虑前四个,则第四个频率的误差在-0.5THz左右,但仍在可接受范围;最后B3LYP/6-31G(d,p)的振动频率与MP2/6-311++G(d, p)计算的最为接近,对应频率误差最大的发生在2.08THz,但相差也只有-0.19THz,相对误差最大只有-8%.B3LYP/6-31G(d,p)计算中基组不是最大的,但结果与MP2/6-311++G(d,p)得到的最为接近,原因可能与该杂化密度泛函本身也是拟合得到的有关.另一方面,丙氨酸二聚体最稳定的结构dimer2具有C2对称性,无论振动模式属于A还是B不可约表示,均同时具有红外和拉曼活性,这与实验得到的如图1所示的2个红外活性和4个拉曼活性的振动模式是不一致的.实验测量得到的丙氨酸晶体的晶胞参数a、b和c分别为0.60、1.23和0.58nm,36每个晶胞包含4个丙氨酸分子.即使多晶粉末样品的粒度在1μm,其中也包含数十亿个晶胞,使用空间群对其进行分析是必要的.丙氨酸晶体属于P212121空间群,由群论可得,该空间群下属于A不可约表示的振动模式只具有拉曼活性,而属于B1、B2或B3不可约表示的振动模式同时具有红外和拉曼活性.通过比较图1中的THz吸收和拉曼散射光谱可以看出,THz吸收光谱中在2.23和2.56THz处的两个峰分别与拉曼光谱中2.19THz和2.56THz处的两个峰位置接近,根据上述选律判断,该两组峰属于B不可约表示,而只具有拉曼活性的在1.16和1.38THz处的两个峰属于A 不可约表示.理论上采用6-31G(d,p)基组构成的Bloch函数计算得到的晶胞常数分别为0.65、1.19和0.58nm,相对于实验测定值误差分别为7.9%、-3.5%和1.2%.采用6-21G(d,p)基组计算得到的晶胞常数分别为0.60、1.17和0.59nm,相对于实验测定值误差分别为0.3%、-5.3%和1.6%.采用3-21G基组计算得到的晶胞常数分别为0.61、1.15和0.59nm,相对于实验测定值误差分别为0.9%、-6.7%和1.7%.对于该含氢键体系,理论上得到的晶胞常数与实验值相比误差在8%以下,其中6-21G(d,p)基组的误差最小,最大值仅为5.3%.理论计算得到的四个低频振动模式的频率和所属的不可约表示列于表2中.在表2中所有的THz吸收光谱峰和拉曼散射光谱峰都可以由理论计算来指认,每一个计算得到的峰都有对应的实验光谱,理论上得到的不可约表示与实验MP2/6-311++G(d,p) MP2/6-311G(d,p)B3LYP/6-311++G(d,p) B3LYP/6-311+G(d,p) B3LYP/6-31++G(d,p) B3LYP/6-31+G(d,p) B3LYP/3-21+G(d)B3LYP/6-311G(d,p)B3LYP/6-31G(d,p)B3LYP/6-21G(d,p)ΔE/(kJ·mol-1)32.1-15.015.015.415.5-18.221.1-R O…H/nm0.2250.2230.2230.2300.2300.2280.2360.2250.2210.204∠OHN/(°)135.33134.78134.78138.88138.88139.24133.78138.40139.93140.40Frequency/THz0.92(A),0.93(B),1.55(A),2.27(A)0.90(B),1.02(A),1.74(A),2.51(A)0.88(A),1.08(B),1.51(A),1.76(A),2.34(A)0.88(A),1.07(B),1.51(A),1.77(A),2.34(A)0.89(A),1.09(B),1.48(A),1.77(A),2.38(A)0.88(A),1.06(B),1.48(A),1.78(A),2.38(A)0.56(A),0.65(B),1.57(A),2.00(A)0.94(B),1.01(A),1.68(A),1.90(A)1.05(A),1.08(B),1.73(A),2.08(A)1.21(B),1.35(A),2.00(A)表1计算得到的两种丙氨酸二聚体的相对能量,dimer2的结构参数和低频振动频率Table1Calculated relative energies for the two alanine dimers,structural parameters and low-frequencies for dimer2“-”denotes that dimer1transfers to dimer2after geometry optimization.The data in the parentheses are irreducible representation.表2实验测量和通过B3LYP泛函计算得到的丙氨酸晶体的低频振动频率(单位:THz)Table2Experimental and calculated(B3LYP functional)low-frequencies(unit in THz)for alanine crystalTerahertz2.23 2.56Raman1.161.382.192.56Theory6-31G(d,p)1.191.732.072.816-21G(d,p)1.812.012.343.013-21G1.812.082.443.15IrreduciblerepresentationAAB3B21582王果等:丙氨酸晶体太赫兹振动光谱的实验和理论研究No.7上根据红外和拉曼活性推断得到的结果存在对应关系.理论计算的振动频率与实验值相差很小,对于6-31G(d ,p )基组,差别在0.03-0.35THz (1-12cm -1),这是针对低频区域特别是对于周期性结构高精度计算的结果,3-21G 基组得到的振动频率与实验值相差最大可以达到0.70THz (23cm -1),说明极化函数有助于描述该氢键体系.值得说明的是表2中三种基组得到的振动模式所属的不可约表示完全一致,都能够解释实验光谱峰的红外和拉曼活性,这也是晶格调制的Bloch 基组的结果.晶体结构中分子或原子的堆积已经使得基函数间具有较大的重叠,弥散函数会造成基组在很多晶胞间重叠,导致基组的线性相关,通常双ζ加极化的Gauss 型基组构造的Bloch 函数能够较好地描述晶体结构.33氨基酸在固体状态以内盐形式存在,丙氨酸晶体中有多个分子间氢键,其中羧基中的两个氧各作为一个氢键受体,氮上的三个氢其中的两个分别和不同分子中的两个氧形成氢键.在低频范围内,分子内的相对振动不明显,主要是分子集体的运动导致分子间的相对位置发生变化,表现出以分子间氢键为中心的振动.由于上述三种基组得到的四个振动模式是一致的,借助MOLDRAW 程序37,38只将6-31G(d ,p )基组计算的结果显示于图3中.如图3所示,计算得到的1.19THz 处的振动模式中氨基内部原子并未发生相对运动,可以看做一个整体,整个模式可看做两个与氨基形成氢键的氧原子发生的扭曲运动,记为O-HNH-O torsion.而1.73THz 处的振动模式为两个与氨基形成氢键的氧在五个原子形成的近似面内的摇摆运动,记为O-HNH-O in-plane rocking.在2.07THz 处的振动模式为一个氢键氧与氮和氢原子形成的面内的摇摆运动,记为O-H-N in-plane rocking.在2.81THz 处的振动模式为两个氢键氧的面外摇摆运动,伴随着沿C2-C3轴的扭曲运动,记为O-HNH-O out-of-plane rocking 和C2-C3torsion.在THz 范围内,丙氨酸分子的振动模式主要是以分子间氢键为中心的扭曲和摇摆振动模式,这与高频范围内官能团内部的伸缩振动等有较大区别.最后,虽然理论计算得到的振动频率与光谱实验得到的差别非常小,但仍然能够通过温度效应和非谐效应来解释.由密度泛函理论计算得到的振动频率对应0K 条件下的值,但为了快速检测等目的,通常的实验光谱都是在常温下测量的.实验表明,测量得到的这些振动频率在有限温度下系统地向低频方向移动,这可能与温度对体系内的化学键,特别是氢键强度造成了影响,从而影响了其振动频率,对于一些生物分子的多晶粉末来说,常温和接近0K 时的频率差别在0.2THz 左右,2温度效应解释了一部分计算与实验得到的振动频率的差别.另外,非谐效应常常发生在具有平缓势能面的扭曲和摇摆模式,23在THz 范围内,上述丙氨酸晶体的振动模式确实具有该特征,这种非谐效应约在0.1-0.3图3通过B3LYP/6-31G(d ,p )方法计算得到的丙氨酸晶体的四个振动模式Fig.3Vibrational vectors for four modes of alanine crystal calculated at the B3LYP/6-31G(d ,p )level(a)1.19THz,(b)1.73THz,(c)2.07THz,(d)2.81THz1583Acta Phys.-Chim.Sin.2012Vol.28THz(3-10cm-1).尽管在计算中对频率进行了校正,但是校正因子的确没有特别针对非谐效应.总之,由于上述两种效应的影响范围与本研究中理论计算与实验的差别相近,且这些效应对于相似振动模式的影响大小相仿,各个振动频率的顺序不会发生变化,这方便了从理论上指认这些光谱峰.4结论本文用THz时域光谱和低频拉曼散射光谱研究了丙氨酸多晶粉末在0.2-2.6THz范围内的低频振动模式.根据丙氨酸晶体的对称结构,给出了位于不同振动频率下THz吸收及拉曼实验光谱特征峰对称分类的不可约表示.通过与杂化密度泛函计算的结果相比较,得到了理论与实验一一对应的四种振动模式,通过对周期性结构的振动模式分析,得出该低频范围内的振动主要来自于分子间氢键的扭曲和摇摆运动.本文基于密度泛函理论计算的THz光谱及对振动模式指认的方法可望推广应用于其它氨基酸体系和含生物分子的相互作用体系.References(1)Chou,K.C.Biophys.J.1980,45,881.(2)Shen,Y.C.;Upadhya,P.C.;Linfield,E.H.;Davies,A.G.Vib.Spectro.2004,35,111.doi:10.1016/j.vibspec.2003.12.004 (3)Yu,B.;Zeng,F.;Yang,Y.;Xing,Q.;Chechin,A.;Xin,X.;Zeylikovich,I.;Alfano,R.R.Biophys.J.2004,86,1649.doi:10.1016/S0006-3495(04)74233-2(4)Yamaguchi,M.;Miyamaru,F.;Yamamoto,K.;Tani,M.;Hangyo,M.Appl.Phys.Lett.2005,86,053903.doi:10.1063/1.1857080(5)Korter,T.M.;Balu,R.;Campbell,M.B.;Beard,M.C.;Gregurick,S.K.;Heilweil,E.J.Chem.Phys.Lett.2006,418,65.doi:10.1016/j.cplett.2005.10.097(6)Ueno,Y.;Rungsawang,R.;Tomita,I.;Ajito,K.Anal.Chem.2006,78,5424.doi:10.1021/ac060520y(7)Nagai,N.;Katsurazawa,Y.Biopolymers2006,85,207.(8)Brandt,N.N.;Chikishev,A.Y.;Kargovsky,A.V.;Nazarov,M.M.;Parashchuk,O.D.;Sapozhnikov,D.A.;Smirnova,I.N.;Shkurinov,A.P.;Sumbatyan,N.V.Vib.Spectro.2008,47,53.doi:10.1016/j.vibspec.2008.01.014(9)Yan,Z.;Hou,D.;Huang,P.;Cao,B.;Zhang,G.;Zhou,Z.Meas.Sci.Technol.2008,19,015602.doi:10.1088/0957-0233/19/1/015602(10)Wang,W.N.Acta Phys.Sin.2009,58,7640.[王卫宁.物理学报,2009,58,7640.](11)Wang,W.N.;Li,H.Q.;Zhang,Y.;Zhang,C.L.ActaPhys.-Chim.Sin.2009,25,2074.[王卫宁,李洪起,张岩,张存林.