最新高二下学期期末考试数学试题 (3)
- 格式:doc
- 大小:669.40 KB
- 文档页数:11
高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
合肥一中2023~2024学年度高二下学期期末联考数学试题(考试时间:120分钟 满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.一、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题:,11p x x ∀∈+>R ,命题2:0,10q x x x ∃>−+=,则( ) A.命题p 、命题q 都是真命题B.命题p 的否定、命题q 都是真命题C.命题p 、命题q 的否定都是真命题D.命题p 的否定、命题q 的否定都是真命题2.给定两个随机变量x 和y 的5组数据如下表所示,利用最小二乘法得到y 关于x 的线性回归方程为5ˆˆ1.yx a =+,则( )x1 2 3 4 5 y24478A.0.5,3ˆa x =时的残差为-1B.0.5,3ˆa x =时的残差为1C.0.4,3ˆa x =时的残差为-0.9D.0.4,3ˆax =时的残差为0.93.若质点A 运动的位移S (单位:m )与时间t (单位:s )之间的函数关系是()2(1S t t t=−≥),那么该质点在t =3s 时的瞬时速度和从1s t =到3s t =这两秒内的平均速度分别为( ) A.22,39−B.22,39C.22,93−D.22,934.子曰:“工欲善其事,必先利其器.”这句名言最早出自于《论语・卫灵公》.此名言中的“利其器”是“善其事”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.对于实数,,,a b c d ,下列说法正确的是( )A.若a b >,则11a b a>− B.若,a b c d <<,则ac bd > C.若0a b c >>>,则b ca c ab >−− D.若1a b >>,则11a b a b+>+6.在二项式n的展开式中,二项式系数的和为64,把展开式中所有的项重新排成一列,奇次项(未知数x 的指数为奇数的项)都互不相邻的概率为( ) A.135 B.16 C.14 D.277.现有10名学生参加某项测试,可能有学生不合格,从中抽取3名学生成绩查看,记这3名学生中不合格人数为ξ,已知()21140P ξ==,则本次测试的不合格率为( ) A.10% B.20% C.30% D.40%8.已知1,,,,13a b c d ∈ ,则222222a b c dab bc cd+++++的取值范围是( )A.52,2B.102,3C.510,23D.[)2,∞+二、多选题(本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选择对的得部分分,有选错的得0分.)9.下列说法中正确的是( )A.若()0,1N ξ∼,且(1)P p ξ>=,则1(10)2P p ξ−<=− B.设(),B n p ξ∼,若()()30,20E D ξξ==,则90n = C.已知随机变量X 的方差为()D X ,则()()2323D X D X −=− D.若()10,0.8X B ∼,则当8X =时概率最大10.已知*,m n ∈N 且1n m ≥>,下列等式正确的有( ) A.11A A mm n n m −−= B.12111A A A n nn n n n n +−+−−=C.3333202134520232024C C C C C ++++= D.()()()22212C C CC n n nnnn+++= 11.设函数()222,0e ,0x x ax a xf x a x −−−<= −≥,则下列说法正确的是( )A.若函数()f x 在R 上单调递增,则实数a 的取值范围是(],0∞−B.若函数()f x 有3个零点,则实数a 的取值范围是()2,∞+C.设函数()f x 的3个零点分别是()123123,,x x x x x x <<,则12313x x x +−的取值范围是1,4ln23∞−−−D.存在实数a ,使函数()f x 在()1,1−内有最小值三、填空题(本题共3小题,每小题5分,共15分)12.全集[](),4,8,0,6U A B ===R ,则()U A B ∩=__________. 13.已知0a >,函数()2322a f x ax x =−+有两个不同极值点12,x x ,则()()12f x f x +=__________. 14.从一列数()12332,,,,3,m a a a a m m +≥∈Z 中抽取,(132)i j a a i j m <<<+两项,剩余的项分成()()()1211211232,,,,,,,,,,,i i i j j j m a a a a a a a a a −++−+++ 三组,每组中数的个数均大于零且是3的倍数,则,i j a a 有__________种不同的取法.