关于一类四元不等式的证明
- 格式:pdf
- 大小:186.60 KB
- 文档页数:4
不等式的性质和证明一、基础知识1.性质对称性a>bÛb<a 传递性a>b,b>c Þ a>c 加法单调性a>b Þ a+c>b+c 乘法单调性a>b,c>0 Þ ac>bc;a>b,c<0 Þ ac<bc开方法则a>b>0 Þ移项法则a+b >c Þ a>c-b 同向不等式相加a>b,c>d Þ a+c>b+d 同向不等式相乘a>b>0,c >d>0 Þ ac>bd 乘方法则a>b>0 Þ a n>b n倒数法则a>b,ab>0 Þ2.证明方法:比较法,综合法,分析法,反证法,换元法证明技巧:逆代,判别式,放缩,拆项,单调性3.主要公式及解题思路公式:a2+b2≥2ab(a,b∈R)a3+b3+c3≥3abc(a,b,c∈R+)思路:①②③④正数x,y且x+y=1,求证:≥二、例题解析1.(1)a,b∈R+且a<b,则下列不等式一定成立的是()A.B.C.D.(2)若0<x<1,0<y<1且x≠y,则x2+y2,x+y,2xy,中最大的一个是()A.x2+y2B.x+y C.2xy D.(3)若a,b为非零实数,则在①a2+b2≥2ab ②≤ ③≥④≥2中恒成立的个数为()A.4B.3C.2D.1(4)下列函数中,y的最小值是4的是()A.B.C.y= D.y=lgx+4log x10(5)若a2+b2+c2=1,则下列不等式成立的是()A. a2+b2+c2>1B.ab+bc+ca≥C.|abc|≤ D a3+b3+c3≥2.(1)已知x,y∈R+且2x+y=1,则的最小值为(2)已知x,y∈R 且x2+y2=1,则3x+4y的最大值为(3)在等比数列{a n}和等差数列{b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较大小:a5b5(4)已知a>0,b>0,a + b=1,则的最小值为(5)已知:x+2y=1,则的最小值为(6)已知:x>0,y>0且x+2y=4,则lg x + lg y的最大值为(7)若x>0,则,若x<0,则(8)建造一个容积为8 m3,深为2m的长方体无盖水池,如果池底和池壁造价分别为120元和80元,那么水池的最低总造价为元。
一类不等式的证明
证明不等式是数学的重要课题,也是分析、解决其他数学问题的基础,特别是在微积分中,以不等式为基础建立的极限论是它的理论基础。
所以不等式的证明是一个重要问题,同时不等式的证明也是一个较难的问题,但也是一个有规律可循的问题,下面就一类不等式的证明举几例说明: 时两个等号同时成立∴原不等式成立
说明:将a3 ,b3 ,c3 凑配成a4 ,b4 ,c4主要为利用柯西不等式创造明显条件,同时凑配出ab,bc,ac…等等的式子是为利用不等式a2+b2≥2ab创造明显条件,这也是证明不等式的关键所在。
当且仅当a=b=c时三个等号同时成立∴原不等式成立说明:同例1将a3 ,b3 ,c3 凑配成a4 ,b4 ,c4为利用柯西不等式创造明显条件,同时凑配出ab,bc,ac…等等的式子而利用不等式a2+b2≥2ab创造明显条件。
当且仅当= = =d时两个等号同时成立所以原不等式成立
通过上述4例可发现,左侧为多个分式之和并且分子为齐次的不等式,我们可以用重要不等式a2+b2≥2ab和柯西不等式
当且仅当时等号成立)巧妙结合,使问题简单化,初等化。
在应用柯西不等式时,因式的巧分,合理地添项、拆项,灵活地
变换结构等都是常用技巧。
柯西不等式是很重要的一个基本不等式,在数学竞赛中应用极其广泛。
将柯西不等式和其他数学思想方法结合起来,解决某些数学竞赛问题,可起事半功倍
的效果。
不等式的证明方法与技巧东北育才学校 张雷 彭玲我们除了要熟悉平均值不等式、柯西不等式及排序不等式等基本不等式外,常用的不等式证明技巧更要熟练掌握.不等式的证明技巧很多,证明方法常常因题而异,其中不乏高难题目. 我们这里以常见题型和技巧为主,希望对大家学习不等式有所帮助.【范例选讲】一、取等匹配法对于一些非严格的对称(或轮换对称)不等式,我们可以根据待证不等式取等号的条件和结构特征,进行配项与凑项,造成利用平均值不等式之态势,应用这一技巧,我们可以证明很多甚至很难的不等式. 例1 若x 、y 、z +∈R 且x+y+z=1,求证:81)1()1()1(242424≥-+-+-x x zz z yy y x.分析 注意到:当31===z y x 时不等式取等号,此时:241)1()1()1(242424=-=-=-x x zz z yy y x.证明 因为:)1(321)1(16181)1(24y y y y y x++-++-x y y y y y x21)1(321)1(16181)1(4424=+⋅-⋅⋅-≥即:32332321)1(24--≥-y x y y x.同理:32332321)1(24--≥-z y z z y32332321)1(24--≥-x z x x z.相加得:)1()1()1(242424x x zz z yy y x-+-+-39)(323)(21-++-++≥x z y z y x .8132932321=--=原不等式得证二、发现局部不等式 例2.已知正实数,,a b c 满足1111a b c ++=,证明≥证明:先证明局部不等式1b≥+,因为222111)(11111(0bbbb a cb-+=--=+-=≥所以11a cb +成立,同理可得1a≥+,11b a ≥++111bac++≥++++左右两边乘以三、导数法例3、(2009年高中联赛二试)求证不等式:2111ln 12nk kn k=-<-≤+∑,n =1,2,….证明:首先证明一个不等式:⑴ln(1)1x x xx<+<+,0x >.事实上,令()ln(1)h x x x =-+,()ln(1)1x g x x x =+-+.则对0x >,1()101h x x'=->+,2211()01(1)(1)x g x xx x '=-=>+++.于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n ⎛⎫<+< ⎪+⎝⎭.令21ln 1nn k k x nk ==-+∑,则112x =,121ln 111n n nx x n n -⎛⎫-=-+ ⎪+-⎝⎭211n n n<-+210(1)n n =-<+因此1112n n x x x -<<<= .又因为111l n (l n l n (1))(l n (1)l n (2))(l n 2l n 1)l n 1l n 1n k n nn n n k -=⎛⎫=--+---++-+=+⎪⎝⎭∑ . 从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.四、换元法例4、(1998年韩国)已知,,x y z R +∈,且x y z x y ++=,求证:232+≤证明:令tan ,tan ,tan ,,,(0,)2x A y B z C A B C π===∈由条件x y z xyz ++=易得A B C π++= 问题转化成了3cos cos cos 2A B C ++≤,其中,,(0,)2A B C A B C ππ∈++=且有函数()cos f x x =在(0,)2π为凹函数可得cos cos cos 1cos332A B CA B C++++≤=所以3cos cos cos 2A B C ++≤,从而原不等式得证五、引进参数法 例5.