物理化学学报,2009,25,2074.]doi:10.3866/PKU.WHXB20090931(12)Gervasio,F.L.;Cardini,G.;Salvi,P.R.;Schettino,V.J.Phys.Chem.A1998,102,2131.doi:10.1021/jp9724636(13)Beard,M.C.;Turner,G.M.;Schmutteanmaer,C.A.J.Phys.Chem.B2002,106,7146.doi:10.1021/jp020579i(14)Strachan,C.J.;Rades,T.;Newnham,D.A.;Gordon,K.C.;Pepper,M.;Taday,P.F.Chem.Phys.Lett.2004,390,20.doi:10.1016/j.cplett.2004.03.117(15)Markelz,A.G.;Roitberg,A.;Heilweil,E.J.Chem.Phys.Lett.2000,320,42.doi:10.1016/S0009-2614(00)00227-X(16)Walther,M.;Fischer,B.;Schall,M.;Helm,H.;Jepsen,P.U.Chem.Phys.Lett.2000,332,389.doi:10.1016/S0009-2614(00)01271-9(17)Walther,M.;Plochocka,P.;Fischer,B.;Helm,H.;Jepsen,P.U.Biopolymers2002,67,310.doi:10.1002/bip.10106(18)Taday,P.F.;Bradley,I.V.;Arnone,D.D.J.Biol.Phys.2003,29,109.doi:10.1023/A:1024424205309(19)Cherkasova,O.P.;Nazarov,M.M.;Shkurinov,A.P.;Fedorov,V.I.Radiophys.Quantum Electron.2009,52,518.doi:10.1007/s11141-009-9152-9(20)Ge,M.;Zhao,H.W.;Zhang,Z.Y.;Wang,W.F.;Yu,X.H.;Li,W.X.Acta Phys.-Chim.Sin.2005,21,1063.[葛敏,赵红卫,张增艳,王文锋,余笑寒,李文新.物理化学学报,2005,21,1063.]doi:10.3866/PKU.WHXB20050924(21)Ji,T.;Zhao,H.W.;Zhang,Z.Y.;Ge,M.;Wang,W.F.;Yu,X.H.;Xu,H.J.Acta Phys.-Chim.Sin.2006,22,1159.[吉特,赵红卫,张增艳,葛敏,王文锋,余笑寒,徐洪杰.物理化学学报,2006,22,1159.]doi:10.3866/PKU.WHXB20060925 (22)Zhao,R.J.;He,J.L.;Li,J.;Guo,C.S.;Du,Y.;Hong,Z.ActaPhys.-Chim.Sin.2011,27,2743.[赵容娇,何金龙,李璟,郭昌盛,杜勇,洪治.物理化学学报,2011,27,2743.]doi:10.3866/PKU.WHXB20112743(23)Siegrist,K.;Bucher,C.R.;Mandelbaum,I.;Walker,A.R.H.;Balu,R.;Gregurick,S.K.;Plusquellic,D.F.J.Am.Chem.Soc.2006,128,5764.doi:10.1021/ja058176u(24)Allis,D.G.;Prokhorova,D.A.;Korter,T.M.J.Phys.Chem.A2006,110,1951.doi:10.1021/jp0554285(25)Saito,S.;Inerbaev,T.M.;Mizuseki,H.;Igarashi,N.;Note,R.;Kawazoe,Y.Chem.Phys.Lett.2006,423,439.doi:10.1016/j.cplett.2006.04.012(26)Saito,S.;Inerbaev,T.M.;Mizuseki,H.;Igarashi,N.;Note,R.;Kawazoe,Y.Chem.Phys.Lett.2006,432,157.doi:10.1016/j.cplett.2006.10.089(27)Jepsen,P.U.;Clark,S.J.Chem.Phys.Lett.2007,442,275.doi:10.1016/j.cplett.2007.05.112(28)Hermet,P.;Bantignies,J.L.;Maurin,D.;Sauvajol,J.L.Chem.Phys.Lett.2007,445,47.doi:10.1016/j.cplett.2007.07.009 (29)Pascale,F.;Zicovich-Wilson,C.M.;Lopez,F.;Civalleri,B.;1584王果等:丙氨酸晶体太赫兹振动光谱的实验和理论研究No.7Orlando,R.;Dovesi,put.Chem.2004,25,888.doi:10.1002/jcc.20019(30)Zicovich-Wilson,C.M.;Pascale,F.;Roetti,C.;Saunders,V.R.;Orlando,R.;Dovesi,put.Chem.2004,25,1873.doi:10.1002/jcc.20120(31)Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913(32)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B1988,37,785.doi:10.1103/PhysRevB.37.785(33)Dovesi,R.;Saunders,V.R.;Roetti,C.;Orlando,R.;Zicovich-Wilson,C.M.;Pascale,F.;Civalleri,B.;Doll,K.;Harrison,N.M.;Bush,I.J.;D'Arco,P.;Llunell,M.CRYSTAL06User'sManual;University of Torino:Italy,2007.(34)Foresman,J.B.;Frisch,A.Exploring Chemistry with ElectronicStructure Methods,2nd ed.;Gaussian Inc.:Pittsburgh,PA,1996.(35)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian03,Revision C.02;Gaussian Inc.:Pittsburgh,PA,2004.(36)Lehmann,M.S.;Koetzle,T.F.;Hamilton,W.C.J.Am.Chem.Soc.1972,94,2657.doi:10.1021/ja00763a016(37)Ugliengo,P.;Viterbo,D.;Chiari,G.Kristallogr Z1993,207,9.doi:10.1524/zkri.1993.207.Part-1.9(38)Ugliengo,P.MOLDRAW:A Program to Display andManipulate Molecular and Crystal Structures;Torino,2006.http://www.moldraw.unito.it(accessed Dec.31,2011).1585。
拉曼光谱检测动脉粥样硬化斑块的意义
徐宝华;赵慧颖
【期刊名称】《国际心血管病杂志》
【年(卷),期】2005(032)004
【摘要】动脉粥样硬化不稳定斑块的破裂是引发急性冠脉综合征的主要原因,因此及早发现并对其进行干预具有重要意义.拉曼光谱与血管内超声等方法不同,可对动脉粥样硬化斑块的组成成分进行定位及定量的检测,识别性较高,且对组织无破坏性,对发现不稳定斑块有独特的优越性.
【总页数】3页(P232-234)
【作者】徐宝华;赵慧颖
【作者单位】130021,吉林大学第一临床医院心血管科;130021,吉林大学第一临床医院心血管科
【正文语种】中文
【中图分类】R445
【相关文献】
1.壳层隔绝纳米粒子增强拉曼光谱检测乳腺浸润性导管癌组织的生物学特点及其临床意义 [J], 张海鹏;吴迪;张湜;付彤;路璐;范志民;郑超;韩冰
2.早期稳定型动脉粥样硬化斑块模型兔损伤区拉曼光谱特征及旋转手法的影响 [J], 谌祖江;黄学成;向孝兵;陈超;李义凯;
3.早期稳定型动脉粥样硬化斑块模型兔损伤区拉曼光谱特征及旋转手法的影响 [J], 谌祖江;黄学成;向孝兵;陈超;李义凯
4.动脉粥样硬化斑块的微区拉曼光谱检测 [J], 赵慧颖;徐宝华;马小欣
5.稳定冠状动脉粥样硬化斑块的临床意义——麝香保心丸稳定冠状动脉粥样硬化斑块的研究进展 [J], 顾宁
因版权原因,仅展示原文概要,查看原文内容请购买。
第31卷,第10期 光谱学与光谱分析Vol 131,No 110,pp2725-27292011年10月 Spectro sco py and Spectr al AnalysisO cto ber ,2011近红外光谱技术在奶酪品质评价中的应用邹 强1,方 慧1*,张 维2,何 勇111浙江大学生物系统工程与食品科学学院,浙江杭州 31005721浙江大学农业与生物技术学院,浙江杭州 310057摘 要 近红外光谱技术是一种快速、无损的分析方法,国外将该技术应用于奶酪品质的检测已有多年,国内在这方面的研究较少。
通过本文介绍了近红外光谱技术分析奶酪成分和在奶酪的加工生产、缩水收缩控制、成熟过程、货架期、组成成分和品牌分类鉴别等几个方面的应用,表明近红外光谱技术在奶酪品质分析中应用潜力巨大,促进近红外光谱技术的应用和我国奶酪行业的发展是一项紧迫的任务。
关键词 奶酪;近红外光谱技术;应用中图分类号:T S25215 文献标识码:A DOI :1013964/j 1issn 11000-0593(2011)10-2725-05收稿日期:2011-01-10,修订日期:2011-04-23基金项目:浙江省科技厅项目(2009C12002),国家自然科学基金项目(60802038)和国家(863计划)项目(2006AA10Z234)资助 作者简介:邹 强,1987年生,浙江大学生物系统工程与食品科学学院硕士研究生 e -mail:513578155@1631com*通讯联系人 e -mail:h fang@zju 1edu 1cn引 言奶酪是牛奶经浓缩,发酵而成的奶制品,它基本上排除了牛奶中大量的水分,保留了其中营养价值极高的精华部分,被誉为乳品中的/黄金0。
每公斤奶酪制品浓缩10公斤牛奶的蛋白质、钙和磷等人体所需的营养素,独特的发酵工艺,使其营养的吸收率达到了96%~98%。
虽然我国对奶酪的消耗较少,但随着人民生活水平的提高,对奶酪的消耗量也将逐年增加,同时对奶酪品质及时、快速、准确的分析也将对奶酪的生产起到极大的促进作用。
2006年5月M ay 2006色谱C h inese J ou rna l of C h rom a tog raphyVo l .24N o.3213~217收稿日期:2005211216第一作者:崔晓亮,男,博士研究生,讲师,主要研究方向为药物分析,Te l:(022)27406036,E 2m a il:x iao liangc @.通讯联系人:邵 兵,男,博士,副研究员,Te l:(010)64407191,E 2m a il:shaob ingch @s .基金项目:北京市自然科学基金重点项目(N o.7041004).超高效液相色谱2串联电喷雾四极杆质谱法同时测定牛奶中12种糖皮质激素的残留崔晓亮1,2, 邵 兵2, 赵 榕2, 孟 娟2, 涂晓明2(1.天津大学化学系,天津300072;2.北京市疾病预防控制中心营养与食品卫生所,北京100013)摘要:采用超高效液相色谱2串联电喷雾四极杆质谱(负离子模式)在多反应监测(M RM )模式下测定了牛奶中12种糖皮质激素的残留。
试样中加入pH 5120的醋酸盐缓冲溶液和甲醇,超声提取,以去除部分蛋白质,然后用正己烷脱脂,依次经HLB 柱、硅胶柱和氨基柱等固相萃取柱浓缩和净化后,通过W a te rs ACQU ITY U PLC T M B EH C 18色谱柱分离,以甲醇和含011%甲酸的水为流动相进行梯度洗脱。
在超高效液相色谱2质谱分析过程中以保留时间和离子对(母离子和两个碎片离子)信息比较进行定性,以母离子和响应值高的碎片离子进行定量。
该法的检出限为0102~0138μg /kg,最低定量限为0107~1127μg /kg 。
添加水平为2μg /kg 和014μg /kg 时,12种糖皮质激素的加标回收率为6913%~9413%,相对标准偏差为315%~1617%。
