2018北京通州区高三数 学(理)一模考试
- 格式:doc
- 大小:1.25 MB
- 文档页数:10
届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
通州区2018-2019学年第一学期高三年级期末考试数学(理科)试卷2019年1月第一部分(选择题)一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【详解】∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点睛】本题考查的知识点是集合的交集及其运算,属于基础题.2.设向量,,则与垂直的向量的坐标可以是()A. B. C. D.【答案】C【解析】【分析】求出,判断哪个选项的向量与(﹣3,2)的数量积是0即可得出答案.【详解】;可看出(4,6)•(﹣3,2)=0;∴.【点睛】本题考查向量坐标的加法和数量积运算,以及向量垂直的充要条件.3.已知是定义在R上的奇函数,且当时,,则等于()A. B. C. D.【答案】B【解析】【分析】根据题意,由函数的解析式计算可得f(2)的值,又由函数为奇函数,可得f(﹣2)=﹣f(2),即可得答案.【详解】根据题意,当x>0时,f(x)=2x﹣1,则f(2)=22﹣1=3,又由函数f(x)为R上的奇函数,则f(﹣2)=﹣f(2)=﹣3;故选:B.【点睛】本题考查函数的奇偶性的性质,关键是灵活运用函数的奇偶性的性质.4.已知双曲线的右焦点与抛物线的焦点重合,则a等于()A. 1B. 2C. 3D.【答案】B【解析】【分析】先求出抛物线的焦点坐标,可得出双曲线的半焦距c的值,然后根据a、b、c的关系可求出a的值.【详解】抛物线y2=12x的焦点坐标为(3,0),所以,双曲线的焦点坐标为(±3,0),所以,a2+5=32=9,∵a>0,解得a=2,故选:B.【点睛】本题考查双曲线的性质,解决本题的关键在于对抛物线性质的理解,属于基础题.5.已知x,y满足不等式组则的最大值等于()A. B. C. D.【答案】D【分析】画出不等式组表示的平面区域,求出平面区域中各顶点的坐标,将各点坐标代入目标函数的解析式,分析后求得目标函数z=x+y的最大值.【详解】解:由不等式组表示的平面区域,如图所示的阴影部分;三个顶点坐标为A(1,2),B(1,1),C(3,3);将三个代入得z的值分别为3,2,6;∴直线z=x+y过点C(3,3)时,z取得最大值为6.故选:D.【点睛】本题考查了线性规划的应用问题,常用“角点法”解答,步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求得最优解.6.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒log a b<1,log a b<1⇒a>b,∴a>b是log a b<1的充分必要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为()A. 1B.C. 2D.【答案】B【解析】【分析】由三视图画出该四棱锥的直观图,结合图形求出此四棱锥的四个侧面中面积最小的侧面面积.【详解】解:由三视图画出该四棱锥的直观图,如图所示;在此四棱锥P﹣ABCD的四个侧面中,面积最小的侧面是Rt△PBC,它的面积为BC•PB1.故选:B.【点睛】本题考查了利用几何体的三视图求面积的应用问题,是基础题.8.设函数图象上不同两点,处的切线的斜率分别是,,规定(为线段的长度)叫做曲线在点与点之间的“弯曲度”,给出以下命题:①函数图象上两点与的横坐标分别为和,则;②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;③设,是抛物线上不同的两点,则;④设,是曲线(是自然对数的底数)上不同的两点,则.其中真命题的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由新定义,利用导数求出函数y=sin x、y=x2在点A与点B之间的“弯曲度”判断①、③正确;举例说明②是正确的;求出曲线y=e x上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,判断④错误.【详解】对于①,由y=sin x,得y′=cos x,则k A=cos1,k B=cos(﹣1)=cos1,则|k A﹣k B|=0,即φ(A,B)=0,①正确;对于②,如y=1时,y′=0,则φ(A,B)=0,②正确;对于③,抛物线y=x2的导数为y′=2x,y A=x A2,y B=x B2,∴y A﹣y B=x A2﹣x B2=(x A﹣x B)(x A+x B),则φ(A,B)2,③正确;对于④,由y=e x,得y′=e x,φ(A,B),由不同两点A(x1,y1),B(x2,y2),可得φ(A,B)1,∴④错误;综上所述,正确的命题序号是①②③.故选:C.【点睛】本题考查了命题真假的判断与应用问题,也考查了新定义的函数应用问题,解题的关键是对题意的理解.二、填空题.9.复数的共轭复数是____.【答案】【解析】【分析】先由复数代数形式的除法运算化简复数,再由共轭复数的定义可得答案.【详解】解:z,∴复数z的共轭复数是,故答案为:.【点睛】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题.10.设等比数列{a n}的公比,前n项和为,则_____.【答案】【解析】【分析】由等比数列的通项公式和求和公式,代入要求的式子化简可得.【详解】解:15.故答案是:15.【点睛】本题考查等比数列的通项公式和求和公式,属基础题.11.已知角的终边与单位圆的交点为,则______.【答案】【解析】【分析】由任意角的三角函数的定义有,sinα,由平方关系sin2α+cos2α=1,有:cosα=±,由二倍角公式有sin2α=2sinαcosα=±,得解【详解】解:由三角函数的定义有:sinα,由sin2α+cos2α=1,得:cosα=±,由二倍角公式得:sin2α=2sinαcosα=±,故答案为:.【点睛】本题考查了任意角的三角函数的定义及二倍角公式,属简单题12.的展开式中含的项的系数是______.【答案】【解析】【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.【详解】解:(x)6的展开式的通项公式为T r+1•(﹣1)r•x6﹣2r,令6﹣2r=2,求得r=2,故展开式中x2的系数为15,故答案为:15.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.13.直线(为参数)与曲线(为参数)的公共点个数为______【答案】【解析】【分析】化简参数方程为直角坐标方程,然后判断曲线交点个数.【详解】解:直线(t为参数)的直角坐标方程为:y x;与曲线(θ为参数)的直角坐标方程:(x﹣2)2+y2=1.圆的圆心(2,0)到直线y x的距离为:1;所以直线与圆相切,有1个交点.故答案为:1.【点睛】本题考查直线的参数方程,圆的参数方程的求法,考查计算能力.14.已知函数若关于的方程有且只有一个实数根,则实数k的取值范围是_____.【答案】【解析】【分析】作出f(x)的函数图象,由直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0,由△=0,解得k值,求出过(1,1)与(0,﹣2)两点的直线的斜率k,数形结合即可得到实数k的取值范围.【详解】作出y=f(x)与y=kx﹣2的函数图象如图所示:直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0.由△=k2﹣8=0,得k.又过(1,1)与(0,﹣2)两点的直线的斜率k=3.有图可知,若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k的取值范围为(0,3)∪{}.故答案为:(0,3)∪{}.【点睛】本题考查了方程解的个数与函数图象的关系,考查了数形结合的解题思想方法,属于中档题.三、解答题:解答应写出文字说明,演算步骤或证明过程.15.如图,在△ABC 中,,,,点D 在AC 边上,且.(Ⅰ)求BD 的长; (Ⅱ)求△BCD 的面积. 【答案】(Ⅰ)3 (Ⅱ)【解析】 【分析】(Ⅰ)运用正弦定理可解决此问题;(Ⅱ)运用余弦定理和三角形的面积可解决此问题.【详解】(Ⅰ)在中,因为,所以.由正弦定理,所以 .(Ⅱ)因为 , 所以.所以.在中,由余弦定理,得,解得或(舍).所以的面积【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.16.北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较和的方差和大小.(结论不需要证明)【答案】(Ⅰ)(Ⅱ)见解析;(Ⅲ).【解析】【分析】(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为个,事件A中基本事件数63.由此能求出两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为a元,b元.X的所有可能取值为6,7,8,9,10,分别求出相应的概率,由此能求出X的分布列.(Ⅲ)Dξ=Dη.【详解】(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为78个,事件A中基本事件数为78-15=63.所以两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为元,元.X的所有可能取值为6,7,8,9,10.,,,,.所以X的分布列为(Ⅲ).【点睛】本题考查概率、离散型随机变量的分布列、方差的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是中档题.17.如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【答案】(Ⅰ)见证明;(Ⅱ) (Ⅲ)见解析【解析】【分析】(Ⅰ)推导出AA1⊥CD,CD⊥AB,由此能证明CD⊥平面AA1B1B.(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则∃λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E.【详解】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以解得.这与矛盾.所以在线段上不存在点M,使平面.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查满足线面垂直的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查学生的计算能力,是中档题.18.已知椭圆:过点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.【答案】(Ⅰ) (Ⅱ) y=x-1【解析】【分析】(Ⅰ)由椭圆C:1(a>b>0)过点A(0,1),且椭圆的离心率为,列方程组求出a,b,由此能求出椭圆C的方程.(Ⅱ)设直线l的方程为y=x+m,P(3,y P),由,得4x2+6mx+3m2﹣3=0,利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l的方程.【详解】(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)设直线l的方程为y=x+m,由得.令,得.,.因为是以为顶角的等腰直角三角形,所以平行于轴.过做的垂线,则垂足为线段的中点.设点的坐标为,则.由方程组解得,即.而,所以直线的方程为y=x-1.【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、中点坐标公式等基础知识,考查运算求解能力、推理论证能力,是中档题.19.