(2001年IMO试题)已知,,a b c为正实数,证明:1++≥证明:引进参数λaa b cλλλλ≥++即2222()()(8)a b c a a a bcλλλλ++⋅≥⋅+,而22322424()()()()2()4()8()a b c ab c a b c abc a bc a bcλλλλλλλλλλλλλλλ++-=++++≥⋅=则3332224224()()8()(8())a b c a a bc a a bcλλλλλλλλλ++≥+=+取43λ=,则有4442223333()(8)a b c a a bc++≥+即43444333aa b c≥++43444333b ba b c≥++43444333c ca b c≥++三个式子相加即得六、构造对偶式例6.如果,,a b c R+∈,求证:3332222223a b c a b ca ab b b bc c c ca a++++≥++++++证明:记不等式左边为M,构造对偶式333222222b c aNa ab b b bc c c ca a=++++++++则0M N-=,即M N=又222222222222()()()a ab b b bc c c ca aM N a b b c c aa ab b b bc c c ca a-+-+-+ +=+++++++++++由基本不等式易得222213a ab ba ab b-+≥++,222213b bc cb bc c-+≥++,222213c ca ac ca a-+≥++所以2()3a b cM N+++≥,所以()3a b cM++≥七、和式的恒等变换例7.(1989年高中联赛二试)已知(1,2,,;2)i x R i n n ∈=≥ ,满足11||1,0nni ii i x x====∑∑求证:111||22ni i x in=≤-∑证明:令1(1,2,,)kk ii S x i n ===∑ ,,则0nS=有和式变换得1111111111()()11nn n i n k k i k k x S S S inkk kk --====⋅+-=-++∑∑∑对于11k n ≤≤-,由110nnik i i i k xS x ==+==+∑∑所以1n k i i k S x =+=-∑,所以1||||nk i i k S x =+=∑从而112||||||||1n nk k i i i k i S S x x =+==+≤=∑∑,所以1||2k S ≤所以1111111111111111|||()|||()()112122nn n n i k k i k k k x S S ikk kk kk n---=====-≤-≤-=-+++∑∑∑∑八、局部调整例8(40届IMO )设)2(≥n n 是一个固定的整数,确定最小的常数c ,使不等式41221)()(∑∑=≤<≤≤+ni i ji nj i j ix c x x x x对所有非负实数n x x x ,...,21都成立。
第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向.对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2,所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3.若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1b 2≥8.证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0,所以1a 2+1b 2=(a +b )2a 2+(a +b )2b 2=1+2b a +b 2a 2+1+2a b +a 2b 2=2+⎝⎛⎭⎫2b a +2a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥2+22b a ·2a b+2b 2a 2·a 2b 2=8⎝⎛⎭⎫当a =b =12时取等号. 若x ,y ,z ∈R +,且x +y >z ,求证:x 1+x +y 1+y >z1+z .证明:因为x +y >z , 所以x +y -z >0.由分数性质得z1+z <z +(x +y -z )1+z +(x+y -z )=x +y 1+x +y .因为x >0,y >0,所以x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y 1+y .所以x 1+x +y 1+y >z 1+z.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab>0.即a +1a -⎝⎛⎭⎫b +1b >0,所以a +1a >b +1b.比较法证明不等式[典例引领](2016·高考全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.【解】 (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.比较法证明不等式的方法与步骤(1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、判断、下结论.[提醒] (1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. (2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[通关练习]1.若a ,b ∈R +,证明:(a +b )(a 5+b 5)≤2(a 6+b 6).证明:因为(a +b )(a 5+b 5)-2(a 6+b 6)=a 6+a 5b +ab 5+b 6-2a 6-2b 6=a 5b +ab 5-a 6-b 6=a 5(b -a )+b 5(a -b )=(a -b )(b 5-a 5).当a >b >0时,a -b >0,b 5-a 5<0,有(a -b )(b 5-a 5)<0. 当b >a >0时,a -b <0,b 5-a 5>0,有(a -b )(b 5-a 5)<0. 当a =b >0时,a -b =0,有(a -b )(b 5-a 5)=0. 综上可知(a +b )(a 5+b 5)≤2(a 6+b 6). 2.已知a ,b ∈(0,+∞),求证:a b b a≤(ab )a +b2.证明:a b b a(ab )a +b 2=ab -a +b 2ba -a +b 2=⎝⎛⎭⎫b a a -b2. 当a =b 时,⎝⎛⎭⎫b a a -b2=1;当a >b >0时,0<ba<1,a -b 2>0,⎝⎛⎭⎫b a a -b2<1. 当b >a >0时,b a >1,a -b 2<0,⎝⎛⎭⎫b a a -b2<1. 所以a b b a≤(ab )a +b 2.用综合法、分析法证明不等式[典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一:(综合法) (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2. 