关键词:超高效液相色谱2串联质谱法;固相萃取;糖皮质激素;残留;牛奶中图分类号:O 658 文献标识码:A 文章编号:100028713(2006)0320213205 栏目类别:研究论文S i m u lta n e o u s D e te rm in a t io n o f Tw e lve G lu co co r t ico id s R e s id u e sin M ilk b y U lt ra P e rfo rm a n ce L iq u id C h rom a to g rap h y 2E le c t ro sp ra y T a n d em M a s s Sp e c t rom e t ryCU I X iao liang1,2,SHAO B ing 2,ZHAO R ong 2,M EN G J uan 2,TU X iaom ing2(1.D ep a r tm en t of Chem is try,Tia n jin U n ivers i ty,Tia n jin 300072,Ch in a;2.In s ti tu te of N u tr i tion &Food H ygien e,B ei jin g Cen ter for D isea se P reven tion &Con trol,B ei jin g 100013,Ch in a )A b s t ra c t:A com p rehens ive ana lytica l m e thod based on u ltra p e rfo r m ance liqu id ch rom a togra 2p hy 2e lec trosp ray tandem m ass sp ec trom e try (U PLC 2M S /M S )w ith nega tive m ode has been de 2ve lop ed fo r the s i m u ltaneous de te r m ina tion of t w e lve glucoco rtico ids res idues in m ilk.Them u lti 2reac tion m on ito ring m ode w as em p loyed fo r the de te r m ina tion.M ilk sam p les w e re ex trac 2ted by son ica tion in a m e thano l/ace ta te buffe r (pH 5120)so lu tion,and then defa tted w ith n 2hexane.Sam p le concen tra tion and p u rifica tion w e re p e rfo r m ed us ing O as is HLB ,Sep 2p ak s ilica and Sep 2p ak am ino 2p rop y l so lid p hase ex trac tion ca rtridges.The sep a ra tion w as p e rfo r m ed on a W a te rs ACQU ITY U PLCT MB EHC 18co lum n (100m m ×110m m i 1d 1,117μm )w ith grad ien te lu tion us ing m e thano l and w a te r (con ta in ing 011%fo r m ic ac id )a t a flow ra te of 011m L /m in.Iden tifica tion of the glucoco rtico ids w as done us ing re ten tion ti m es and the d is tribu tion of d iag 2nos tic ion p a irs.Q uan tifica tion of the glucoco rtico ids w as based on the p eak a reas of the p a ren t ion and a fragm en t ion w ith a h ighe r s igna l .The li m its of de tec tion (LOD )of the m e thod w e re from 0102to 0138μg /kg and the li m its of quan tifica tion (LOQ )ranged from 0107to 1127μg /kg .A ve rage recove ries fo r the t w e lve glucoco rtico ids (sp iked a t the leve ls of 2and 014μg /kg )ranged from 6913%to 9413%,w ith re la tive s tanda rd dev ia tions be t w een 315%and 1617%.R ou tine tes ts show ed tha t the m e thod is fas t,sens itive and sp ec ific fo r the de te r m ina 2tion of g lucoco rtico ids res idues in m ilk.Ke y w o rd s:u ltra p e rfo r m ance liqu id ch rom a tograp hy 2e lec trosp ray tandem m ass sp ec trom e try(U PLC 2M S /M S );so lid 2p hase ex trac tion;glucoco rtico ids;res idues;m ilk色谱第24卷 糖皮质激素为类固醇类激素,对蛋白质、糖、脂肪、水、电解质代谢及多种组织器官的功能有重要影响,具有抗炎、抗过敏和抑制免疫等多种药理作用。
消色差偏振旋转器杨艳灵; 张弛; 郭玉强; 孙岩; 李小帅; 刘宁宁; 马红梅; 孙玉宝【期刊名称】《《液晶与显示》》【年(卷),期】2019(034)011【总页数】6页(P1061-1066)【关键词】消色差; 透过率; 偏振旋转; 线偏振光; 波片【作者】杨艳灵; 张弛; 郭玉强; 孙岩; 李小帅; 刘宁宁; 马红梅; 孙玉宝【作者单位】河北工业大学应用物理系天津300401【正文语种】中文【中图分类】TN271 引言消色差偏振旋转器是一种可以控制光的偏振状态的光学元件,在光学测量、液晶显示、光通信、光谱偏振成像等[1-3]方面有着广泛的应用,因此对消色差偏振旋转器的研究有着重要意义。
目前为止,人们提出了许多关于偏振旋转器的设计方法,文献[4-5]中提出了由一个TN盒和两个单轴补偿膜组成的消色差偏振光开关,带宽较宽,但这种设计存在较为严重的漏光现象;文献[6]提出由两个均匀盒和一个TN盒组成的消色差偏振旋转器,但带宽不够宽;文献[7-8]提出的结构虽然可以达到较好的消色差效果,但在参数设置上比较复杂,变量较多。
针对之前人们提出的偏振旋转器存在的问题,在本文中我们提出了两种结构的消色差偏振旋转器,一种由4片波片组成,透过率可以达到99.82%以上,漏光率低于0.12%;用4个平行液晶盒代替四波片,组成的偏振旋转器消色差性能良好,对比度高于800;另一种由6片波片以一定的方位角组合而成,在可见光范围内的透过率可以达到99.8%~99.95%;偏振片平行放置时,漏光率低于0.15%。
当波片厚度在一定范围内变化时,偏振旋转器的消色差性能不受影响。
2 理论分析波片是一种光学各向异性材料[9-12],偏振光的两垂直振动分量通过波片后会产生不同的相位延迟,从而改变偏振态。
几个具有一定方位角的波片叠加可以用作偏振旋转器,如图1所示。
图1(a)是偏振旋转器的基本结构,图1(b)是波片的方位角,当起偏器光轴沿X方向时,入射光经起偏器后是沿X轴方向的线偏振光,当入射线偏振光经过与X轴夹角为α的几个叠加的波片后,光线转过90°,当检偏器与起偏器平行放置时光线不透过,理想透过率为0,当检偏器与起偏器正交放置时,光线透过,理想的透过率为1。
a r X i v :a s t r o -p h /0512096v 1 5 D e c 2005Spectropolarimetric investigation of the propagation ofmagnetoacoustic waves and shock formation in sunspotatmospheresRebecca Centeno 1,Manuel Collados 1and Javier Trujillo Bueno 1,21Instituto de Astrof´ısica de Canarias,38205La Laguna,Tenerife,Spain 2Consejo Superior de Investigaciones Cient´ıficas (Spain)rce@iac.es,mcv@iac.es,jtb@iac.es ABSTRACT Velocity oscillations in sunspot umbrae have been measured simultaneously in two spectral lines:the photospheric Silicon i 10827˚A line and the chromo-spheric Helium i 10830˚A multiplet.From the full Stokes inversion of temporal series of spectropolarimetric observations we retrieved,among other parameters,the line of sight velocity temporal variations at photospheric and chromospheric heights.Chromospheric velocity oscillations show a three minute period with a clear sawtooth shape typical of propagating shock wave fronts.Photospheric velocity oscillations have basically a five minute period,although the power spec-trum also shows a secondary peak in the three minute band which has proven to be predecessor for its chromospheric counterpart.The derived phase spectra yield a value of the atmospheric cut-offfrequency around 4mHz and give evidence for the upward propagation of higher frequency oscillation modes.The phase spec-trum has been reproduced with a simple model of linear vertical propagation ofslow magneto-acoustic waves in a stratified magnetized atmosphere that accounts for radiative losses through Newton’s cooling law.The model explains the main features in the phase spectrum,and allows us to compute the theoretical time de-lay between the photospheric and chromospheric signals,which happens to have a strong dependence on frequency.We find a very good agreement between this and the time delay obtained directly from the