七年级数学下册9.3.1一元一次不等式组教学设计(新版)新人教版
- 格式:doc
- 大小:158.50 KB
- 文档页数:10
9.3.1一元一次不等式组一、教学内容及分析:1、教学内容:(1)一元一次不等式组,一元一次不等式组的解集,解不等式组等概念;(2)解不等式组成的不等式组,用数轴确定解集;(3)用一元一次不等式组解决实际问题.2、内容分析:(1)一元一次不等式组,一元一次不等式组的解集,解不等式组等概念是对代数知识的综合理解及运用,为学生在后面列不等式解决实际问题时打下基础;(2)解不等式组成的不等式组,用数轴确定解集主要是让学生更进一步清楚不等式的解集是多个解的集合,形成整体思想;(3)列利用一元一次不等式组解决实际问题是基于方程的应用,训练学生的分析问题的能力及解决问题的意识,到达训练思维的目的.二、教学目标及分析:1、教学目标:(1)了一元一次不等式组,一元一次不等式组的解集,解不等式组等概念.(2)会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.(3)能够利用一元一次不等式组解决实际问题.2、目标分析:(1)了解一元一次不等式组,一元一次不等式组的解集,解不等式组等概念就是指能判断什么样的是不等式组,解集的含义等纯代数意义的解读,使学生找到知识间的内在联系;(2)会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集,就是指学生清楚求不等式组解集的过程,知道用数轴表示不等式解集的四种形式,形成与方程的区别;(3)能够利用一元一次不等式组解决实际问题就是指会根据条件知道用不等式组来解决,知道不等式组与实际问题的联系.三、问题诊断分析:本节课学生可能会遇到的问题是学生很难找到问题中的不等关系,原因主要是学生分析问题的能力未到达,解决这些困难就把问题分类讨论,使学生知道不同问题的不同解决思路,而关键是列代数式,使问题分解。
四、教学过程:知识回顾解下列不等式并把解集在数轴上表示出来学生完成并拍照上传情景引入用每分可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t而不足1500t,那么将污水抽完所用时间的范围是什么?设计意图:通过此问题的分析—解决让学生初步了解不等式与实际问题的联系,搞清已知条件和未知元素,从而确定用哪一个知识点来解决问题,即把实际问题转换为数学模型,从而求解.师生活动:这是一个实际问题,请学生先理解题意,搞清已知条件和未知元素,从而确定用哪一个知识点来解决问题,即把实际问题转换为数学模型,从而求解.此时引导学生发现x的值要同时满足上述两个不等式,进而引导学生归纳一元一次不等式组的概念.把两个不等式合起来,就组成了一元一次不等式组(此时可以与方程组类比理解).探究:类比方程组的解,如何确定不等式的解集.设计意图:进一步熟悉解一元一次不等式组的步骤,特别是了解用数轴表示解集的四种不同形式。
一元一次不等式组
四 应用
例1.解不等式组
211(1)841x x x x ->+⎧⎨
+-⎩①≤②2311(2)25123x x x x ++⎧⎪⎨+-<-⎪⎩
≥ ①
② 例2 x 取哪些整数值时,不等式
13
523(1)17?