法二:(分析法)(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立. (2)要证a +b ≤2成立, 只需证(a +b )3≤8,再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2), 即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.分析法与综合法常常结合起来使用,称为分析综合法,其实质是既充分利用已知条件,又时刻瞄准解题目标,即不仅要搞清已知什么,还要明确干什么,通常用分析法找到解题思路,用综合法书写证题过程.[通关练习]1.设x ≥1,y ≥1,求证:x +y +1xy ≤1x +1y +xy .证明:由于x ≥1,y ≥1, 要证x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2. 因为[y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1),因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.2.已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.证明:(1)1+a ≥2a ,1+b ≥2b ,1+c ≥2c , 相乘得:(1+a )(1+b )(1+c )≥8abc =8. (2)1a +1b +1c =ab +bc +ac , ab +bc ≥2ab 2c =2b , ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c , 相加得a +b +c ≤1a +1b +1c.反证法证明不等式[典例引领]设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论;(2)从假设出发,导出矛盾; (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:(1)设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. (2)若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.放缩法证明不等式[典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b | =|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.综上,原不等式成立.“放”和“缩”的常用技巧在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:(1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1; (2)利用函数的单调性;(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[提醒] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.用数学归纳法证明不等式[典例引领]证明贝努利不等式:设x ∈R ,且x >-1,x ≠0,n ∈N ,n >1,则(1+x )n >1+nx . 【证明】 (1)当n =2时,因为x ≠0.所以(1+x )2=1+2x +x 2>1+2x ,不等式成立. (2)假设当n =k (k ≥2)时不等式成立, 即有(1+x )k >1+kx ,则当n =k +1时,由于x >-1,x ≠0. 所以(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx ) =1+x +kx +kx 2>1+(k +1)x , 所以当n =k +1时不等式成立.由(1)(2)可知,贝努利不等式成立.用数学归纳法证明与自然数有关的命题时应注意以下两个证题步骤:(1)证明当n=n0(满足命题的最小的自然数的值)时,命题正确.(2)在假设n=k(k≥n0)时命题正确的基础上,推证当n=k+1时,命题也正确.这两步合为一体才是数学归纳法,缺一不可.其中第一步是基础,第二步是递推的依据.证明:对于n∈N*,不等式|sin nθ|≤n|sin θ|恒成立.证明:(1)当n=1时,上式左边=|sin θ|=右边,不等式成立.(2)假设当n=k(k≥1,k∈N*)时不等式成立,即有|sin kθ|≤k|sin θ|.当n=k+1时,|sin(k+1)θ|=|sin kθcos θ+cos kθsin θ|≤|sin kθcos θ|+|cos kθsin θ|=|sin kθ|·|cos θ|+|cos kθ|·|sin θ|≤|sin kθ|+|sin θ|≤k|sin θ|+|sin θ|=(k+1)|sin θ|.所以当n=k+1时不等式也成立.由(1)(2)可知,不等式对一切正整数n均成立.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.1.(2018·安徽省两校阶段性测试)已知函数f (x )=|x -2|. (1)解不等式:f (x )+f (x +1)≤2; (2)若a <0,求证:f (ax )-af (x )≥f (2a ).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|. 因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1;当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52.综上,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立. 2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n =1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2.3.已知函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),当x ∈[-1,1]时,|f (x )|≤1. (1)求证:|b |≤1;(2)若f (0)=-1,f (1)=1,求实数a 的值.解:(1)证明:由题意知f (1)=a +b +c ,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1,所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1.(2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1.当a =0时,不满足题意,当a ≠0时,函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2. 所以-12≤12-1a ≤0,故|f ⎝⎛⎭⎫12-1a |= |a ⎝⎛⎭⎫12-1a 2+(2-a )⎝⎛⎭⎫12-1a -1|≤1. 