cross-correlation of photospheric and chromospheric velocity maps filtered around the 6mHz band.This allows us to infer that the 3-minute power observed at chromospheric heights comes directly from the photosphere by means of linear wave propagation,rather than from non-linear interaction of 5-minute (and/or higher frequency)modes.Subject headings:Sun:chromosphere,Sun:oscillations,shock waves,sunspots,Sun:magnetic fields,techniques:polarimetric1.IntroductionThe study of the generation and propagation of waves in the solar atmosphere is a hot topic of research in astrophysics,since it provides information about the atmospheric structure and dynamics(e.g.,Lites1992;Bogdan2000;Socas-Navarro,Trujillo Bueno and Ruiz Cobo, 2000;Bogdan and Judge2006),while at the same time it helps us identify the key mech-anisms of chromospheric and coronal heating.In fact,acoustic and magnetic waves and magneticfield reconnection have been mentioned in the literature as the most promising heating mechanism candidates(Alfv´e n1947;Biermann1948;Schwarzschild1948;Parker 1979;Ulmschneider and Musielak2003).Historically,sunspot oscillations have been classified into three different groups(e.g. Lites1992):(1)photospheric umbral oscillations,which have basically a5-minute period with an average rms amplitude of75ms−1.These oscillations are the apparent response of the umbral photosphere to the5-minute p-mode oscillations.(2)Chromospheric umbral oscillations with periods around180s and amplitudes of a few kilometers per second,and (3)running penumbral waves,seen in Hαas disturbances propagating radially outwards from the umbra.They all seem to be different manifestations of the same dynamical global phenomenon,though(e.g.,Rouppe van der Voort et al.2003).Simultaneous time-series observations of various spectral lines that sample different regions of the solar atmosphere is one of the most useful techniques for studying wave propagation(e.g., the review by Lites1992and references therein).For instance,Lites(1986)could provide hints of shock wave formation via the Doppler shifts observed in the Stokes I profiles of the He i10830˚A multiplet.By measuring the phase difference of the oscillations in different spectral lines,this author could also infer the upward propagation of waves in the frequency band around6.5mHz(Lites,1984).Other pioneering investigations on this topic are those by Kneer et al.(1981).In the last35years,since thefirst report on chromospheric umbral oscillations was made (Beckers and Tallant,1969),many works have been published on this subject,accompanied by nearly an equal number of differingfindings,conclusions and contradictions yielded by the literature in this time.We refer the reader to recent reviews(such as those by Bogdan2000 and Bogdan&Judge2006)for a comprehensive overview of present knowledge of oscillatory phenomena in sunspots,both from the theoretical and the observational points of view.Nowadays,theoretical investigations on this topic are mainly carried out by means of detailed numerical simulations.For instance,the hydrodynamical simulations of Carlsson &Stein(1995)suggest that acoustic shock waves in the internetwork regions of the solar atmosphere intermittantly heat the plasma there,but with an acoustic shock heating that isinsufficient to explain quantitatively the emission line cores observed in far-UV lines.Similar numerical simulations have recently begun to be extended to strongly magnetized regions of the solar atmosphere,taking into account the coupling among various MHD wave modes (e.g.,Stein et al.2004),but much work remains to be done prior to reaching a level of realism for which it becomes reasonable to start contrasting computed Stokes profiles with spectropolarimetric observations.In this respect,one of the aims of this paper is to provide high-quality observational information on the phenomenon of oscillations in sunspot umbrae, based on full Stokes-vector IR spectropolarimetry in photospheric and chromospheric lines.This paper is organized as follows:Observations,data redution and inversion techniques are presented in sections2and3.For the analysis,we follow a similar approach to that of Lites(1984,1986)but measuring instead the full Stokes-vector of the photospheric Silicon i10827˚A line and of the chromospheric Helium i10830˚A multiplet.The analysis of the photospheric and chromospheric LOS velocities,and the relation between them,are shown in section4.As we shall see below,we are able to provide very clear observational evidence for the upward propagation of waves from the photosphere to the chromosphere within the umbra of a sunspot,including an unprecedent measurement of the time delay between the signals and the detection and characterization of the photospheric driving piston.A brief discussion can be found in section5,followed by somefinal remarks in section6.2.ObservationsThe observations analyzed in this paper were carried out at the German Vacuum Tower Telescope(VTT)of the Observatorio del Teide on October1st2000and May9th2001,using the Tenerife Infrared Polarimeter(TIP,Mart´ınez Pillet et al.1999).This instrument allows us to take simultaneous images of the four Stokes parameters as a function of wavelength and position along the spectrograph slit,with a temporal sampling up to0.5seconds.In order to obtain a better signal-to-noise ratio,several images were added up on-line,with a final temporal