22x x x x +>---与≤都成立 五 小结
六 练习 课本129页 1,2题
一般情况下得到解不等 式解集的规律
注意解题的步骤格式
板 书
一元一次不等式组 一 定义 二 解法 三 例题 四 练习
教 后 反 思
通过数学问题引导学生找出问题解决的思路,建立数学模型。
在这一过程主线下,辅以类比、探索、概括的学习方法,合理设计问题,安排讨论的最佳契机,及时揭示数学本质,引发数学思考,期望让学生在自主探索中学得自然、学得真切、学得主动、学得有效.本节课的重点内容是一元一次不等式组的正确求解,关键却是不等式组求解的步骤总结,这一总结让学生自己归纳比教师直接告之效果更好;创设实际问题情境引出一元一次不等式组的意义,让学生产生学习不等式组的需求,也对解不等式的方法有很自然的联想.看似费时,实是数学素养和数学思考的隐性提升.。
《一元一次不等式组》教学设计思想:准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容.本节教学的重点是一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组.在学习的过程中有问题引入新课,引导学生充分讨论,得出所要的不等式组,进而研究不等式组的解法及其用数轴的表示,通过练习来巩固如何解不等式组.最后学习的是不等式组在现实生活中的简单应用.教学目标:1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;2.使学生逐步学会用数形结合的观点去分析问题、解决问题.一、知识目标经历通过具体问题抽象出不等式组的过程;表述一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法.二、能力目标体会运用不等式组解决简单实际问题的过程,提高学习热情和积极性,进一步发展符号感与数学化的能力.三、情感目标通过用数轴表示不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美,体会数形结合的思想.重点:一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题.难点:求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组.解决办法:不等式组的解集通过数轴来表示简单明了,关于不等式组的应用要仔细审题以小组讨论的形式引导学生找出题中的不等关系,进而列出不等式组.教学方法:引导发现法、小组讨论交流.教具准备:多媒体,或投影仪教学设计过程:(一)复习提问:三角形的三边关系?(二)列一元一次不等式组问题:现有两根木条a 和b ,a 长10 c m ,b 长3 c m.如果要再找一根木条c ,用这三根木条钉成一个三角形木框,那么对木条c 的长度有什么要求?注:这个问题是本节的引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.探究:用三根长度分别为14c m ,9c m ,6c m 的木条c 1,c 2,c 3分别试试,其中哪根木条能与木条a 和b 一起钉成三角形木框?可以发现,当木条a 和b 的长度确定后,木条c 太长或太短,都不能与a 和b 一起钉成三角形. 由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c 长x c m ,则x 必须同时满足不等式x <10+3 ①和x >10-3 ②注:木条c 必须同时满足两个条件,即c <a +b ,c >a -b .类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作⎩⎨⎧->+<310310x x注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.(三)一元一次不等式组的解集类比方程组的解,怎样确定不等式组中x 的可取值的范围呢?不等式组中的各不等式解集的公共部分,就是不等式组中x 可以取值的范围.注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.由不等式①解得x <13.由不等式②解得x >7.从图9.3—2容易看出,x 可以取值的范围为7<x <13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c 比7cm 长并且比13cm 短时,它能与木条a 和b 一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义.例1 解下列不等式组:解:(1)解不等式①,得x >2.解不等式②,得x >3.把不等式①和②的解集在数轴上表示出来(图9.3—3).注:这个不等式组的解集是左端有界的开区间.从图9.3—3可以找出两个不等式解集的公共部分,得不等式组的解集x >3.(2)解不等式①,得x ≥8. 解不等式②,得54<x这两个不等式的解集没有公共部分(图9.3—4),不等式组无解.注:如果不等式组中各不等式的解集没有公共部分(各解集的交集是空集),那么不等式组无解. 当一个未知数量同时满足几个不等关系时,可以按这些关系分别列几个不等式,并由此得到不等式组.注:这里给出列不等式组的前提条件,即一个未知数同时满足几个不等关系.(四)巩固提高1. 解下列方程:()⎩⎨⎧-<+->;,142121x x x x ()⎩⎨⎧<++>-;,x x x x 4232152 (五)总结扩展对于具有多种不等关系的问题,可通过不等式组解决.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.注:这段归纳是对9.3节的总结,即对列、解不等式组的概括.(六)布置作业教材习题第1,2题.第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