已知函数,其中.(Ⅰ)求的单调区间;(Ⅱ)设,若曲线,有公共点,且在点处的切线相同,求的最大值.【答案】(Ⅰ)的单调递增区间为,单调递减区间为;(Ⅱ)【解析】【分析】(Ⅰ)求出原函数的导函数,得到导函数的零点,由导函数的零点对函数定义域分段,再由导函数在不同区间段内的符号可得原函数的单调性;(Ⅱ)设点P的横坐标为x0(x0>0),由题意得,得到(a>0).设,利用导数求其最大值得答案.【详解】(Ⅰ)的定义域为..令,得.当时,;当时,.所以的单调递增区间为,单调递减区间为;(Ⅱ)设点的横坐标为,则,.因为,,所以,.由题意得由得或(舍).所以.设,则.令,得.当时,,单调递增;当时,,单调递减.所以在的最大值为,即的最大值为.【点睛】本题考查利用导数研究函数的单调性,考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想方法,考查计算能力,是中档题.20.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列的前项和为,等差数列1,3,5,7,…中所有不大于的项的和为.(Ⅰ)求和;(Ⅱ)判断和的大小,不用证明;(Ⅲ)设,求证:,,使得.【答案】(Ⅰ)11,36 (Ⅱ)见证明;(Ⅲ)见证明【解析】【分析】(Ⅰ)由题意直接求得p5和f(5);(Ⅱ)分别取n=1,2,3,4,5.求得S n和f(n),比较大小得结论;(Ⅲ)取值验证n≤4时,命题成立.当n≥5时,设k是使得k2≤S n成立的最大自然数,只需证(k+1)2<S n+1.可得1+3+5+…+(2k﹣1),f(n)=1+3+5+…+p n,结合(Ⅱ)可知,当n≥5时,S n<f(n),得到p n>2k﹣1,从而p n+1>2k+1.进一步得到.【详解】(Ⅰ),;(Ⅱ)当时,,,;当时,,,;当时,,,;当时,,,.所以当时,.当时,,,.不难看出,当时,.(Ⅲ)因为,,,,,所以当时,,使得;当时,,使得;当时,,使得;当时,,使得所以时,命题成立.当时,设是使得成立的最大自然数,只需证.因为,,由(Ⅱ)可知,当时,,所以,从而所以,即.综上可知,命题成立.【点睛】本题考查数列递推式,考查了数列的函数特性,考查逻辑思维能力与推理运算能力,是中档题.。
2018年北京各区一模理科数学分类汇编----立体几何(含答案)1.(朝阳)某四棱锥的三视图如图所示,则该四棱锥的体积等于D(A )34(B )23(C )12(D )13【答案】D【解析】本题考查三视图还原和锥体体积的计算 抠点法:在长方体1111ABCD A BC D -中抠点, 1.由正视图可知:11C D 上没有点; 2.由侧视图可知:11B C 上没有点; 3.由俯视图可知:1CC 上没有点;4.由正(俯)视图可知:,D E 处有点,由虚线可知,B F 处有点,A 点排除. 由上述可还原出四棱锥1A BEDF -,如右图所示,111BEDF S =⨯=四边形,1111133A BEDF V -=⨯⨯=.故选D .2. (朝阳)如图1,在矩形ABCD 中,2,4AB BC ==,E 为AD 的中点,O 为BE 的中点.将ABE !沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2).(Ⅰ)求证:A O CD '⊥;(Ⅱ)求直线A C '与平面A DE '所成角的正弦值;(Ⅲ)在线段A C '上是否存在点P ,使得//OP 平面A DE '?若存在,求出A PA C''的值;若不存在,请说明理由.【解析】(Ⅰ)如图,在矩形ABCD 中,2,4AB BC ==,E 为AD 中点,2AB AE ∴==,O 为BE 的中点,AO BE ∴⊥由题意可知,A O BE '⊥,平面A B E '⊥平面B C D E 平面A B E '平面B C D E B E =,A O '⊂平面A BE 'A O '∴⊥平面BCDECD ⊂平面BCDE ,A O CD '∴⊥(Ⅱ)取BC 中点为F ,连结OF 由矩形ABCD 性质,2,4AB BC ==,可知OF BE ⊥ 由(Ⅰ)可知,,A O BE A O OF ''⊥⊥以O 为原点,OA '为z 轴,OF 为x 轴,OE 为y 轴建立坐标系在Rt BAE !中,由2,2AB AE ==,则BE OA ==所以A E F'(0,B C DA C '=,(2,ED=,A E '=设平面A DE '的一个法向量为(,,)m xy z =则00m A E m ED ⎧'⋅=⎪⎨⋅=⎪⎩,00-=+=令1y z ==,则1x =-所以(1,1,1)m =- 设直线A C '与平面A DE '所成角为θ,2sin cos ,3A C m A C m A C mθ'⋅'=<>=='⋅ 所以直线A C '与平面A DE '所成角的正弦值为3. (Ⅲ)假设在线段A C '上存在点P,满足//OP 平面ADE ',设(01)A P A C λλ''=≤≤由A C '=,,所以,)A P '=)P -,)OP=-若//OP 平面A D E ',则0m OP ⋅=,所以0-++=,解得1[0,1]2λ=∈,所以12A P A C '='.3. (石景山)若某多面体的三视图(单位:cm )如图所示,则此多面体的体积是( )AA.378cmB. 323cmC. 356cmD.312cm4.(石景山) 如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,EB //PA ,4AB PA ==,2EB =,F 为PD 的中点.(Ⅰ)求证:AF PC ⊥; (Ⅱ)求证:BD //平面PEC ; (Ⅲ)求二面角DPC E --的大小.B(Ⅰ)证明:依题意,PA ⊥平面ABCD .如图,以A 为原点,分别以AD 、AB 、AP 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. ……2分依题意,可得(0,0,0)A ,(0,4,0)B ,(4,4,0)C ,(4,0,0)D ,(0,0,4)P ,(0,4,2)E ,(2,0,2)F . 因为(2,0,2)AF =,(4,4,4)PC =-,所以80(8)0AF PC ⋅=++-=. ……5分所以AF PC ⊥(Ⅱ)证明:取PC 的中点M ,连接EM .因为(2,2,2)M ,(2,2,0)EM =-,(4,BD =-所以2BD EM =,所以//BD EM .分又因为EM ⊂平面PEC ,BD ⊄平面PEC ,所以//BD 平面PEC . ……9分 (Ⅲ)解:因为AF PD ⊥,AF PC ⊥,PD PC P =,所以AF ⊥平面PCD ,故(2,0,2)AF =为平面PCD 的一个法向量.……10分 设平面PCE 的法向量为(,,)n x y z =, 因为(4,4,4)PC =-,(0,4,2)PE =-,所以0,0,n PC n PE ⎧⋅=⎪⎨⋅=⎪⎩即4440,420,x y z y z +-=⎧⎨-=⎩令1y =-,得1x =-,2z =-,故(1,1,2)n =---. ……12分所以cos ,AF n <>== ……13分 所以二面角D PC E --的大小为5π6. ……14分5.(西城) 正三棱柱的三视图如图所示,该正三棱柱的表面积是D (A) (B(C)6+ (D)6+6.(西城).如图,在长方体1111ABCD A B C D -中,12AA AB ==,1BC =,点P 在侧面11A ABB 上.若点P 到直线1AA 和CD 的距离相等, 则1A P 的最小值是____.7. 如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE的中点,AB AC ==4BC =.将△ADE 沿DE 折起到△1A DE 的位置,使得平面1A DE ⊥平面BCED ,如图2.(Ⅰ)求证:1AO BD ⊥;(Ⅱ)求直线1A C 和平面1A BD 所成角的正弦值;(Ⅲ)线段1A C 上是否存在点F ,使得直线DF 和BC?若存在,求出11A FA C的值;若不存在,说明理由.图1 图2解:(Ⅰ)因为 在△ABC 中,D ,E 分别为AB ,AC 的中点, 所以 //DE BC ,AD AE =.所以 11A D A E =,又O 为DE 的中点,所以 1AO DE ⊥. [ 1分]因为 平面1A DE ⊥平面BCED ,且1AO ⊂平面1A DE ,所以 1AO ⊥平面BCED , [ 3分]所以 1AO BD ⊥. [ 4分] (Ⅱ)取BC 的中点G ,连接OG ,所以 OE OG ⊥. 由(Ⅰ)得 1A O OE ⊥,1A O OG ⊥.如图建立空间直角坐标系O xyz -. [ 5分]由题意得,1(0,0,2)A ,(2,2,0)B -,(2,2,0)C ,(0,1,0)D -. 所以 1(2,2,2)A B −−→=--,1(0,1,2)A D −−→=--,1(2,2,2)A C −−→=-. 设平面1A BD 的法向量为(,,)x y z =n ,则 110,0,A B A D −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即 2220,20.x y z y z --=⎧⎨--=⎩令1x =,则2y =,1z =-,所以 (1,2,1)=-n . [ 7分] 设直线1A C 和平面1A BD 所成的角为θ, 则111||sin |cos ,|||||A C A C A C θ−−→−−→−−→⋅=〈〉=n n n 所以 直线1A C 和平面1A BD. [ 9分] (Ⅲ)线段1A C 上存在点F 适合题意.设 11A F AC λ−−→−−→=,其中[0,1]λ∈. [10分] 设 111(,,)F x y z ,则有111(,,2)(2,2,2)x y z λλλ-=-, 所以 1112,2,22x y z λλλ===-,从而 (2,2,22)F λλλ-, 所以 (2,21,22)DF λλλ−−→=+-,又(0,4,0)BC −−→=, 所以|||cos ,|||||DF BC DF BC DF BC −−→−−→−−→−−→−−→−−→⋅〈〉==[12分]令, 整理得 23720λλ-+=. [13分] 解得 13λ=,舍去2λ=.所以 线段1A C 上存在点F 适合题意,且1113A F A C =. [14分]8. (延庆)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为 D(A(B(C ) 2 (D9. (延庆)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,点,G F 分别是线段,BE DC 的中点.(Ⅰ)求证://GF 平面ADE ; (Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值;(Ⅲ)在线段CD 上是否存在一点M ,使得DE AM ⊥,若存在,求DM 的长,若不存在,请说明理由.(Ⅰ)如图,取AE 的中点H ,连接,HG HD ,又G 是BE 的中点, 所以 //GH AB ,且12GH AB =………1分 又F 是CD 中点,所以12DF CD =, 由四边形ABCD 是矩形得,AB CD =, //AB CD , ………2分 所以GH DF =, //GH DF ,从而四边形HGFD 是平行四边形,//GF DH , ………3分正(主)视图侧(左)视图俯 视(7题图)又D H ⊂平面ADE ,GF ⊄平面ADE 所以//GF 平面ADE ………4分 法一:(Ⅱ)如图,在平面BEC 内,过点B 作//BQ EC,因为所以A B B ⊥,,BE EC BQ BE ⊥∴⊥又因为AB ⊥平面BEC ,AB BQ ⊥ 以B 为原点,分别以的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…5分 则(0,0,2)A (0,0,0)B (2,0,0)E (2,2,1).F ………6分因为AB ⊥平面BEC ,所以为平面BEC 的法向量,………7分 设为平面AEF 的法向量,又由2200220,0,得x z n AE x y z n AF ⎧-=⋅=⎧⎨⎨+-=⋅=⎩⎩取得. ………9分从而42cos ,323n BA n BA n BA⋅===⨯⋅………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,2,)a . ………11分 因为(0,0,2)A (2,0,0)E (2,2,2).D所以(0,2,2)DE =--,(2,2,2)AM a =- ………12分 因为D E AM ⊥,0DE AM ⋅=所以0a = .