sampling of several seconds.The slit(0”.5wide and40”long)was placed over the targets and was keptfixed during the entire observing run(approx.1hour).The image stability was obtained using a correlation tracker device(Ballesteros et al,1996) which compensates for the image motion induced by the Earth’s high frequency atmospheric variability,as well as for solar rotation.The observed spectral range spanned from10825.5to10833˚A,with a spectral sampling of31m˚A per pixel.This spectral region is a powerful diagnostic window of the solar atmospheric properties since it contains valuable information coming from two different regions in the atmosphere(Harvey&Hall1971;R¨u edi,Solanki,Livingston1995;TrujilloBueno et al.2002;Trujillo Bueno et al.2005;Solanki et al.2003).It includes three spectral features.Thefirst is a photospheric Si i line at10827.09˚A.Next to it lies the chromospheric Helium i10830˚A line,which is indeed a triplet,whose blue component(λ10829.09˚A)is quite weak and difficult to see in an intensity spectrum,and whose red components(λ10830.25,λ10830.34˚A)appear blended.The formation mechanism of this triplet is still not fully understood,though it is thought to be generated in a thin layer in the high chromosphere,about2000km above the base of the photosphere(Avrett et al.1994). The third spectral feature is a water vapour line(R¨u edi et al.1995)of telluric origin that can only be used for calibration purposes,since it generates no polarization signal.We chose two different target sunspots for the analysis presented in this paper.On both occasions the slit was placed over the center of the sunspot.Table1shows the details for both data sets.3.Data reduction and inversionFlatfield and dark current measurements were performed at the beginning and the end of both observing runs and,in order to compensate for the telescope instrumental polarization, we also took a series of polarimetric calibration images.The calibration optics(Collados 1999)allows us to obtain the Mueller matrix of the light path between the instrumental cal-ibration sub-system and the detector.This process leaves a section of the telescope without being calibrated,so further corrections of the residual cross-talk among Stokes parameters were done:the I to Q,U and V cross-talk was removed by forcing to zero the continuum polarization,and the circular and linear polarization mutual cross-talk was calculated by means of statistical techniques(Collados2003).In order to infer the physical parameters of the magnetized atmosphere in which the measured spectral lines were generated,we carried out the full Stokes inversion of both the Silicon line and the Helium triplet within the umbra of the sunspot for the whole time series of observations and for both data sets.Thus,we were able to obtain the temporal variability of several physical quantities(line of sight velocity,magneticfield intensity and orientation...) at the photospheric and chromospheric regions where the observed spectral line radiation originates,though in this paper we will concentrate only on the results concerning the line of sight velocity temporalfluctuations.We could have used a simpler method to infer Doppler velocities rather than inversion techniques,but we decided to stick to the latter after comparing the results with those obtained from a preliminary analysis(in which we calculated velocities by measuring directly the position of the intensity minimum and the Stokes V zero-crossing),andfinding that they yielded very similar results.The information encoded in the Silicon line radiation was retrieved by using the code LILIA, developed by Socas-Navarro(2001).LILIA is a package for the synthesis and inversion of Stokes profiles induced by the Zeeman effect.It is based on the assumption of local thermodynamic equilibrium(LTE),and takes into account the Zeeman induced polarization pattern of the spectral lines.A guess atmosphere is iteratively modified by the code,using a Levenberg-Marquardt minimization algorithm(Press et al.1988),until the synthetic profiles mimic the observed ones,in a least square sense.LILIA returns not only the values for the thermodynamic and physical parameters,but also their stratification in the atmosphere.All the values for photospheric parameters presented from now on in this paper,refer to the height corresponding to log(τ500)=−2.The inversion of the Helium lines was carried out using a code based on the Milne-Eddington (ME)approximation,similar to that described by Socas-Navarro,Trujillo Bueno&Landi Degl’Innocenti(2004).We decided to give no weight to the blue component of the triplet in the inversion because it seemed to be contaminated with some other unknown spectral feature,whose possible physical origin is discussed in Centeno et al.