整理得|(a -2)24a +1|≤1,所以-1≤(a -2)24a +1≤1,所以-2≤(a -2)24a ≤0,又a >0,所以(a -2)24a ≥0,所以(a -2)24a=0,所以a =2.4.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc +2ca+c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +ba ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立).5.已知函数f (x )=|x -1|. (1)解不等式f (x )+f (x +4)≥8;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝⎛⎭⎫b a .解:(1)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x <-3,4,-3≤x ≤12x +2,x >1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,4≥8不成立;当x >1时,由2x +2≥8,解得x ≥3.所以不等式f (x )+f (x +4)≥8的解集为{x |x ≤-5或x ≥3}.(2)证明:f (ab )>|a |f ⎝⎛⎭⎫b a ,即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.1.(2018·武汉市武昌区调研考试)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤23x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14,则函数g (x )在(-∞,0]上是增函数, 所以g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.2.(2018·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥ 3.(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca(当且仅当a =b =c =33时等号成立). 所以原不等式成立.3.已知a ,b ,c 均为正实数.求证:(1)(a +b )(ab +c 2)≥4abc ;(2)若a +b +c =3,则a +1+b +1+c +1≤3 2.证明:(1)要证(a +b )(ab +c 2)≥4abc ,可证a 2b +ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a -c )2+a (c -b )2≥0,当且仅当a =b =c 时,取等号,由已知,上式显然成立,故不等式(a +b )(ab +c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知a +1·2≤a +1+22=a +32,当且仅当a +1=2时,取等号,b +1·2≤b +1+22=b +32,当且仅当b +1=2时,取等号, c +1·2≤c +1+22=c +32,当且仅当c +1=2时,取等号, 以上三式相加,得2(a +1+b +1+c +1)≤a +b +c +92=6, 所以a +1+b +1+c +1≤32,当且仅当a =b =c =1时,取等号.。
不等式的证明一、知识归纳1.证明不等式的常用方法: (1)比较法①作差比较法步骤:作差—变形—判定符号②作商比较法步骤:作商—变形—确定与1的大小关系(2)分析法:从要证的结论出发, 逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证的定理、性质等), 从而得出要证的命题成立,这种证明方法叫做分析法. 这是一种执 索 的思考和证明方法.用分析法证明不等式的逻辑关系:寻找证题的途径,然后用“综合法”进行表达.(3)综合法:从①已知条件、②不等式的性质、③基本不等式等出发,通过逻辑推理, 推导出所要证明的结论. 这种证明方法叫做综合法. 又叫由 导 法.用综合法证明不等式的逻辑关系:12n A B B B B ⇒⇒⇒⇒⇒ 几个重要不等式:①当a ,b ∈R 时,a 2+b 2≥2ab (当且仅当a=b 时等号成立) ②当a ,b ∈R 时,222)2(2b a b a +≥+(当且仅当a=b 时等号成立)③当ab >0时,2≥+ba ab (当且仅当a=b 时等号成立)④当a ,b ∈R +时,ab b a 2≥+(当且仅当a=b 时等号成立) 等价变形:2)2(b a ab +≤⑤当a ,b ,c ∈R 时,ca bc ab c b a ++≥++222二、例题分析:例1 已知a ,b ,c ∈R +,求证a 2b+ab 2+a 2c+ac 2+b 2c+bc 2≥6abc练习:(2009年高考江苏卷)设a ≥b >0, 求证:3a 3+2b 3≥3a 2b +2ab 2. [证明] 证法一 (综合法) ∵a ≥b >0,∴a 2≥b 2, 则3a 2≥2b 2,则3a 2-2b 2≥0. 又a -b ≥0,∴(a -b )(3a 2-2b 2)≥0,12 ( ) n B B B B A⇐⇐⇐⇐⇐ 结步步寻求不等式已论成立的充分条件知即3a 3-2ab 2-3a 2b +2b 3≥0, 则3a 3+2b 3≥3a 2b +2ab 2, 故原不等式成立. 证法二 (分析法).要证3a 3+2b 3≥3a 2b +2ab 2, 只需证3a 3+2b 3-3a 2b -2ab 2≥0, 即3a 2(a -b )+2b 2(b -a )≥0,也即(a -b )(3a 2-2b 2)≥0 (*) ∵a ≥b >0,∴a -b ≥0. 又a 2≥b 2,则3a 2≥2b 2, ∴3a 2-2b 2≥0,(*)式显然成立,故原不等式成立.练习2: (2010年高考江苏卷)设a 、b 是非负实数, 求证:a 3+b 3≥ab (a 2+b 2). 证明:由a ,b 是非负实数,作差得a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a ) =(a -b )[(a )5-(b )5].当a ≥b 时,a ≥b ,从而(a )5≥(b )5, 得(a -b )[(a )5-(b )5]≥0; 当a <b 时,a <b ,从而(a )5<(b )5, 得(a -b )[(a )5-(b )5]>0. 所以a 3+b 3≥ab (a 2+b 2).练习3:(2010年高考辽宁卷)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明:证法一 因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥3(abc )23,①1a +1b +1c ≥3(abc )-13, 所以⎝⎛⎭⎫1a +1b +1c 2≥9(abc )-23②故a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥3(abc )23+9(abc )-23.