………13分 所以2D M = ………14分法二:(Ⅱ)以E 点为原点,EC 所在直线为x 轴,EB 所在直线为y 轴,过E 做垂直平面BEC 的直线为z 轴,建立空间直角坐标系,则(0,0,0)E ,(0,2,2)A ,(2,0,1)F(2,0,2)D ,1(0,0,1)n 为平面BEC 的法向量, ………7分设2(,,)n x y z 为平面AEF 的法向量,又()()0,2,2,2,0,1EA EF,,BE BQ BA A=(B 0,0,2)(x,y,z)n =AE (2,0,-2)AF=(2,2,-1)=,2z ==(2,-1,2)n 23由2200n EA n EF ⎧⋅=⎪⎨⋅=⎪⎩得22020y z x z +=⎧⎨+=⎩取得2(-1,-2,2)n ………9分从而12121222cos ,133n n n n n n ⋅===⨯⋅ ………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,0,)a . ………11分 因为(0,2,2)A (0,0,0)E (2,0,2)D所以(-2,0,2)DE =-,(2,-2,2)AM a =- ………12分 因为D E AM ⊥,0DE AM ⋅=所以0a = .………13分 所以2D M =………14分10.(东城) 某几何体的三视图如图所示,该几何体的表面积为____________.12+11. (东城)如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将PAD ,PBC 沿PA ,PB 所在直线折叠,使点C 与点D 重合于点O ,如图2. 在三棱锥P OAB -中,E 为PB 的中点.(Ⅰ)求证:PO AB ⊥;(Ⅱ)求直线PB与平面POA 所成角的正弦值; (Ⅲ)求二面角P AO E --的大小.2z =23图1 图2 证明:(Ⅰ)在正方形ABCD 中,P 为CD 中点,PD AD ⊥,PC BC ⊥, 所以在三棱锥P OAB -中,PO OA ⊥,PO OB ⊥. 因为OA OB O =,所以PO ⊥平面OAB .因为AB ⊂平面OAB ,所以PO AB ⊥. ……………………4分 (Ⅱ)取AB 中点F ,连接OF ,取AO 中点M ,连接BM . 过点O 作AB 的平行线OG .因为PO ⊥平面OAB ,所以PO ⊥OF ,PO ⊥OG . 因为OA =OB ,F 为AB 的中点, 所以OF ⊥AB . 所以OF ⊥OG .如图所示,建立空间直角坐标系O -xyz .A ()1,3,0,B ()-1,3,0,P ()0,0,1,M (12,32,0).因为BO =BA ,M 为OA 的中点,所以BM ⊥OA .因为PO ⊥平面OAB ,PO ⊂平面POA ,所以平面POA ⊥平面OAB . 因为平面POA ∩平面OAB =OA ,BM ⊂平面OAB , 所以BM ⊥平面POA .因为BM uuu r =(32,-32,0).所以平面POA 的法向量m =()3,-1,0.BP uur=(1,-3,1).设直线BP 与平面POA 所成角为α,则sin cos 5BP BP BPa ×=<>==uu r uu ruu r m m,m . 所以直线BP 与平面POA 所成角的正弦值为155. ………………10分 (Ⅲ)由(Ⅱ)知1122E ⎛⎫- ⎪ ⎪⎝⎭,1122OE ⎛⎫=- ⎪ ⎪⎝⎭,()OA =. 设平面OAE 的法向量为n ,则有 0,0.OA OE ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x z ⎧=⎪⎨-+=⎪⎩令1y =-,则xz =即=-n .所以21cos ,242⋅===⋅⨯m n m n m n .由题知二面角P -AO -E 为锐角,所以它的大小为3p. ……………………………14分 12. (房山)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为D(A)(B)(C)(D)13.(房山)如图,四棱锥ABCD P -中,△PAD 是以AD 为斜边的等腰直角三角形,2==CD PD ,PC =2,BC //=AD 21,AD CD ⊥. (Ⅰ)求证:⊥CD 平面PAD ;(Ⅱ)若E 为PD 中点,求CE 与面PBC 所成角的正弦值; (Ⅲ)由顶点C 沿棱锥侧面经过棱PD 到顶点A 的最短路线与PD 的交点记为F .求该最短路线的长及FDPF的值. 证明:证明:(Ⅰ) 由题,222PD PC CD =+∴ PD ⊥CDD AD PD D =⊥ ,A CDP A D CD 面⊥∴ …………5分 (Ⅱ)法1:由(Ⅰ)知OB OD OB PO OD PO ⊥⊥⊥,.,∴以点O 为坐标原点建立空间直角坐标系O-xyz,如图所示C (0,1,2)P(0,0,1), D(0,1,0) B(0,0,2) E(0,21,21))21,21,2(--=,)0,1,0(),1,0,2(=-=BC PBPAB CDE设面PBC 的法向量),,(z y x =)2,0,1(0,2,1x ,02{002{{=∴=====⇒==-⇒⋅⋅y z y x z y z x 则令 设CE 与面PBC 所成角为θ1515|,cos |sin =><=∴n CE θ…………10分(Ⅱ)法2:以点D 为坐标原点建立空间直角坐标系D-xyz,如图所示 C (0,2,0)P(-1,0,1), D(0,0,0) B(0,2,1-) E(21-,0,21) )212,21(,--=,)0,0,1(),12,0(=-=,设面PBC 的法向量),,(z y x =)2,1,0(0,2,1y ,02{002{{=∴=====⇒==-⇒⋅⋅y z y x z x z y 则令 设CE 与面PBC 所成角为θ1515|cos |sin =><=∴CE θ…………10分法3:以点A 为坐标原点建立空间直角坐标系A-xyz,如图所示C (0,2,2)P(0,1,1), D(0,2,0) B(0,1,2) E(0,23,21))21,21,2(--=CE ,)0,1,0(),1,0,2(=-=设面PBC 的法向量),,(z y x n =)2,0,1(0,2,1x ,02{002{{=∴=====⇒==-⇒⋅⋅n y z y x z y z x 则令 设CE 与面PBC 所成角为θ1515|cos |sin =><=∴CE θ…………10分(Ⅲ)为等腰直角三角形面PDC PD CD PD ∆∴⊥∴⊂PAD将侧面PCD 绕着PD 旋转,使其与侧面PAD 共面,点C 运动到C ’,连接AC ’交PD 于E , 则AC ’为最短路线090'=∠=∠PDC APD为平行四边形四边形P ADC '//'∴=∴DC AP 的中点,为C A PD '∴E10210222,122==+=='=∴PE AP AE C A ED PE…………14分 14.(丰台) 某三棱锥的三视图如图所示,则该三棱锥的体积为 A(A)23(B)43 (C) 2 (D)8315.(丰台) 如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,AB BC ⊥,AD BC ∥,3AD =,22PA BCAB===,PB =(Ⅰ)求证:BC PB ⊥;(Ⅱ)求二面角P CD A --的余弦值;(Ⅲ)若点E 在棱PA 上,且BE ∥平面PCD ,求线段BE 的长. (Ⅰ)证明:因为平面PAB ⊥平面ABCD ,且平面PAB 平面=ABCD AB ,因为BC ⊥AB ,且BC ⊂平面ABCD所以BC ⊥平面PAB . ……………………3分 因为PB ⊂平面PAB ,所以BC ⊥PB . ……………………4分(Ⅱ)解:在△PAB 中,因为=2PA ,=PB =1AB ,所以222=+PA AB PB ,所以PB ⊥AB . ……………………5分 所以,建立空间直角坐标系B xyz -,如图所示. 所以(1,0,0)A -,(0,0,0)B ,(0,2,0)C ,(1,3,0)D -,P ,正视图侧视图俯视图(1,1,0)CD =-,(0,2,PC =.易知平面ABCD 的一个法向量为=(0,0,1)n . ……………………6分 设平面PCD 的一个法向量为=(,,)x y z m ,则00CD PC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即2x y y =⎧⎪⎨=⎪⎩,令=2z,则=m . ……………………8分 设二面角P CD A --的平面角为α,可知α为锐角,则cos cos ,5α⋅=<>===⋅n m n m n m , 即二面角P CD A --的余弦值为5. ……………………10分 (Ⅲ)解:因为点E 在棱PA ,所以AE AP λ=,[0,1]λ∈. ……………………11分因为=1AP (,所以=)AE λ(,(1)BE BA AE λ=+=-. ……………………12分 又因为//BE 平面PCD ,m 为平面PCD 的一个法向量, 所以0BE ⋅=m1)20λλ-+=,所以1=3λ. ……………………13分所以2(3BE =-,所以7==BE BE . ……………………14分 16.(海淀) 如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是D(A) 1(B)65(C)43(D)3217.(海淀)已知三棱锥P -ABC (如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形.在三棱锥P -ABC 中: (Ⅰ)证明:平面P AC ⊥平面ABC ;(Ⅱ)求二面角A -PC -B 的余弦值; (Ⅲ)若点M 在棱PC 上,满足CM CP =λ,1233,⎡⎤λ∈⎢⎥⎣⎦,点N 在棱BP 上,且BM AN ⊥,求BN BP 的取值范围.解:(Ⅰ)方法1:OPCA设AC 的中点为O ,连接BO ,PO . 由题意PA PB PC ===1PO =,1AO BO CO ===因为 在PAC ∆中,PA PC =,O 为AC 的中点所以 PO AC ⊥, ······································································· 1分 因为 在POB ∆中,1PO =,1OB =,PB =所以 PO OB ⊥ ·········································································· 2分 因为 ACOB O =,,AC OB ⊂平面ABC ···································· 3分所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分 所以 平面PAC ⊥平面ABC 方法2:(图1)CAECOPCA设AC 的中点为O ,连接BO ,PO .因为 在PAC ∆中,PA PC =,O 为AC 的中点所以 PO AC ⊥, ······································································· 1分 因为 PA PB PC ==,PO PO PO ==,AO BO CO ==所以 POA ∆≌POB ∆≌POC ∆ 所以 90POA POB POC ∠=∠=∠=︒所以 PO OB ⊥ ·········································································· 2分 因为 ACOB O =,,AC OB ⊂平面ABC ····································· 3分所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分 所以 平面PAC ⊥平面ABC 方法3:OPCA BQ设AC 的中点为O ,连接PO ,因为 在PAC ∆中,PA PC =,所以 PO AC ⊥ ·········································································· 1分 设AB 的中点Q , 连接PQ ,OQ 及OB . 