(2005).Although the ME approach does not provide the stratification of the atmospheric parameters,it returns precise velocity values and an average(over the region of formation)for the rest of the magnitudes(see,e.g.,Westendorp Plaza et al.1997).4.Analysis4.1.Shock wavesFigure1shows the temporal evolution of the Stokes V profiles for one position inside the umbra of sunspot#1obtained directly from the observations.The horizontal and vertical axes represent time and wavelength,respectively(the origin of wavelength scale being the rest position of the Silicon line).Around the zero-wavelength position we see the Silicon Stokes V profile,which atfirst sight does not seem to change with time.On the other hand, the upper part of thefigure shows the evolution of the circular polarization observed in the Helium multiplet,with the high contrasted red components on top(at∼3.3˚A)and the blue component rather weak,underneath(at∼2˚A).Both signals exhibit the same behaviour: the positions of the zero-crossing of the Stokes profiles show periodic shifts in wavelength with a clear sawtooth shape(i.e.sudden blue-shifts followed by slower red-shifts),suggestive of shock wave trains.It is interesting to note that the Stokes V profiles show irregular shapes during blue-shifts, suggesting they are not resolved within the temporal and/or spatial sampling of our observa-tions or even that they are simply the result of integration along the line-of-sight in a shocked plasma.This happens not only for sunspot#1(with a7.9s sampling)but also for sunspot #2(with a muchfiner sampling of2.1s).Figure2shows two different Stokes V profiles for the Helium triplet,corresponding to a unique position inside the umbra of sunspot#1.The two profiles were measured at different times:while the one on top corresponds to a snapshot of a redshift,the one on the bottom was measured while the Helium line was undergoing a blueshift.4.2.Results from the inversionsAfter carrying out the full Stokes inversion of the Silicon line and the Helium triplet inside the umbrae of sunspots#1and#2,we obtained the temporal variation of the atmo-spheric structure at the photosphere and the chromosphere,for all the positions along the slit.We will focus on the results for the line of sight velocity in this paper.As mentioned earlier,the analysis of the remaining retrieved parameters will be left for a subsequent paper.Figure3shows the photospheric(above)and chromospheric(below)line of sight velocity maps for the umbra of sunspot#2,obtained from the inversions of the Silicon and Helium lines respectively.The horizontal and vertical axes represent time and position along the slit.Black means negative velocity(matter approaching the observer).In both maps,we have subtracted a slow linear variation of the velocity due to the Sun-Earth relative motion. The phase of the oscillations changes slowly accross the umbra in the chromosphere,while in the photosphere this variation is even slower,and the oscillations seem to keep the coherence over larger regions.The typical size of a photospheric patch is5to10arcsec while the size of a chromospheric patch is between2and5arcsec.Figure4shows the temporal evolution of the photospheric(left)and chromospheric (middle)line of sight velocities for one position inside the umbra of sunspot#2.The photospheric velocity,with an rms noise level of about30ms−1,shows an approximately sinusoidal pattern with a peak to peak amplitude of400ms−1and a period within thefive minute band.On the other hand,chromospheric velocity oscillations(shown in more detail in the right panel of Figure4)have a well defined three minute period and quite large peak to peak variations(of the order of10-15kms−1).Also,the oscillation pattern has a clear sawtooth shape that indicates the presence of shock wave trains at chromospheric heights, as already mentioned in the former section.4.3.Power spectra.Figure5shows the power spectra averaged over the entire umbra of sunspot#1(top)and sunspot#2(bottom),for both the chromospheric(solid)and the photospheric(dashed) velocity signals.In the chromospheric signal,power is concentrated between5and8mHz (3minute band)with a clear peak around6mHz.Note that there is nearly no power at all in the5minute band(∼3.3mHz).On the other hand,the photospheric velocity power spectrum has most of its power concentrated in the range from2to5mHz,which corresponds to the well knownfive minute oscillations.But there are also secondary peaks between5-7mHz which we believe to be the photospheric counterpart of the chromospheric3-minute oscillations,as will be shown further on.4.4.Phase diagramsThe upper part of Figure6shows the phase difference(∆φ)between the chromospheric and the photospheric velocity signals,as a function of frequency.On the left,the results for umbra#1,and on the right for umbra#2.Each cross on thefigure is obtained as the difference from the chromospheric phase and the photospheric phase for one frequency and one position inside the umbra of the sunspot.The phases are obtained directly from the Fourier transform of the velocity signals,for each position along the slit.Note that there is a2πindetermination in the computation of the phase value,so the phase difference will be cyclic every2π.The lower part of Figure6shows the coherence spectra for both data sets.Coherence spectrum is intimately related to phase spectrum and it tells us whether the phase difference between two signals for one harmonicωis characteristic of the signals or,on the contrary, is an arbitrary feature.For this reason,coherence is a statistical definition,and makes no sense when calculated between two velocity signals measured at two different heights and the same spatial position.The horizontal line delimits the confidence limit at0.7,above which we consider the coherence is significant,and the information given by the phase spectrum is reliable(between2.5-7mHz for sunspot#1,and between3-8.5mHz for sunspot#2). From Figure6we can see that in the range from0to2mHz,the phase spectrum is very noisy(in