(答案用m 表示)四、解答题(本题共5小题,共77分,解答应写出文字说明证明、过程或演算步骤.)15.(13分)(1)解关于x 的不等式:()210x a x a −++≥.(2)关于x 的不等式230x ax −+≥在[]1,2x ∈上有解,求实数a 的取值范围.16.(15分)为了研究合肥市某高中学生是否喜欢篮球和学生性别的关联性,调查了该中学所有学生,得到如下等高堆积条形图:从所有学生中获取容量为100的样本,由样本数据整理得到如下列联表:(1)根据样本数据,依据0.01α=的独立性检验,能否认为该中学学生是否喜欢篮球和学生性别有关联?与所有学生的等高堆积条形图得到的结论是否一致?试解释其中原因.(2)将样本列联表中所有数据扩大为原来的2倍,依据0.01α=的独立性检验,与原样本数据得到的结论是否一致?试解释其中原因参考公式:()()()()22()n ad bc a b c d a c b d χ−=++++其中)n a b c d =+++.α 0.050 0.010 0.001 x α3.8416.63510.82817.(15分)对于一个函数()f x 和一个点(),M a b ,定义()()22()()s x x a f x b =−+−,若存在()()00,P x f x ,使()0s x 是()s x 的最小值,则称点P 是函数()f x 到点M 的“最近点”.(1)对于()1(0)f x x x=>和点()0,0M ,求点P ,使得点P 是()f x 到点M 的“最近点”. (2)对于()()ln ,0,1f x x M =,请判断是否存在一个点P ,它是()f x 到点M 的“最近点”,且直线MP 与()f x 在点P 处的切线垂直,若存在,求出点P ;若不存在,说明理由.18.(17分)某商场回馈消费者,举办活动,规则如下:每5位消费者组成一组,每人从,,A B C 三个字母中随机抽取一个,抽取相同字母最少的人每人获得300元奖励.(例如:5人中2人选,2A 人选,1B 人选C ,则选择C 的人获奖;5人中3人选,1A 人选,1B 人选C ,则选择B 和C 的人均获奖;如,,A B C 中有一个或两个字母没人选择,则无人获奖)(1)若甲和乙在同一组,求甲获奖的前提下,乙获奖的概率;(2)设每组5人中获奖人数为随机变量X ,求X 的分布列和数学期望;(3)商家提供方案2:将,,A B C 三个字母改为A 和B 两个字母,其余规则不变,获奖的每个人奖励200元.作为消费者,站在每组5人获取总奖金的数学期望的角度分析,你是否选择方案2?19.(17分)函数()e xf x x=. (1)求函数()f x 的单调区间; (2)已知函数()()xg x f x =,当函数()y g x =的切线l 的斜率为负数时,求l 在x 轴上的截距的取值范围;(3)设()()2sin x f x x ϕ=−,若x a =是函数()x ϕ在()π,0−上的极值点,求证:()02a ϕ<<.合肥一中2023~2024学年度高二下学期期末联考数学参芳答案一.单选题1.【答案】D【解析】对于命题p ,当1x =−时,101x +=<,故p 是假命题,则p 的否定为真命题,对于命题,Δ0q <,故q 是假命题,q 的否定是真命题,综上可得,p 的否定和q 的否定都是真命题.故选D. 2.【答案】A【解析】由已知12345244783,555x y ++++++++====, 因为点(),x y 在回归直线5ˆˆ1.y x a =+上, 所以ˆ0.5a=, 所以3x =时残差为()4341ˆ5y−=−=−. 故选:A. 3.【答案】D【解析】()()()223Δ3Δ23Δ3ΔΔΔ33ΔS t S S t t t t t −++−+===+, 所以0022lim lim 3(3)9t t S t t ∆→∆→∆==∆+∆.即该质点在3t s =时的瞬时速度为29; 从1t s =到3t s =这两秒内的平均速度为()()312313S S −=−; 故选:D. 4.【答案】B【解析】由题意“工欲善其事,必先利其器.”指工匠要想要做好活儿,一定先要把工具整治得锐利精良.从逻辑角度理解,如果工匠做好活了,说明肯定是有锐利精良的工具;反过来如果有锐利精良的工具,不能得出一定能做好活儿. 故选:B. 5.【答案】D【解析】对于选项A ,若1,1a b ==−时,11a b a<−,则A 错误. 对于选项B ,若,a b c d <<,当1,1,2,3a b c d =−===,则ac bd <,则B 错误.对于选项C ,若取3,2,1a b c ===,则1b ca c a b==−−,故错误. 对于选项D ,因为函数1y x x=+在()1,∞+上单调递增,故D 正确. 故选:D. 6.【答案】A【解析】在二项式n展开式中,二项式系数的和为62642n==,所以6n =.则n即6,通项公式为6316C (2)(1),0,1,2,,6r r r rr T x r −−+=⋅−⋅= , 故展开式共有7项,当0,2,4,6r =时,展开式为奇次项,把展开式中所有的项重新排成一列,奇次项都互不相邻,即把其它的3个偶次项先任意排,再把这4 个奇次项插入其中的4个空中,方法共有3434A A 种,故奇次项都互不相邻的概率为343477A A 1A 35P ==, 故选:A. 7.