因为 在OAB ∆中,OA OB =,Q 为AB 的中点 所以 OQ AB ⊥.因为 在PAB ∆中,PA PB =,Q 为AB 的中点 所以 PQ AB ⊥. 因为 PQOQ Q =,,PQ OQ ⊂平面OPQ所以 AB ⊥平面OPQ 因为 PO ⊂平面OPQ所以 PO AB ⊥ ·········································································· 2分 因为 ABAC A =,,AB AC ⊂平面ABC ····································· 3分所以 PO ⊥平面ABC因为 PO ⊂平面PAC ································································· 4分 所以 平面PAC ⊥平面ABC 法4:OPCA设AC 的中点为O ,连接BO ,PO .因为 在PAC ∆中,PA PC =,O 为AC 的中点所以 PO AC ⊥, ······································································· 1分 因为 在ABC ∆中,BA BC =,O 为AC 的中点所以 BO AC ⊥, ······································································· 2分 因为 POBO O =,PO ⊂平面PAC ,BO ⊂平面ABC ,所以∠POB 为二面角P -AC -B 的平面角。
2018年北京市通州区高考模拟考试数学(理)试卷4的右分支有公共点P,则P的坐标为(,)。
11.已知函数f(x)=ln(x2-6x+13),则f(x)的定义域为(,)。
12.若A、B、C为三角形ABC的三个内角,则___=()。
13.已知向量a=(1,2,3),b=(4,5,6),则向量a×b的模长为()。
14.已知函数f(x)=x3-3x2+2x+1,g(x)=e2x,则f(g(x))的解析式为()。
三、解答题(共4小题,每小题20分,共80分.)15.(20分)已知函数f(x)=x3-3x2+2x+1,求f(x)的单调区间及极值。
16.(20分)已知函数f(x)=x2+px+q,其中p、q为常数,若f(x)的图象过点(-1,0)、(1,0)、(2,3),求p、q的值。
17.(20分)已知三角形ABC,AB=AC,D为BC中点,E为AD的中点,连接BE、CE,交AC、AB于点F、G,如图所示。
证明:FG=BC。
18.(20分)已知函数f(x)=x3-3x2+2x+1,g(x)=e2x,h(x)=f(g(x)),求h(x)的单调区间及极值。
1.若双曲线的右顶点与a>相重合,则离心率e=a2/11.2.已知等差数列{an}中,a1=2,a2+a6+a10=36,则数列{an}的前6项和为a1+a2+。
+a6=(a1+a6)+(a2+a5)+(a3+a4)=2(a1+a6)+(a2+a5)+(a3+a4)=2(a1+a10)+(a2+a9)+(a3+a8)=2(36-a4-a5)+(a2+a9)+(a3+a8)=2(36-a4-a5)+2(a2+a8)=2(36-a4-a5)+2[2a2+(4-1)d]=2(36-a4-a5)+4(2+d),其中d为公差。
3.直线x=2+t(t为参数)与曲线y=-1-t(α为参数)交于A,B两点,则AB的长度为√[(x2-x1)2+(y2-y1)2]=√[(t-α)2+1]。
高三数学(理科)一模考试参考答案2018.4二、填空题9.1- 10.11. 4,221n n n ---12. 24 13. ②③ 14. 0,0三、解答题15. 解:(Ⅰ)因为()2sin cos 222x x x f x π⎛⎫=-+ ⎪⎝⎭2sin cos 222x x x +=1si n 2x x =sin +3x π⎛⎫= ⎪⎝⎭. …………………… 4分所以()f x 的最小正周期2.T π=…………………… 6分(Ⅱ)因为[],0x π∈-,所以2+,333x πππ⎡⎤∈-⎢⎥⎣⎦.所以当33x ππ+=,即0x =时,函数)(x f 取得最大值sin+32π=当32x ππ+=-,即56x π=-时,函数)(x f 取得最小值1+2-所以()f x 在区间[],0π--……………… 13分16. 解:(Ⅰ)…………………… 4分(Ⅱ)依题意,X 的可能取值为0,1,2. …………………… 5分24272(0)7C P X C ===,1134274(1)7C C P X C ===,23271(2)7C P X C ===. ……………… 8分所以X 的分布列为…………………… 9分所以X 的数学期望()2416012.7777E X =⨯+⨯+⨯=…………………… 10分 (Ⅲ)0x <x . …………………… 13分 17. 解:(Ⅰ)因为//PQ CD ,PQ CD =,所以四边形PQCD 是平行四边形. 所以//.PD QC因为PD ⊄平面QBC ,QC ⊂平面QBC , 所以//PD 平面.QBC…………………… 4分(Ⅱ)取AD 的中点为O , 因为PA PD =,所以.OP AD ⊥因为平面PAD ⊥平面ABCD ,OP ⊂平面PAD ,所以OP ⊥平面.ABCD …………………… 5分 以点O 为坐标原点,分别以直线OD ,OP 为y 轴,z 轴建立空间直角坐标系Oxyz ,则x 轴在平面ABCD 内.图二(%)201725.020.015.010.05.00.0(亿元)2011-2017年全社会固定资产投资及增长率201620152014201320122011因为90APD ∠=︒,2AB AD ===,1PQ CD ==, 所以(),,A -010,(),,B -210,(),,C 110,(),,Q 101,所以()1,1,1BQ =-,()0,1,1CQ =-. …………………… 7分设平面QBC 的法向量为(),,n x y z =,所以,,n BQ n CQ ⎧⋅=⎪⎨⋅=⎪⎩00 即,.x y z y z -++=⎧⎨-+=⎩00所以,.x y z y z =+⎧⎨=⎩令1z =,则1y =,2x =.所以()2,1,1n =. …………………… 8分 设平面ABCD 的法向量为()0,0,1m =,所以cos ,6n m == 又因为二面角Q BC A --为锐角,所以二面角Q BC A --…………………… 10分 (Ⅲ)存在. 设点(),,M a b c ,QM QBλ=,[]01.λ∈,所以()1,,1QMa b c =--,()1,1,1.QB =--所以+1a λ=, b λ=-, +1c λ=-. 所以点(),,.M λλλ+--+11所以(),,.AMλλλ=+-+-+111又平面QBC 的法向量为()2,1,1n =,AM ⊥平面QBC ,所以.λλ+-+=1121所以.λ=13所以在线段QB 上存在点M ,使AM ⊥平面QBC ,且QM QB的值是.13…………… 14分18. 解:(Ⅰ)设函数()()().xxF x f x g x xe ae a =-=-+当1=a 时,()1x x F x xe e =-+,所以'()xF x xe =.所以)0(,-∞∈x 时,'()0F x <;)0(∞+∈,x 时,'()0F x >. 所以()F x 在)0(,-∞上单调递减,在)0(∞+,上单调递增. 所以当0=x 时,()F x 取得最小值(0)0F =.所以()0F x ≥,即)()(x g x f ≥. …………………… 4分 (Ⅱ)当1>a 时,'()(1)xF x x a e =-+, 令'()0F x >,即(1)0xx a e -+>,解得1x a >-; 令'()0F x <,即(1)0x x a e -+<,解得 1.x a <-所以()F x 在(1)a -∞-,上单调递减,在(1)a -+∞,上单调递增. 所以当1-=a x 时,()F x 取得极小值,即1(1)a F a a e --=-. …………………… 6分令1()a h a a e-=-,则1'()1a h a e-=-.因为1>a ,所以'()0h a <. 所以()h a 在(1,)+∞上单调递减. 所以()(1)0h a h <<. 所以(1)0F a -<.又因为()0F a a =>,所以()F x 在区间),1(a a -上存在一个零点.所以在),1[+∞-a 上存在唯一的零点. …………………… 10分 又因为()F x 在区间)1,(--∞a 上单调递减,且(0)0F =,所以()F x 在区间)1,(--∞a 上存在唯一的零点0. …………………… 12分 所以函数)(x h 有且仅有两个零点,即使)()(x g x f =成立的x 的个数是两个.…………………… 13分19. 解:(Ⅰ)因为椭圆的焦点在x 轴上,2AB =,离心率e =所以1b =,2c a = 所以由222a b c =+,得2 4.a = 所以椭圆C 的标准方程是22 1.4x y += …………………… 3分 (Ⅱ)设点P 的坐标为()00,x y ,所以Q 的坐标为()00,x y -. 因为M ,N 分别是OP ,BP 的中点, 所以M 点的坐标为00,22x y ⎛⎫⎪⎝⎭,N 点的坐标为001,22x y -⎛⎫⎪⎝⎭. …………………… 4分所以直线AD 的方程为0021y y x x -=+. …………………… 6分 代入椭圆方程2214x y +=中,整理得()()222000042820.x y x x y x ⎡⎤+-+-=⎣⎦ 所以0x =,或()()()0000220008222=.5442x y x y x y x y --=-+-所以()2000000002222431.5454x y y y y y x y y ---+-=⋅+=--所以D 的坐标为()200000022243,5454x y y y y y -⎛⎫-+- ⎪--⎝⎭. …………………… 10分所以000000112.32QNy y y k x x x --+==-+ 又()20000000000243541.22354QD y y y y y k x y x x y -+---+==--+-所以D ,N ,Q 三点共线. …………………… 13分20.解:(Ⅰ)因为+12+1n n n a a a +∆=-,1n n n a a a +∆=-,所以+12+12n n n n n a a a a a +∆-∆=+-22n n n a q a a q =+-()()22121.n n a q q a q =+-=-因为01>a ,公比0>q ,且1≠q , 所以0n a >,()210.q -> 所以()210.n a q ->所以等比数列{}n a 为凸数列. …………………… 3分 (Ⅱ)因为数列}{n a 为凸数列,所以11=m m m m a a a a ++--,211m m m m a a a a +++-≥-,321m m m m a a a a +++-≥-,…,11.m n m m n m m m a a a a +-+--+-≥-叠加得()1()n m m m a a n m a a +-≥--. 所以1.n mm m a a a a n m+-≥--同理可证1.m km m a a a a m k+-≤-- 综上所述,1n m m k m m a a a aa a n m m k+--≥-≥--. …………………… 7分因为n m m k a a a a n m m k--≥--,所以()()()().n m m k m k a k m a n m a m n a -+-≥-+-所以()()().n k m m k a n m a n k a -+-≥-令1k =,()()11()1.n m m a n m a n a -+-≥- 所以11.11m n m n m a a a n n --⎛⎫≤+ ⎪--⎝⎭若1n a a ≤,则111()().1111m n n n n m n m m n ma a a a a a n n n n ----≤+≤+=---- 若1n a a ≥,则111111()().1111m n m n m m n ma a a a a a n n n n ----≤+≤+=---- 所以{}1max ,.m n a a a ≤…………………… 10分(Ⅲ)设p a 为凸数列}{n a 中任意一项, 由(Ⅱ)可知,1max{,}.p n t a a a a ≤≤再由(Ⅱ)可知,对任意的1p m n ≤<<均有1m p n mm m a a a a a a n m m p+--≥-≥--,(1)当1p t n ≤<<时,t pn t a a a a n t t p--≥--. 又因为n t a a ≤,所以0.t pn t a a a a n t t p--≥≥--所以.p t a a ≥(2)当1t p n <<≤时,11p t t a a a a p t t --≥--. 又因为1t a a ≤,所以10.1p t t a a a a p tt --≥≥--所以.p t a a ≥ (3)当p t =时,.p t a a = 所以.p t a a ≥ 综上所述,.p t a a =所以12n a a a ===. …………………… 14分。