both cases),with a mean value around zero,indicating that the oscillation modes at photospheric heights have nothing to do with the same modes observed at chromospheric heights,i.e.there is no wave propagation in this frequency regime.From2up to,approx-imately,4mHz,the phase spectrum is not so noisy but values still remain very near zero, indicating that there is no propagation,but what we see are standing waves(i.e.,waves thatare reflected somewhere below the level of formation of the Si line).From4mHz on,the phase spectrum shows a clear increasing tendency meaning that these frequency modes do propagate from the photosphere reaching the chromosphere at some point.4.4.1.The theoryJust for a reason of completeness and self-containment,in this subsection we make a brief overview of some basic models for wave propagation in plane-parallel atmospheres,following works available in the literature(Ferraro and Plumpton1958,Souffrin1972,Mihalas and Mihalas1984,B¨u nte and Bogdan1992).Beginning with an adiabatic stratified atmosphere, we will compare it to a non-stratified one,and after that,to an atmosphere that allows for radiative losses through Newton’s cooling law.We will see that this last case agrees reasonably well with the observations.Consider a standard plane-parallel isothermal stratified atmosphere permeated by a uniform vertical magneticfield(as in Ferraro and Plumpton,1958).If we introduce a small adiabatic perturbation with a frequencyω,and study its propagation,in the linear regime these authorsfind two independent solutions:an Alfv`e n wave(transversal in nature, propagating along thefield lines)and a sound wave(also propagating along thefield lines,but longitudinal and totally unaware of the presence of the magneticfield).As we are studying the propagation of longitudinal velocity oscillations along the magneticfield lines,we are only interested in the sound wave.The amplitude A(z)of the generated monochromatic wave appears as the solution to the differential equationc2d2A(z)dz+ω2A(z)=0,(1)where z is the cartesian vertical coordinate,H0is the pressure scale height,g is the grav-ity(assumed constant),c2=γgH0the speed of sound andγ=c p/c v the ratio of specific heats,which in the case of an adiabatic propagation is strictly equal to5/3for a monoatomic plasma.If we introduce the solution A(z)=e ik z z(where k z represents the vertical wavenum-ber)in Eq.(1),we end up with a dispersion relation of the form:k z=1ω2−ω2ac),(2)whereωac =γg/2c (3)is the cut-offfrequency.When k z takes an imaginary value (ω<ωac ),the solution A (z )is damped and there is no wave propagation.On the contrary,when k z has a real part (ω>ωac ),the solution is a purely upward (downward)propagating wave that increases (decreases)its amplitude as it reaches higher (lower)levels of the atmosphere.This behavior can be inferred from the equations(ω<ωac )A (z )=e ωac ±√cz (4)(ω>ωac )A (z )=e zωac /c e ±i √c z (5)Below the cut-offfrequency,oscillations do not propagate,being instead evanescent in char-acter,and generating standing waves.In the case of standing waves,the difference in phase of the oscillations measured at whatever heights are chosen,is always zero.Above the cut-offvalue,oscillation modes propagate with a phase velocity that depends on the frequency.The phase of the oscillation is the argument of the complex exponential (φ=c −1ω2−ω2ac∆z ,where ∆z is the geometric distance between the two levels.The dot-dashed line in Figure 7represents the phase difference of the oscillations measured at two fixed heights for the case of linear adiabatic vertical propagation in an isothermal stratified atmosphere.Below the cut-offfrequency (∼3.7mHz in this simulation)nothing propagates,while above it,modes start to propagate with a phase speed that decreases with frequency.The medium is then dispersive.The dashed line (just for comparison)shows the case for linear adiabatic wave propagation in an isothermal non-stratified atmosphere (without gravity).In this case,the phase difference is linear with frequency,meaning that the phase velocity is the same for all the oscillation modes,and that there exists no cut-offfrequency -i.e.all modes propagate.This is the case of a non-dispersive medium.If,instead of an adiabatic propagation,we relax this condition allowing for radiative losses with a simple Newton’s cooling law (following Mihalas and Mihalas 1984,but originally developed by Souffrin,1972),the picture we obtain is somewhat different.Newton’s cooling law accounts for the damping of the temperature fluctuations due to radiative losses,with a typical cooling time τR given by:τR =ρc v /(16χσR T 3),(6)whereχis the mean absorption coefficient andσR is the Stefan-Boltzmann constant.We can use their solution for vertical propagation of longitudinal waves(i.e.zero horizontal wavenumber k x=0)in the case of the propagation of acoustic-gravity waves in a radiating fluid for a non-magnetic isothermal atmosphere.The reason that allows us to do this,is based on the fact that sound waves propagating along vertical magneticfield lines are unaware of the presence of the magneticfield.This means that the differential equation for sound waves propagating along a vertical magneticfield will be formally identical to the one for thefield free case.The solution inserted into the differential equationA(z)=De z/(2H0)e ik z z(7) yields to the following dispersion relation:k2z=ω2−ˆω2ac1−iωτR.