【答案】C【解析】设10名学生中有n 名不合格,从中抽取3人,其中不合格人数为ξ,由()21140P ξ==,得1210310C C 21C 40n n−=,化简得()()109637n n n −−=××,解得3n =,即本次测试的不合格率为3100%30%10×=. 故选:C. 8.【答案】B【解析】因为2222222222222222a b c d a b b c c d ab bc cdab bc cd ab bc cd ab bc cd++++++++++==++++++,当且仅当a b c d ===时等号成立.1,,13a b∈,由对勾函数性质,所以103b a a b + ,则()22310ab a b +,同理()()222233,1010bc b c cd c d ++则()222222222222222210332210a b c d a b c d ab bc cd a b c d ++++++=+++++ ,故222222a b c d ab bc cd+++++的取值范围是102,3 . 故选:B.二、多选题9.【答案】ABD【解析】对于选项A ,若()12(1)10,1,(10)22P N P p ξξξ−>∼−<==− ,则A 正确.对于选项B ,设(),B n p ξ∼,则()()()30120E np D np p ξξ == =−= ,解得9013n p = =,则B 正确.对于选项C ,()()234D X D X −=,故C 错误. 对于选项D ,因为()10,0.8X B ∼,则()1010C 0.80.2kkkP x k −==⋅;因为()()1191010101C 0.80.2404C 0.80.21k k k kk k P x k k P x k k ++−−=+⋅−===⋅+,若404391815k k k −=⇒=<+, 则当7k ≤时,()()1P x k P x k =+>=,当8k ≥时,()()1P x k P x k =+<=,即(1)(2)(7)(8)(9)(10)P x P x P x P x P x P x =<=<<=<=>=>= ,所以当8X =时概率最大,故D 正确. 故选:ABD. 10.【答案】BD【解析】对于选项A ,()()()()111!!A A !11!mm n n n n n n n m n m −−−==⋅=− −−− ,则A 错误.对于选项B ,()()()121211A A 1!!!11!,A 1!!n nn n n n n n n n n n n nn n n +−+−−=+−=+−=⋅=−=⋅,所以12111A A A n n n n n n n +−+−−=,则B 正确.对于选项33334333433420203452023445202355202320242024C,C C C C C C C C C C C C C ++++=++++=+++=== ,故C错误.对于选项D ,考虑二项式2(1)n x +展开式的n x 前的系数是2C nn ,又因为2(1)(1)(1)n n n x x x +=+⋅+的n x 前的系数可看成0011C C C C C C n n n n n n n n ⋅+⋅++⋅ ,故D 正确.故选:BD. 11.【答案】BC【解析】对于选项A ,若函数()f x 在R 上单调递增,则20221aa a a− −=−≥ − −≤− ,即01a a ≤ ≥− ,即[]1,0a ∈−,则A 错误.对于选项B ,令()0f x =,当0x ≥时,e x a =,若函数()f x 有3个零点,则e x a =需有一个零点,则1a ≥;当0x <时,得2220x ax a −−−=,若函数()f x 有3个零点,则2220x ax a ++=需有两个不等的负实根,则2Δ(2)42020a a a =−⋅>>,解得2a >. 故若函数()f x 有3个零点,则a 的取值范围是()2,∞+,则B 正确. 对于选项C ,设函数()f x 的3个零点分别是()123123,,x x x x x x <<,则3122e x x x a a +=−=,得123112ln 33x x x a a +−=−−,令()()12ln ,2,3g x x x x ∞=−−∈+则()161233x g x x x −−=−−=′,则()g x 在()2,∞+上单调递减,()max 1()24ln23g x g ==−− 当x 趋近于∞+时,()g x 趋近于负无穷大,则函数()g x 的取值范围为1,4ln23∞ −−−即12313x x x +−的取值范围是1,4ln23∞−−−,故C 正确.对于选项D ,当0x <时,函数()2122f x x ax a =−−−是开口向下的二次函数,故函数()1f x 只能在两边端点处取得最小值;当0x ≥时,函数()2e xf x a =−单调递增,故()2min 2()01f x f a ==−;要使函数()f x 在()1,1−内有最小值,即()()11111021f af a a −=−≥− =−≥− ,即21a a ≥ ≤− ,故a 无解,所以不存在a ,故错误. 