通州区2018-2019学年第一学期高三年级期末考试数学(理科)试卷2019年1月第一部分(选择题)一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【详解】∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点睛】本题考查的知识点是集合的交集及其运算,属于基础题.2.设向量,,则与垂直的向量的坐标可以是()A. B. C. D.【答案】C【解析】【分析】求出,判断哪个选项的向量与(﹣3,2)的数量积是0即可得出答案.【详解】;可看出(4,6)•(﹣3,2)=0;∴.故选:C.【点睛】本题考查向量坐标的加法和数量积运算,以及向量垂直的充要条件.3.已知是定义在R上的奇函数,且当时,,则等于()A. B. C. D.【答案】B【解析】【分析】根据题意,由函数的解析式计算可得f(2)的值,又由函数为奇函数,可得f(﹣2)=﹣f(2),即可得答案.【详解】根据题意,当x>0时,f(x)=2x﹣1,则f(2)=22﹣1=3,又由函数f(x)为R上的奇函数,则f(﹣2)=﹣f(2)=﹣3;故选:B.【点睛】本题考查函数的奇偶性的性质,关键是灵活运用函数的奇偶性的性质.4.已知双曲线的右焦点与抛物线的焦点重合,则a等于()A. 1B. 2C. 3D.【答案】B【解析】【分析】先求出抛物线的焦点坐标,可得出双曲线的半焦距c的值,然后根据a、b、c的关系可求出a的值.【详解】抛物线y2=12x的焦点坐标为(3,0),所以,双曲线的焦点坐标为(±3,0),所以,a2+5=32=9,∵a>0,解得a=2,故选:B.【点睛】本题考查双曲线的性质,解决本题的关键在于对抛物线性质的理解,属于基础题.5.已知x,y满足不等式组则的最大值等于()A. B. C. D.【答案】D【解析】【分析】画出不等式组表示的平面区域,求出平面区域中各顶点的坐标,将各点坐标代入目标函数的解析式,分析后求得目标函数z=x+y的最大值.【详解】解:由不等式组表示的平面区域,如图所示的阴影部分;三个顶点坐标为A(1,2),B(1,1),C(3,3);将三个代入得z的值分别为3,2,6;∴直线z=x+y过点C(3,3)时,z取得最大值为6.故选:D.【点睛】本题考查了线性规划的应用问题,常用“角点法”解答,步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求得最优解.6.设,则“ ”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒log a b<1,log a b<1⇒a>b,∴a>b是log a b<1的充分必要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为()A. 1B.C. 2D.【答案】B【解析】【分析】由三视图画出该四棱锥的直观图,结合图形求出此四棱锥的四个侧面中面积最小的侧面面积.【详解】解:由三视图画出该四棱锥的直观图,如图所示;在此四棱锥P﹣ABCD的四个侧面中,面积最小的侧面是Rt△PBC,它的面积为BC•PB1.故选:B.【点睛】本题考查了利用几何体的三视图求面积的应用问题,是基础题.8.设函数图象上不同两点,处的切线的斜率分别是,,规定(为线段的长度)叫做曲线在点与点之间的“弯曲度”,给出以下命题:①函数图象上两点与的横坐标分别为和,则;②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;③设,是抛物线上不同的两点,则;④设,是曲线(是自然对数的底数)上不同的两点,则.其中真命题的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由新定义,利用导数求出函数y=sin x、y=x2在点A与点B之间的“弯曲度”判断①、③正确;举例说明②是正确的;求出曲线y=e x上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,判断④错误.【详解】对于①,由y=sin x,得y′=cos x,则k A=cos1,k B=cos(﹣1)=cos1,则|k A﹣k B|=0,即φ(A,B)=0,①正确;对于②,如y=1时,y′=0,则φ(A,B)=0,②正确;对于③,抛物线y=x2的导数为y′=2x,y A=x A2,y B=x B2,∴y A﹣y B=x A2﹣x B2=(x A﹣x B)(x A+x B),则φ(A,B)2,③正确;对于④,由y=e x,得y′=e x,φ(A,B),由不同两点A(x1,y1),B(x2,y2),可得φ(A,B)1,∴④错误;综上所述,正确的命题序号是①②③.故选:C.【点睛】本题考查了命题真假的判断与应用问题,也考查了新定义的函数应用问题,解题的关键是对题意的理解.二、填空题.9.复数的共轭复数是____.【答案】【解析】【分析】先由复数代数形式的除法运算化简复数,再由共轭复数的定义可得答案.【详解】解:z,∴复数z的共轭复数是,故答案为:.【点睛】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题.10.设等比数列{a n}的公比,前n项和为,则_____.【答案】【解析】【分析】由等比数列的通项公式和求和公式,代入要求的式子化简可得.【详解】解:15.故答案是:15.【点睛】本题考查等比数列的通项公式和求和公式,属基础题.11.已知角的终边与单位圆的交点为,则______.【答案】【解析】【分析】由任意角的三角函数的定义有,sinα,由平方关系sin2α+cos2α=1,有:cosα=±,由二倍角公式有sin2α=2sinαcosα=±,得解【详解】解:由三角函数的定义有:sinα,由sin2α+cos2α=1,得:cosα=±,由二倍角公式得:sin2α=2sinαcosα=±,故答案为:.【点睛】本题考查了任意角的三角函数的定义及二倍角公式,属简单题12.的展开式中含的项的系数是______.【答案】【解析】【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.【详解】解:(x)6的展开式的通项公式为T r+1•(﹣1)r•x6﹣2r,令6﹣2r=2,求得r=2,故展开式中x2的系数为15,故答案为:15.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.13.直线(为参数)与曲线(为参数)的公共点个数为______【答案】【解析】【分析】化简参数方程为直角坐标方程,然后判断曲线交点个数.【详解】解:直线(t为参数)的直角坐标方程为:y x;与曲线(θ为参数)的直角坐标方程:(x﹣2)2+y2=1.圆的圆心(2,0)到直线y x的距离为:1;所以直线与圆相切,有1个交点.故答案为:1.【点睛】本题考查直线的参数方程,圆的参数方程的求法,考查计算能力.14.已知函数若关于的方程有且只有一个实数根,则实数k的取值范围是_____.【答案】【解析】【分析】作出f(x)的函数图象,由直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0,由△=0,解得k 值,求出过(1,1)与(0,﹣2)两点的直线的斜率k,数形结合即可得到实数k的取值范围.【详解】作出y=f(x)与y=kx﹣2的函数图象如图所示:直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0.由△=k2﹣8=0,得k.又过(1,1)与(0,﹣2)两点的直线的斜率k=3.有图可知,若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k的取值范围为(0,3)∪{}.故答案为:(0,3)∪{}.【点睛】本题考查了方程解的个数与函数图象的关系,考查了数形结合的解题思想方法,属于中档题.三、解答题:解答应写出文字说明,演算步骤或证明过程.15.如图,在△ABC中,,,,点D在AC边上,且.(Ⅰ)求BD的长;(Ⅱ)求△BCD的面积.【答案】(Ⅰ)3 (Ⅱ)【解析】【分析】(Ⅰ)运用正弦定理可解决此问题;(Ⅱ)运用余弦定理和三角形的面积可解决此问题.【详解】(Ⅰ)在中,因为,所以.由正弦定理,所以.(Ⅱ)因为,所以.所以.在中,由余弦定理,得,解得或(舍).所以的面积【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.16.北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:四惠333344455555四惠东33344455555高碑店3334444555传媒大学333444455双桥33344444管庄3333444八里桥333344通州北苑33333果园3333九棵树333梨园33临河里3土桥四惠四惠东高碑店传媒大学双桥管庄八里桥通州北苑果园九棵树梨园临河里土桥(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较和的方差和大小.(结论不需要证明)【答案】(Ⅰ)(Ⅱ)见解析;(Ⅲ).【解析】【分析】(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为个,事件A中基本事件数63.由此能求出两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为a元,b元.X的所有可能取值为6,7,8,9,10,分别求出相应的概率,由此能求出X的分布列.(Ⅲ)Dξ=Dη.【详解】(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为78个,事件A中基本事件数为78-15=63.所以两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为元,元.X的所有可能取值为6,7,8,9,10.,,,,.所以X的分布列为X678910(Ⅲ).【点睛】本题考查概率、离散型随机变量的分布列、方差的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是中档题.17.如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)见解析【解析】【分析】(Ⅰ)推导出AA1⊥CD,CD⊥AB,由此能证明CD⊥平面AA1B1B.