(9) We can compute the real and the imaginary parts of k z:k2R=12[−h R+(h2R+h2I)1/2],(11) whereh R=ω2(1+ω2τ2Rγ)4H20(12)h I=(γ−1)τRω3shows us what the phase spectrum would look like in this case.Now,there is no cut-offfrequency as such,being all modes propagated and reflected at the same time,with a ratio of propagation versus reflection increasing as a function of frequency.The transition between propagating and non-propagating regimes is not so clear though a pseudo-cut-offfrequency can be defined.When the typical radiative time scaleτR is small enough(of the order of tens of seconds),this effective cut-offfrequency turns out to be much smaller than the one obtained for the adiabatic case.bining theory and observationsWe were able tofit the phase spectra with this last asumption(stratified atmosphere allowing for radiative losses)which leaves three free parameters:the temperature of the model atmosphere T,the difference in heights∆z at which the oscillations are measured, and the typical time scale in which the temperaturefluctuations are damped radiatively,τR. The model accounts for the effective cut-offfrequency,the slow transition between the prop-agating and non-propagating regimes,and the slope of the phase spectra above the atmo-spheric cut-off.The solid line in Figure6shows the bestfit for both data sets.The values used for thefits are detailed in Table2and will be discussed in section5.The model accounts not only for the phase spectra,but also for the amplification factor of the chromospheric signals relative to their photospheric counterpart,as a function of frequency.Figure8shows the ratio of chromospheric over photospheric power as a function of frequency for both data sets.Overplotted to the observational ratio,we show the theoretical one(in dashed line) obtained from the best-fit-parameters applied to the model.Below3mHz the data are not reliable due to the S/N ratio,but note that above this value,the agreement is quite good(in tendency and order of magnitude).Authors before have tried tofit phase spectra with the non-stratified model,which cannot even reproduce a cut-offfrequency,not to talk about the change in slope of the phase spectrum.Taking into account that the atmospheric model we use is very simple(isothermal and linear),thefits agree reasonably well with the observations and account for the main features.4.5.FilteringIn order to determine how the photospheric power spectrum3-minute peak is related to the chromospheric oscillation,wefilter the velocity signals in narrow bands around6mHz (where power is significant at both heights)for each point inside the slit.This allows us tocompare the photospheric and chromosphericfiltered velocity maps and see what time shift we have to apply between them so that they match each other.From the curve thatfits the phase spectrum,we can easily obtain the group velocity(v g= dω/dk),and from that,the time that it would take for each oscillating mode to reach the chromosphere from the photosphere(t delay=∆z/v g).Figure9shows the time(solid line)that a quasi-monochromatic photospheric pertur-bation would take to reach the chromosphere,calculated directly from thefit to the phase spectra of both data sets.The phase velocity,and consequently the time delay,is highly dependent on frequency.This implies that,in order to estimate the time that a perturbation originated in the low photosphere takes to reach the high chromosphere,we should compare the modulation pattern of the velocity signalsfiltered in narrow frequency bands,so that the propagating time does not vary significantly within thefiltering range.We take both the photospheric and the chromospheric line of sight velocity maps and we filter them in three narrow frequency bands:4-5,5-6and6-7mHz.We are not interested in the signals below4mHz since from the phase spectrum we see that there is no significant wave propagation in this range.Above7mHz,the phase spectrum becomes very noisy, and the signal in the power spectrum too low to be trusted.After comparing each pair of mapsfiltered in the same frequency range,wefind that the external photospheric and chromospheric modulation patterns resemble each other,but,in order to make them match, a temporal shift has to be applied between them.Figure10shows thefiltered chromospheric(solid)and photospheric(dashed)velocity signals in the4-5mHz range,for two positions(upper and lower panels)inside umbra#2. We have shifted the photospheric velocity signal with respect to the chromospheric one in order to achieve a correspondence between the modulation patterns,yielding a time delay of roughly40seconds.The sense of the shift is such that what happens in the photosphere comes before the corresponding chromospheric events-i.e.upward propagation.Figures11 and12are completely analogous to Figure10,butfiltered in the5-6and6-7mHz bands respectively.The time delay we had to apply was242s in thefirst case,and248s in the second one.Stars overplotted to the theoretical time delay in Fig.9correspond to the temporal shift we had to apply between photospheric and chromosphericfiltered velocity maps in order to make them match.Even though the theoretical curve predicts a strong variation of the time delay within the1mHzfiltering bands,the agreement between theory and observations is pretty good.The measured time delay remains constant along the slit within eachfiltering frequency。