又3(abc )23+9(abc )-23≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc )23=9(abc )-23时,③式等号成立.故当且仅当a =b =c =314时,原不等式等号成立.证法二 因为a ,b ,c 均为正数,由基本不等式得 a 2+b 2≥2ab , b 2+c 2≥2be , c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac故a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac≥6 3.③所以原不等式成立. 当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.故当且仅当a =b =c =314时,原不等式等号成立.练习4:设a a ab y b a x 42,5222--=+=,若x >y ,则实数a ,b 应满足的条件为 解析:x -y =a 2b 2+5-(2ab -a 2-4a ) =a 2b 2-2ab +a 2+4a +5 =(ab -1)2+(a +2)2>0, ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2练习5:(2011年安徽卷)证明:xy yxxyy x ++≤++111例2 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a .练习:已知mb m a ba b a R m b a ++<<∈+:,,,,求证练习: 练习:已知R b a y x ∈,,,,且1,12222=+=+b a y x , 求证:1||≤+by ax 练习:(1)已知+∈R b a ,,且1=+b a 求证:322<+b a(2)已知b a ,是互不相等的正数,设函数n n b a n f -=)(,且)2()3(f f =求证:341<+<b a例3:设c bx x x f ++=2)((b ,c 为实数),方程x x f =)(的两个实数根为21,x x ,且满足1,0121>->x x x 。
百度文库- 让每个人平等地提升自我I关于不等式的证明及推广摘要在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。
初等代数中介绍了许多具体的但相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等数学中,可以利用的方法更加灵活技巧。
我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;结合凸函数的性质,凸函数法也可以证明一类不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。
由此我们可以看到,不等式的的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。
所以,高等数学对初等数学的教学和学习具有重要的指导意义。
本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注重对一些著名不等式的论证、推广及应用的介绍。
本篇论文一共分为三章,其中第三章和第四章为正文部分。
第三章分两小节,第一节介绍了23种初等代数中不等式的证明方法。
而第二节则介绍了6种高等代数中不等式的证明方法。
第四章介绍了一些著名不等式的证明、推广和应用。
关键词:不等式证明方法百度文库- 让每个人平等地提升自我IIAbstractIn elementary algebra and advanced algebra,The inequality proof all holds the pivotalposition. In the elementary algebra introduced many concrete but has quite had mystical powers activeness and skill the proof method,For example the structure proof method, the comparison test, puts item by item shrinks research technique and so on the law; But in higher mathematics,We may a use method more nimble skill. We may use the model west the tan oak the inequality conclusion to prove the similar inequality; Eliminates this also to be possible to use the derivative, Differential theorem of mean, Taylor formula; integra intermediate value theorem And so on the related knowledge proves the inequality;Union convex function nature,The convex function law also may prove a kind of inequality; In is deciding in situation,Also may use the discriminant law; After grasped the definite integral to change into the multiple integral the content, Regarding some kind of inequality,Also may change into the definite integral the multiple integral, Again proved asks inequality. May see from this us to, Inequality solution proof method not only, But in elementary mathematics inequality, All may use the higher mathematics the knowledge to solve, answer is ,The higher mathematics has the important guiding sense to the elementary mathematics teaching and the study, Not only must grasp in the elementary mathematics each inequality proof method,Must grasp in the higher mathematics the inequality proof method, This article induced and summarized some solution proof