七年级下册第九章9.3 《一元一次不等式组》教学设计一、教材分析:本节课主要学习一元一次不等式组及其解法,这是利用一元一次不等式组解决实际问题的关。
,教材通过一个实际问题入手,引导要解决的问题必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式的过程,进而通过一元一次不等式,一元一次不等式的解集,解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组的概念。
学习不等式组时能够类比方程组,求不等式组的解集时,利用数轴很直观快捷,注重数形结合。
二、教学目标(一)知识目标:1、了解一元一次不等式组及起相关概念。
2、会解简单的一元一次不等式组并会用数轴确定解集。
(二)水平目标:1、通过解一元一次不等式组的训练,培养运算水平。
2、经历由实际问题到一元一次不等式组的过程,让学生体会一元一次不等式组是解决实际问题的有效数学模型。
(三)情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
三、学情分析:不等式的解集已经在前一节中学习并使用其解决实际问题。
若有多个不等式构成的不等式组的解集如何确定呢?不等式的解集可类比方程的解实行求解,是否不等式组的解集与方程组的解也类似呢?所以学生就会实行类比,进而可得出其解集的公共部分。
四、教学重点:理解不等式组的相关概念;会解一元一次不等式组并在数轴上确定其解集。
五、教学难点:确定不等式组解集的四种情况。
六、教育理念和教学方法:教师是学生学习的组织者、促动者、合作者。
本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论。
七、教学过程: 一、复习引入1、解一元一次不等式的步骤:去分母(不等式性质2或3) 去括号(乘法分配律) 移项 (不等式的性质1) 合并同类项(乘法分配律的逆用) 系数化为1 (不等式的性质2或3)2、在数轴上表示不等式的解集的方法:画数轴——找点——画点——画线 (有“等于”画实心圆点,无“等于”画空心圆圈 “大于”向右画,“小于”向左画) 板书:9.3 一元一次不等式组 二、讲授新课 (一)出示学习目标:1、理解一元一次不等式组及其解集的概念。
《9.3 一元一次不等式组(第1课时)》教学设计
一、教学内容和内容解析
1.教学内容
一元一次不等式组的概念、解法及其解集的几何表示。
2.教学内容解析
不等式组位于二元一次方程之后,这是进一步探究现实世界中的数量关系的重要内容。
本节课先从实例——抽污水管道里的污水问题说起,充分体现了“从生活中走进来,到生活中去”的理念,以实例来说明概念,引入一元一次不等式组。
二元一次方程组的解可用消元法产生,而一元一次不等式组的解集要借助数轴才能得出,通过观察、分析、体会各不等式解集的公共部分,进而讨论几种有代表性的不等式组解集,帮助学生及时总结所学知识的学习方法,最后学生学习由浅入深,通过课堂检测及练习等解复杂的不等式组,使对解不等式组的认识整体化、系统化。
二、教学目标
(1)了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;
(2)逐步熟悉数形结合的思想方法,感受类比与化归的数学思想;
(3)使学生能利用数轴熟练确定一元一次不等式组的解集,并通过解集的几何表示培养学生的观察能力和分析能力。
三、教学重难点
教学重点:一元一次不等式组的概念和解法。
教学难点:借助数轴确定不等式组中各个不等式解集的公共部分。
四.教学辅助手段
由于本节课的难点是一元一次不等式组解集的理解,所以教师在课前准备时可制作多媒体课件,利用课件展示几种有代表性的不等式组中,各个不等式的解集的,让学生通过观察、讨论后得出简单的不等式组的解集规律。
评语:
1、教学过程中,关于活动的设计不足。
2、对教材相关分析还应该更细致一些。
人教版数学七年级下册9.3.1《一元一次不等式组》教学设计一. 教材分析《一元一次不等式组》是人教版数学七年级下册第九章第三节的第一课时内容。
本节课的主要内容是一元一次不等式组的解法和应用。
学生在之前的学习中已经掌握了不等式的基本性质和一元一次方程的解法,这为本节课的学习打下了基础。
本节课的内容是解决实际问题的重要工具,也是进一步学习其他数学知识的基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但是解决实际问题的能力还相对较弱。
在学习本节课的内容时,学生需要将之前学习的知识运用到解决实际问题中,因此需要老师在教学过程中给予学生足够的引导和帮助。
三. 教学目标1.理解一元一次不等式组的含义,掌握解一元一次不等式组的方法。
2.能够应用一元一次不等式组解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:一元一次不等式组的解法和应用。
2.难点:如何将实际问题转化为不等式组,并解决。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来学习一元一次不等式组。
2.使用多媒体辅助教学,通过动画和实例来帮助学生理解一元一次不等式组的概念和解法。
3.学生进行小组讨论和合作交流,提高学生的逻辑思维能力和解决实际问题的能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教案。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物时价格的比较、比赛中的评分等,引导学生发现这些问题都可以用不等式来表示。
从而引出一元一次不等式组的概念。
2.呈现(10分钟)讲解一元一次不等式组的定义和解法。
通过实例来展示如何将实际问题转化为不等式组,并如何解这个不等式组。
3.操练(10分钟)让学生独立解决一些简单的不等式组问题。
老师可以在旁边给予指导,帮助学生掌握解题方法。
4.巩固(10分钟)让学生分组讨论,相互讲解解题方法,巩固所学知识。