(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则∃λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E.【详解】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以解得.这与矛盾.所以在线段上不存在点M,使平面.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查满足线面垂直的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查学生的计算能力,是中档题.18.已知椭圆:过点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.【答案】(Ⅰ)(Ⅱ) y=x-1【解析】【分析】(Ⅰ)由椭圆C:1(a>b>0)过点A(0,1),且椭圆的离心率为,列方程组求出a,b,由此能求出椭圆C的方程.(Ⅱ)设直线l的方程为y=x+m,P(3,y P),由,得4x2+6mx+3m2﹣3=0,利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l的方程.【详解】(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)设直线l的方程为y=x+m,由得.令,得.,.因为是以为顶角的等腰直角三角形,所以平行于轴.过做的垂线,则垂足为线段的中点.设点的坐标为,则.由方程组解得,即.而,所以直线的方程为y=x-1.【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、中点坐标公式等基础知识,考查运算求解能力、推理论证能力,是中档题.19.已知函数,其中.(Ⅰ)求的单调区间;(Ⅱ)设,若曲线,有公共点,且在点处的切线相同,求的最大值.【答案】(Ⅰ)的单调递增区间为,单调递减区间为;(Ⅱ)【解析】【分析】(Ⅰ)求出原函数的导函数,得到导函数的零点,由导函数的零点对函数定义域分段,再由导函数在不同区间段内的符号可得原函数的单调性;(Ⅱ)设点P的横坐标为x0(x0>0),由题意得,得到(a>0).设,利用导数求其最大值得答案.【详解】(Ⅰ)的定义域为..令,得.当时,;当时,.所以的单调递增区间为,单调递减区间为;(Ⅱ)设点的横坐标为,则,.因为,,所以,.由题意得由得或(舍).所以.设,则.令,得.当时,,单调递增;当时,,单调递减.所以在的最大值为,即的最大值为.【点睛】本题考查利用导数研究函数的单调性,考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想方法,考查计算能力,是中档题.20.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列的前项和为,等差数列1,3,5,7,…中所有不大于的项的和为.(Ⅰ)求和;(Ⅱ)判断和的大小,不用证明;(Ⅲ)设,求证:,,使得.【答案】(Ⅰ)11,36(Ⅱ)见证明;(Ⅲ)见证明【解析】【分析】(Ⅰ)由题意直接求得p5和f(5);(Ⅱ)分别取n=1,2,3,4,5.求得S n和f(n),比较大小得结论;(Ⅲ)取值验证n≤4时,命题成立.当n≥5时,设k是使得k2≤S n成立的最大自然数,只需证(k+1)2<S n+1.可得1+3+5+…+(2k﹣1),f(n)=1+3+5+…+p n,结合(Ⅱ)可知,当n≥5时,S n<f(n),得到p n>2k﹣1,从而p n+1>2k+1.进一步得到.【详解】(Ⅰ),;(Ⅱ)当时,,,;当时,,,;当时,,,;当时,,,.所以当时,.当时,,,.不难看出,当时,.(Ⅲ)因为,,,,,所以当时,,使得;当时,,使得;当时,,使得;当时,,使得所以时,命题成立.当时,设是使得成立的最大自然数,只需证.因为,,由(Ⅱ)可知,当时,,所以,从而所以,即.综上可知,命题成立.【点睛】本题考查数列递推式,考查了数列的函数特性,考查逻辑思维能力与推理运算能力,是中档题.。
通州区2018-2019学年第一学期高三年级期末考试数学(理科)试卷2019年1月第一部分(选择题)一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【详解】∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点睛】本题考查的知识点是集合的交集及其运算,属于基础题.2.设向量,,则与垂直的向量的坐标可以是()A. B. C. D.【答案】C【解析】【分析】求出,判断哪个选项的向量与(﹣3,2)的数量积是0即可得出答案.【详解】;可看出(4,6)•(﹣3,2)=0;∴.故选:C.【点睛】本题考查向量坐标的加法和数量积运算,以及向量垂直的充要条件.3.已知是定义在R上的奇函数,且当时,,则等于()A. B. C. D.【答案】B【解析】【分析】根据题意,由函数的解析式计算可得f(2)的值,又由函数为奇函数,可得f(﹣2)=﹣f(2),即可得答案.【详解】根据题意,当x>0时,f(x)=2x﹣1,则f(2)=22﹣1=3,又由函数f(x)为R上的奇函数,则f(﹣2)=﹣f(2)=﹣3;故选:B.【点睛】本题考查函数的奇偶性的性质,关键是灵活运用函数的奇偶性的性质.4.已知双曲线的右焦点与抛物线的焦点重合,则a等于()A. 1B. 2C. 3D.【答案】B【解析】【分析】先求出抛物线的焦点坐标,可得出双曲线的半焦距c的值,然后根据a、b、c的关系可求出a的值.【详解】抛物线y2=12x的焦点坐标为(3,0),所以,双曲线的焦点坐标为(±3,0),所以,a2+5=32=9,∵a>0,解得a=2,故选:B.【点睛】本题考查双曲线的性质,解决本题的关键在于对抛物线性质的理解,属于基础题.5.已知x,y满足不等式组则的最大值等于()A. B. C. D.【答案】D【解析】【分析】画出不等式组表示的平面区域,求出平面区域中各顶点的坐标,将各点坐标代入目标函数的解析式,分析后求得目标函数z=x+y的最大值.【详解】解:由不等式组表示的平面区域,如图所示的阴影部分;三个顶点坐标为A(1,2),B(1,1),C(3,3);将三个代入得z的值分别为3,2,6;∴直线z=x+y过点C(3,3)时,z取得最大值为6.故选:D.【点睛】本题考查了线性规划的应用问题,常用“角点法”解答,步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求得最优解.6.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒log a b<1,log a b<1⇒a>b,∴a>b是log a b<1的充分必要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为()A. 1B.C. 2D.【答案】B【解析】【分析】由三视图画出该四棱锥的直观图,结合图形求出此四棱锥的四个侧面中面积最小的侧面面积.【详解】解:由三视图画出该四棱锥的直观图,如图所示;在此四棱锥P﹣ABCD的四个侧面中,面积最小的侧面是Rt△PBC,它的面积为BC•PB1.故选:B.【点睛】本题考查了利用几何体的三视图求面积的应用问题,是基础题.8.设函数图象上不同两点,处的切线的斜率分别是,,规定(为线段的长度)叫做曲线在点与点之间的“弯曲度”,给出以下命题:①函数图象上两点与的横坐标分别为和,则;②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;③设,是抛物线上不同的两点,则;④设,是曲线(是自然对数的底数)上不同的两点,则.其中真命题的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由新定义,利用导数求出函数y=sin x、y=x2在点A与点B之间的“弯曲度”判断①、③正确;举例说明②是正确的;求出曲线y=e x上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,判断④错误.【详解】对于①,由y=sin x,得y′=cos x,则k A=cos1,k B=cos(﹣1)=cos1,则|k A﹣k B|=0,即φ(A,B)=0,①正确;对于②,如y=1时,y′=0,则φ(A,B)=0,②正确;对于③,抛物线y=x2的导数为y′=2x,y A=x A2,y B=x B2,∴y A﹣y B=x A2﹣x B2=(x A﹣x B)(x A+x B),则φ(A,B)2,③正确;对于④,由y=e x,得y′=e x,φ(A,B),由不同两点A(x1,y1),B(x2,y2),可得φ(A,B)1,∴④错误;综上所述,正确的命题序号是①②③.故选:C.【点睛】本题考查了命题真假的判断与应用问题,也考查了新定义的函数应用问题,解题的关键是对题意的理解.二、填空题.9.复数的共轭复数是____.【答案】【解析】【分析】先由复数代数形式的除法运算化简复数,再由共轭复数的定义可得答案.【详解】解:z,∴复数z的共轭复数是,故答案为:.【点睛】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题.10.设等比数列{a n}的公比,前n项和为,则_____.【答案】【解析】【分析】由等比数列的通项公式和求和公式,代入要求的式子化简可得.【详解】解:15.故答案是:15.【点睛】本题考查等比数列的通项公式和求和公式,属基础题.11.已知角的终边与单位圆的交点为,则______.【答案】【解析】【分析】由任意角的三角函数的定义有,sinα,由平方关系sin2α+cos2α=1,有:cosα=±,由二倍角公式有sin2α=2sinαcosα=±,得解【详解】解:由三角函数的定义有:sinα,由sin2α+cos2α=1,得:cosα=±,由二倍角公式得:sin2α=2sinαcosα=±,故答案为:.【点睛】本题考查了任意角的三角函数的定义及二倍角公式,属简单题12.的展开式中含的项的系数是______.【答案】【解析】【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.【详解】解:(x)6的展开式的通项公式为T r+1•(﹣1)r•x6﹣2r,令6﹣2r=2,求得r=2,故展开式中x2的系数为15,故答案为:15.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.13.直线(为参数)与曲线(为参数)的公共点个数为______【答案】【解析】【分析】化简参数方程为直角坐标方程,然后判断曲线交点个数.【详解】解:直线(t为参数)的直角坐标方程为:y x;与曲线(θ为参数)的直角坐标方程:(x﹣2)2+y2=1.圆的圆心(2,0)到直线y x的距离为:1;所以直线与圆相切,有1个交点.故答案为:1.【点睛】本题考查直线的参数方程,圆的参数方程的求法,考查计算能力.14.已知函数若关于的方程有且只有一个实数根,则实数k的取值范围是_____.【答案】【解析】【分析】作出f(x)的函数图象,由直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0,由△=0,解得k 值,求出过(1,1)与(0,﹣2)两点的直线的斜率k,数形结合即可得到实数k的取值范围.【详解】作出y=f(x)与y=kx﹣2的函数图象如图所示:直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0.由△=k2﹣8=0,得k.又过(1,1)与(0,﹣2)两点的直线的斜率k=3.有图可知,若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k的取值范围为(0,3)∪{}.故答案为:(0,3)∪{}.【点睛】本题考查了方程解的个数与函数图象的关系,考查了数形结合的解题思想方法,属于中档题.