inequalities methods and the skill,Has highlighted the inequality basic thought and the essential method, Is advantageous for understands each part of inner links well, Grasps the inequality from the overall the thinking method; Attention to some famous inequalities proofs.This paper altogether divides into three chapters, third chapter and fourth chapter is the main chapter minutes two sections, First section introduceds in 23 kind of elementary algebras the inequality proof method. But second then introduced in 6 kind of advanced algebras the inequality proof chapter introduced some famous inequalities proofs, the promotion and the application.Key word: Inequality proof method百度文库- 让每个人平等地提升自我III 目录摘要 (Ⅰ)Abstract (Ⅱ)第一章引言(绪论) (1)第二章文献综述 ·······················································································第三章不等式的证明方法 ·······································································初等代数中不等式的证明 ·····································································3.1.1比较法····················································································3.1.2分析法 ·······························································································3.1.3反证法·······························································································3.1.4数学归纳法 ························································································3.1.5换元法 ·······························································································3.1.6放缩法 ·······························································································3.1.7调整法 ·······························································································3.1.8构造法 ·······························································································3.1.9利用已知的不等式证明 ·······································································3.1.10利用一元二次方程的判别式证明 ·······················································3.1.11用几何特性或区域讨论 ·····································································3.1.12利用坐标和解析性证明 ·····································································3.1.13利用复数证明 ···················································································3.1.14参数法 ·····························································································3.1.15利用概率证明 ···················································································3.1.16利用向量证明 ···················································································3.1.17面积法 ·····························································································3.1.18化整法 ·····························································································百度文库- 让每个人平等地提升自我IV 3.1.19步差法 ·····························································································3.1.20通项公式法 ······················································································3.1.21转化成数列法 ···················································································3.1.22增量法 ·····························································································3.1.23裂项法 ·····························································································高等代数中不等式的证明 ·······································································3.2.1由函数的上、下限证明·····································································3.2.2由柯西不等式证明 ···········································································3.2.3由Taylor公式及余项证明·································································3.2.4由积分的性质证明 ···········································································3.2.5由中值定理证明···············································································3.2.6利用求函数的最值证明·····································································第四章几个著名不等式的证明、推广及其应用···································关于绝对值不等式 ·················································································4.1.1三角形不等式 ··················································································4.1.2三角形不等式的推广 ········································································4.1.3三角形不等式的应用 ········································································平均值不等式··························································································4.2.1算术平均数与几何平均数 ·································································4.2.2几个平均数的关系 ···········································································4.2.3平均值不等式的应用 ········································································贝努利不等式··························································································排序不等式······························································································柯西不等式······························································································4.5.1柯西不等式的定理和初等证明 ··························································4.5.2柯西不等式的推广 ···········································································百度文库- 让每个人平等地提升自我V 闵可夫斯基不等式 ·················································································赫尔德不等式··························································································契比雪夫不等式 ·····················································································琴生不等式······························································································艾尔多斯—莫迪尔不等式 ·····································································结论··············································································································致谢··············································································································参考文献······································································································附件··············································································································。
第二节不等式的证明突破点 不等式的证明基础联通 抓主干知识的“源”与“流” 1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点贯通 抓高考命题的“形”与“神”比较法证明不等式[例1] 设a ,b 是非负实数 求证:a 2+b 2≥ab (a +b ).[方法技巧]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.综合法证明不等式[例2] 已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c.[方法技巧]综合法证明时常用的不等式(1) a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b 2≥ab ,它的变形形式有:本节重点突破1个知识点: 不等式的证明.a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba≤-2(ab <0).分析法证明不等式[例3] (2017·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3;(2) a bc + b ac + cab≥ 3(a +b +c ).[方法技巧]分析法的应用当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.能力练通 抓应用体验的“得”与“失” 1.[考点三]已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .2.[考点一]已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .3.[考点二]已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围.[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.2.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.3.(2014·新课标全国卷Ⅰ)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.4.(2013·新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1.证明:(1) ab +bc +ac ≤13;(2) a 2b +b 2c +c2a ≥1.[课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡 1.已知函数f (x )=|x +3|+|x -1|,其最小值为t . (1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94.2.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.3.(2017·广州模拟)已知定义在R 上的函数f (x )=|x -m |+|x |,m ∈N *,存在实数x 使f (x )<2成立. (1)求实数m 的值;(2)若α,β≥1,f (α)+f (β)=4,求证:4α+1β≥3.4.(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2;(2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .5.已知x ,y ∈R ,且|x |<1,|y |<1.求证:11-x 2+11-y 2≥21-xy .6.(2017·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|; (2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.7.(2017·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12;(2)a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.8.(2017·贵阳模拟)已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.春到四月,如火如荼,若诗似画,美到了极致,美到了令人心醉。
不等式的证明和应用知识定位不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
知识梳理1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>b x ax 的解集是x>a ⎩⎨⎧<<b x ax 的解集是x<b ⎩⎨⎧<>ax bx 的解集是 b<x<a ⎩⎨⎧<>bx ax 的解集是空集 3.不等式证明的基本方法:(1)比较法比较法可分为差值比较法和商值比较法。
差值比较法:原理 A - B >0A >B .商值比较法:原理 若>1,且B>0,则A>B 。
3.不等式的应用:(1)几何中证明线段或角的不等关系常用以下定理①三角形任意边两边的和大于第三边,任意两边的差小于第三边。
②三角形的一个外角等于和它不相邻的两个内角和。
③在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和(2)不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.其中,不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:(1)弄清题意和题中的数量关系,用字母表示未知数;(2)找出能够表示题目全部含义的一个或几个不等关系;(3)列出不等式(组);(4)解这个不等式(组),求出解集并作答.例题精讲【试题来源】【题目】已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列.【答案】x<xy2<xy.【解析】分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b.解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy.因为xy2-xy=xy(y-1)<0,所以xy2<xy.因为x-xy2=x(1+y)(1-y)<0,所以x<xy2.综上有x<xy2<xy.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】若试比较A,B的大小.【答案】A>B【解析】显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B.【知识点】不等式的证明和应用【适用场合】当堂练习题【难度系数】3【试题来源】【题目】若正数a,b,c满足不等式组试确定a,b,c的大小关系.【答案】b<c<a【解析】解①+c得②+a得③+b得由④,⑤得所以c<a.同理,由④,⑥得b<c.所以a,b,c的大小关系为b<c<a.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】当k取何值时,关于x的方程3(x+1)=5-kx分别有(1)正数解;(2)负数解;(3)不大于1的解.【答案】k≥-1或k<-3.【解析】解将原方程变形为(3+k)x=2.(1)当 3+k>0,即k>-3时,方程有正数解.(2)当3+k<0,即k<-3时,方程有负数解.(3)当方程解不大于1时,有所以1+k,3+k应同号,即得解为k≥-1或k<-3.注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。