三、解答题:解答应写出文字说明,演算步骤或证明过程.15.如图,在△ABC中,,,,点D在AC边上,且.(Ⅰ)求BD的长;(Ⅱ)求△BCD的面积.【答案】(Ⅰ)3 (Ⅱ)【解析】【分析】(Ⅰ)运用正弦定理可解决此问题;(Ⅱ)运用余弦定理和三角形的面积可解决此问题.【详解】(Ⅰ)在中,因为,所以.由正弦定理,所以.(Ⅱ)因为,所以.所以.在中,由余弦定理,得,解得或(舍).所以的面积【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.16.北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X 元,求X 的分布列;(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较和的方差和大小.(结论不需要证明) 【答案】(Ⅰ)(Ⅱ)见解析;(Ⅲ).【解析】 【分析】(Ⅰ)记两站间票价不足5元为事件A ,在13座车站中任选两个不同的车站,基本事件总数为个,事件A 中基本事件数63.由此能求出两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为a 元,b 元.X 的所有可能取值为6,7,8,9,10,分别求出相应的概率,由此能求出X 的分布列. (Ⅲ)D ξ=D η.【详解】(Ⅰ)记两站间票价不足5元为事件A , 在13座车站中任选两个不同的车站,基本事件总数为78个,事件A 中基本事件数为78-15=63.所以两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为元,元. X 的所有可能取值为6,7,8,9,10.,,,,.所以X的分布列为(Ⅲ).【点睛】本题考查概率、离散型随机变量的分布列、方差的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是中档题.17.如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【答案】(Ⅰ)见证明;(Ⅱ) (Ⅲ)见解析【解析】【分析】(Ⅰ)推导出AA1⊥CD,CD⊥AB,由此能证明CD⊥平面AA1B1B.(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则∃λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E.【详解】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以解得.这与矛盾.所以在线段上不存在点M,使平面.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查满足线面垂直的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查学生的计算能力,是中档题.18.已知椭圆:过点,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.【答案】(Ⅰ) (Ⅱ) y=x-1【解析】【分析】(Ⅰ)由椭圆C:1(a>b>0)过点A(0,1),且椭圆的离心率为,列方程组求出a,b,由此能求出椭圆C的方程.(Ⅱ)设直线l的方程为y=x+m,P(3,y P),由,得4x2+6mx+3m2﹣3=0,利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l的方程.【详解】(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)设直线l的方程为y=x+m,由得.令,得.,.因为是以为顶角的等腰直角三角形,所以平行于轴.过做的垂线,则垂足为线段的中点.设点的坐标为,则.由方程组解得,即.而,所以直线的方程为y=x-1.【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、中点坐标公式等基础知识,考查运算求解能力、推理论证能力,是中档题.19.已知函数,其中.(Ⅰ)求的单调区间;(Ⅱ)设,若曲线,有公共点,且在点处的切线相同,求的最大值.【答案】(Ⅰ)的单调递增区间为,单调递减区间为;(Ⅱ)【解析】【分析】(Ⅰ)求出原函数的导函数,得到导函数的零点,由导函数的零点对函数定义域分段,再由导函数在不同区间段内的符号可得原函数的单调性;(Ⅱ)设点P的横坐标为x0(x0>0),由题意得,得到(a>0).设,利用导数求其最大值得答案.【详解】(Ⅰ)的定义域为..令,得.当时,;当时,.所以的单调递增区间为,单调递减区间为;(Ⅱ)设点的横坐标为,则,.因为,,所以,.由题意得由得或(舍).所以.设,则.令,得.当时,,单调递增;当时,,单调递减.所以在的最大值为,即的最大值为.【点睛】本题考查利用导数研究函数的单调性,考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想方法,考查计算能力,是中档题.20.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列的前项和为,等差数列1,3,5,7,…中所有不大于的项的和为.(Ⅰ)求和;(Ⅱ)判断和的大小,不用证明;(Ⅲ)设,求证:,,使得.【答案】(Ⅰ)11,36 (Ⅱ)见证明;(Ⅲ)见证明【解析】【分析】(Ⅰ)由题意直接求得p5和f(5);(Ⅱ)分别取n=1,2,3,4,5.求得S n和f(n),比较大小得结论;(Ⅲ)取值验证n≤4时,命题成立.当n≥5时,设k是使得k2≤S n成立的最大自然数,只需证(k+1)2<S n+1.可得1+3+5+…+(2k﹣1),f(n)=1+3+5+…+p n,结合(Ⅱ)可知,当n≥5时,S n<f(n),得到p n>2k﹣1,从而p n+1>2k+1.进一步得到.【详解】(Ⅰ),;(Ⅱ)当时,,,;当时,,,;当时,,,;当时,,,.所以当时,.当时,,,.不难看出,当时,.(Ⅲ)因为,,,,,所以当时,,使得;当时,,使得;当时,,使得;当时,,使得所以时,命题成立.当时,设是使得成立的最大自然数,只需证.因为,,由(Ⅱ)可知,当时,,所以,从而所以,即.综上可知,命题成立.【点睛】本题考查数列递推式,考查了数列的函数特性,考查逻辑思维能力与推理运算能力,是中档题.。
2222018北京通州区高三数 学(理)一模考试2018.4本试卷分第一部分和第二部分两部分,共150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分 (选择题 共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{}|10A x x =-<,{}0,1,2B =,那么()U AB ð等于A .{}0,1,2B .{}1,2C .{}0,1D .{}22.已知x ,y 满足0,1,2,x y x x y +≥⎧⎪≤⎨⎪-≥-⎩那么2z x y =+的最小值是A. 1-B. 0C. 1D. 23.执行如右图所示的程序框图,若输出m 的值是25, 则输入k 的值可以是A .4B .6C .8D .104.设131log 6a =,31log 2b =,123c -=,那么A .c b a >>B .c a b >>C .a b c >>D .a c b >>5.“x ∀∈R ,210x bx -+>成立”是“[]0,1b ∈”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知抛物线28y x =的准线与圆心为C 的圆22280x y x ++-=交于A ,B 两点,那么CA CB -等于A .2B .22C .25D .427.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,且它的正视图如图所示, 则该四棱锥侧视图的面积是A .42B .4C .22D .28.描金又称泥金画漆,是一种传统工艺美术技艺. 起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底. 描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹. 现甲、乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹. 每道工序所需的时间(单位:小时)如下:原料 时间 工序原料A 原料B 原料C 上漆 9 16 10 描绘花纹15814则完成这三件原料的描金工作最少需要是开始 输出m 结束否n k >2n n =+ 1,1n m ==m m n =+输入kA .43小时B .46小时C .47小时D .49小时第二部分 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知复数()()1i 1i a -+是纯虚数,那么实数a =_______.10.若直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则点()4,0P 到直线l 的距离是_______.11.已知数列{}n a 是等比数列,34a =,632a =,那么86a a =_______;记数列{}2n a n - 的前n 项和为n S ,则n S =_______.12.2位教师和4名学生站成一排合影,要求2位教师站在中间,学生甲不站在两边,则不同排法的种数为_______(结果用数字表示).13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知60B =︒,4b =, 下列判断:①若3c =,则角C 有两个解;②若12BC BA ⋅=,则AC 边上的高为33; ③a c +不可能是9.其中判断正确的序号是_______.14.设函数2()cos f x x a x =+,a ∈R ,非空集合{}|()0,M x f x x ==∈R . ①M 中所有元素之和为_______;②若集合()(){}|0,N x f f x x ==∈R ,且M N =,则a 的值是_______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本题满分13分)已知函数()2sin cos 3cos 222x x x f x π⎛⎫=-+ ⎪⎝⎭. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[],0π-上的最大值和最小值.16.(本题满分13分)作为北京副中心,通州区的建设不仅成为京津冀协同发展战略的关键节点,也肩负着医治北京市“大城市病”的历史重任,因此,通州区的发展备受瞩目. 2017年12月25日发布的《北京市通州区统计年鉴(2017)》显示:2016年通州区全区完成全社会固定资产投资939.9 亿元,比上年增长17.4%,下面给出的是通州区2011-2016年全社会固定资产投资及增长率,如图一.又根据通州区统计局2018年1月25日发布:2017年通州区全区完成全社会固定资产投资1054.5亿元,比上年增长12.2%. (Ⅰ)在图二中画出2017年通州区全区完成全社会固定资产投资(柱图一17.416.416.416.721.720.0939.9800.8687.7590.8506.1415.8增长率全社会固定资产投资(亿元)(%)25.020.015.010.05.00.02011-2016年全社会固定资产投资及增长率10009008007006005004003002001000201620152014201320122011状图),标出增长率并补全折线图;(Ⅱ)通过计算2011-2017这7年的平均增长率约为17.2%,现从2011-2017这7年中随机选取2个年份,记X 为“选取的2个年份中,增长率高于17.2%的年份个数”,求X 的分布列及数学期望; (Ⅲ)设2011-2017这7年全社会固定资产投资总额的中位数为0x ,平均数为x ,比较0x 与x 的大小(只需写出结论).17.(本题满分14分)如图所示的几何体中,平面PAD ⊥平面ABCD ,PAD △为等腰直角三角形, 90APD ∠=,四边形ABCD 为直角梯形,//AB DC ,AB AD ⊥,2AB AD ==,//PQ DC ,1PQ DC ==. (Ⅰ)求证://PD 平面QBC ; (Ⅱ)求二面角Q BC A --的余弦值; (Ⅲ)在线段QB 上是否存在点M ,使得AM ⊥平面QBC ,若存在,求QM QB的值;若不存在,请说明理由.18.(本题满分13分)已知函数xxe x f =)(,)1()(-=xe a x g ,a ∈R .(Ⅰ)当1a =时,求证:)()(x g x f ≥;(Ⅱ)当1>a 时,求关于x 的方程)()(x g x f =的实根个数. 19.(本题满分13分)已知椭圆()2222:10x y C a b a b+=>>的上、下顶点分别为A ,B ,且2AB =,离心率为32,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,Q 是椭圆C 上的两个动点(不与A ,B 重合),且关于y 轴对称,M ,N 分别是OP ,BP 的中点,直线AM 与椭圆C 的另一个交点为D . 求证:D ,N ,Q 三点共线. 20.(本题满分14分)已知数列{}n a ,设()11,2,3,n n n a a a n +∆=-=,若数列{}n a ∆为单调增数列或常数列时,则{}n a 为凸数列.(Ⅰ)判断首项01>a ,公比0>q ,且1≠q 的等比数列{}n a 是否为凸数列,并说明理由; (Ⅱ)若{}n a 为凸数列,求证:对任意的1k m n ≤<<,且k ,m ,n ∈N , 均有1n m m k m m a a a aa a n m m k+--≥-≥--,且{}1max ,m n a a a ≤;其中{}1max ,n a a 表示1a ,n a 中较大的数;Q BCD AP(Ⅲ)若{}n a 为凸数列,且存在()1,t t n t <<∈N ,使得0t a a ≤,n t a a ≤, 求证:12n a a a ===.数学试题答案一、选择题题号 1 2 3 4 5 6 7 8 答案BACDBDCB二、填空题9.1-10.211.4,221n n n --- 12. 2413.②③14.0,0 三、解答题15. 解:(Ⅰ)因为()2sin cos 3cos 222x x x f x π⎛⎫=-+ ⎪⎝⎭2sin cos 223cos 2x x x +=33cos 21si 2n 2x x =++3sin ++32x π⎛⎫= ⎪⎝⎭.……………………4分所以()f x 的最小正周期2.T π=……………………6分 (Ⅱ)因为[],0x π∈-,所以2+,333x πππ⎡⎤∈-⎢⎥⎣⎦. 所以当33x ππ+=,即0x =时,函数)(x f 取得最大值3sin+3.32π= 当32x ππ+=-,即56x π=-时,函数取得最小值31+.2- 所以()f x 在区间[],0π-上的最大值和最小值分别为3和31+.2-………………13分 16. 解:(Ⅰ)……………………4分(Ⅱ)依题意,X 的可能取值为0,1,2. ……………………5分12.21054.5图二(%)201725.020.015.010.05.00.0110017.416.416.416.721.720.0939.9800.8687.7590.8506.1415.8增长率全社会固定资产投资(亿元)2011-2017年全社会固定资产投资及增长率1000900800700600500400300200100020162015201420132012201124272(0)7C P X C ===,1134274(1)7C C P X C ===,23271(2)7C P X C ===. ………………8分所以X 的分布列为……………………9分所以X 的数学期望()2416012.7777E X =⨯+⨯+⨯=……………………10分 (Ⅲ)0x <. ……………………13分17. 解:(Ⅰ)因为//PQ CD ,PQ CD =,所以四边形PQCD 是平行四边形. 所以//.PD QC因为PD ⊄平面QBC ,QC ⊂平面QBC , 所以//PD 平面.QBC ……………………4分 (Ⅱ)取AD 的中点为O , 因为PA PD =,所以.OP AD ⊥因为平面PAD ⊥平面ABCD ,OP ⊂平面PAD ,所以OP ⊥平面.ABCD ……………………5分 以点O 为坐标原点,分别以直线OD ,OP 为y 轴,z 轴建立空间直角坐标系Oxyz ,则x 轴在平面ABCD 内.因为90APD ∠=︒,2AB AD ===,1PQ CD ==, 所以(),,A -010,(),,B -210,(),,C 110,(),,Q 101, 所以()1,1,1BQ =-,()0,1,1CQ =-. ……………………7分设平面QBC 的法向量为(),,n x y z =,所以,,n BQ n CQ ⎧⋅=⎪⎨⋅=⎪⎩00即,.x y z y z -++=⎧⎨-+=⎩00所以,.x y z y z =+⎧⎨=⎩令1z =,则1y =,2x =.所以()2,1,1n =. ……………………8分 设平面ABCD 的法向量为()0,0,1m =,所以16cos ,.661n m ==⨯ 又因为二面角Q BC A --为锐角,所以二面角Q BC A --的余弦值是6.6……………………10分 X12P274717(Ⅲ)存在. 设点(),,M a b c ,QM QBλ=,[]01.λ∈,所以()1,,1QM a b c =--,()1,1,1.QB =--所以+1a λ=,b λ=-,+1c λ=-.所以点(),,.M λλλ+--+11 所以(),,.AM λλλ=+-+-+111 又平面QBC 的法向量为()2,1,1n =,AM⊥平面QBC ,所以.λλ+-+=1121所以.λ=13所以在线段QB 上存在点M ,使AM ⊥平面QBC ,且QM QB的值是.13……………14分18. 解:(Ⅰ)设函数()()().xxF x f x g x xe ae a =-=-+当1=a 时,()1x x F x xe e =-+,所以'()xF x xe =.所以)0(,-∞∈x 时,'()0F x <;)0(∞+∈,x 时,'()0F x >. 所以()F x 在)0(,-∞上单调递减,在)0(∞+,上单调递增. 所以当0=x 时,()F x 取得最小值(0)0F =. 所以()0F x ≥,即)()(x g x f ≥.……………………4分 (Ⅱ)当1>a 时,'()(1)xF x x a e =-+,令'()0F x >,即(1)0xx a e -+>,解得1x a >-; 令'()0F x <,即(1)0x x a e -+<,解得 1.x a <-所以()F x 在(1)a -∞-,上单调递减,在(1)a -+∞,上单调递增. 所以当1-=a x 时,()F x 取得极小值,即1(1)a F a a e --=-. ……………………6分令1()a h a a e-=-,则1'()1a h a e-=-.因为1>a ,所以'()0h a <. 所以()h a 在(1,)+∞上单调递减. 所以()(1)0h a h <<. 所以(1)0F a -<.又因为()0F a a =>,所以()F x 在区间),1(a a -上存在一个零点.所以在),1[+∞-a 上存在唯一的零点.……………………10分 又因为()F x 在区间)1,(--∞a 上单调递减,且(0)0F =,所以()F x 在区间)1,(--∞a 上存在唯一的零点0.……………………12分 所以函数)(x h 有且仅有两个零点,即使)()(x g x f =成立的x 的个数是两个. ……………………13分19.解:(Ⅰ)因为椭圆的焦点在x 轴上,2AB =,离心率32e =, 所以1b =,3.2c a =所以由222a b c =+,得2 4.a = 所以椭圆C 的标准方程是22 1.4x y +=……………………3分 (Ⅱ)设点P 的坐标为()00,x y ,所以Q 的坐标为()00,x y -. 因为M ,N 分别是OP ,BP 的中点, 所以M 点的坐标为00,22x y ⎛⎫⎪⎝⎭,N 点的坐标为001,22x y -⎛⎫⎪⎝⎭.……………………4分 所以直线AD 的方程为0021y y x x -=+. ……………………6分 代入椭圆方程2214x y +=中,整理得()()222000042820.x y x x y x ⎡⎤+-+-=⎣⎦ 所以0x =,或()()()0000220008222=.5442x y x y x y x y --=-+-所以()2000000002222431.5454x y y y y y x y y ---+-=⋅+=--所以D 的坐标为()200000022243,5454x y y y y y -⎛⎫-+- ⎪--⎝⎭.……………………10分所以000000112.32QNy y y k x x x --+==-+又()200000000243541.22354QD y y y y y k x y x x y -+---+==--+-所以D ,N ,Q 三点共线.……………………13分20.解:(Ⅰ)因为+12+1n n n a a a +∆=-,1n n n a a a +∆=-,所以+12+12n n n n n a a a a a +∆-∆=+-22n n n a q a a q =+-()()22121.n n a q q a q =+-=-因为,公比,且,所以0n a >,()210.q ->所以()210.n a q ->所以等比数列{}n a 为凸数列.……………………3分 (Ⅱ)因为数列}{n a 为凸数列,所以11=m m m m a a a a ++--,211m m m m a a a a +++-≥-,321m m m m a a a a +++-≥-,…,11.m n m m n m m m a a a a +-+--+-≥-叠加得()1()n m m m a a n m a a +-≥--. 所以1.n mm m a a a a n m+-≥--同理可证1.m km m a a a a m k+-≤-- 综上所述,1n m m k m m a a a aa a n m m k+--≥-≥--.……………………7分因为n m m k a a a a n m m k--≥--,所以()()()().n m m k m k a k m a n m a m n a -+-≥-+-所以()()().n k m m k a n m a n k a -+-≥-令1k =,()()11()1.n m m a n m a n a -+-≥-所以11.11m n m n m a a a n n --⎛⎫≤+ ⎪--⎝⎭若1n a a ≤,则111()().1111m n n n n m n m m n ma a a a a a n n n n ----≤+≤+=---- 若1n a a ≥,则111111()().1111m n m n m m n ma a a a a a n n n n ----≤+≤+=---- 所以{}1max ,.m n a a a ≤……………………10分 (Ⅲ)设p a 为凸数列}{n a 中任意一项, 由(Ⅱ)可知,1max{,}.p n t a a a a ≤≤再由(Ⅱ)可知,对任意的1p m n ≤<<均有1m p n mm ma a a a a a n m m p+--≥-≥--,(1)当1p t n ≤<<时,t pn t a a a a n t t p--≥--. 又因为n t a a ≤,所以0.t pn t a a a a n t t p--≥≥--所以.p t a a ≥ (2)当1t p n <<≤时,11p t t a a a a p t t --≥--. 又因为1t a a ≤,所以10.1p t t a a a a p tt --≥≥--所以.p t a a ≥ (3)当p t =时,.p t a a = 所以.p t a a ≥ 综上所述,.p t a a =所以12n a a a ===.……………………14分。