故选:BC.三、填空题12.【答案】[]6,8解析:][()U ,06,B ∞∞=−∪+ ,所以()[]U 6,8A B ∩= 13.【答案】4.解析:由三次函数对称性可知()()124f x f x +=.答案:4. (24年全国1卷18题第2问思路)另解:()22302a f x ax ′=−=解得12x x == 所以()()124f x f x f f +=+14.答案:213122m m −+. 解析:设三组中的数的个数分别为()3,3,3,,x y z x y z +∈N则333232x y z m +++=+,所以x y z m ++=隔板法可得()()2211213C 1222mm m m m −−−==−+. (24年全国1卷19题第3问思路)四、解答题15.解析:(1)因为()210x a x a −++=解得12, 1.x a x == 当1a >时,不等式解集为][(),1,a ∞∞−∪+;当1a =时,不等式解集为R ; 当1a <时,不等式解集为][(),1,a ∞∞−∪+.(2)易知233x a x x x+≤=+在[]1,2x ∈上有解,所以max 3a x x ≤+ ..因为[]1,2x ∈,所以34x x+≤. 所以4a ≤. 答案:4a ≤16.解析:(1)零假设为0H :是否喜欢篮球和学生性别没有关联.()()()()220.01() 4.167 6.635n ad bc x a b c d a c b d χ−≈<=++++. 根据0.01α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即该高中学生是否喜欢篮球和学生性别没有关联.5分不一致.原因是根据全面调查数据作判断,其结论是确定且准确的.而根据样本数据作判断,会因为随机性导致样本数据不具代表性,从而不能得出与全面调查一致的结论..(2)将样本列联表中所有数据扩大为原来的2倍,经计算: ()()()()220.01()8.333 6.635n ad bc x a b c d a c b d χ−≈>=++++. 根据0.01α=独立性检验,可以推断该高中学生是否喜欢篮球和学生性别有关联与原样本数据得到的结论不一致,样本变大为原来的2倍,相当于样本量变大为原来的2倍,导致推断结论发生了变化.17.解析:(1)()2212,(0)s x x x x=+≥>,当且仅当1x =时,等号成立,所以当()1,1P 时, 点P 是()f x 到点M 的“最近点”;.(2)()22(ln 1),(0)s x x x x =+−>; 所以()2222ln ;x x s x x−+=⋅⋅′ 记()21ln ,(0)h x x x x =−+>,则()h x 在()0,∞+上单调递增, 因为()10h =,所以()s x 在()0,1单调递减,在()1,∞+单调递增,所以()()1s x s ≥,即点()1,0P 是()f x 到点M 的“最近点”.切点为()1,0P ,则()f x 在点P 处的切线l 的斜率为1,10101MP k −==−− 所以直线MP 与()f x 在点P 处的切线垂直,当且仅当取()1,0P 时,它是()f x 到点M 的“最近点”,且直线MP 与()f x 在点P 处的切线垂直. 18.解析:(1)设甲获奖为事件A ,乙获奖为事件B.()()()332133443322A 1A C 7C A A A n AB P B n A ===+∣.(2)X 的可能取值为0,1,2⋅⋅()23131535335C A C A C 9303243P X ++=== ()()121133545433222255C C C C A A A A 90601;2;32433243P X P X ====== 所以X 的分布列为:X 的数学期望()93906070012.24324324381E X =×+×+×= (3)选择方案1获取奖金总额的数学期望为707000300.8127×= 设选择方案2获奖人数为,Y Y 的可能取值为0,1,2. 则()()()1222252522555C A C A A 210200;1;2;232232232P Y P Y P Y ========= 方案2获奖人数的数学期望()210202501232323216E Y =×+×+×=. 选择方案2获取奖金总额的数学期望为25625200162×=. 因为6257000227>.所以选择方案2. 19.解析:(1)()f x 的定义域为{}0xx ≠∣ ()()22e 1e e 0x x x x x f x x x′−−===.得到1x =. 所以()f x 在()1,∞+单调递增,在(),0∞−和()0,1单调递减.(2)因为()2ex x g x =,所以()2222e e 2,.e e x x x x x x x x g x x ′−−==∈R设切点坐标为()0200,e x x x −,则切线方程为()002200002e .e x x x x y x x x −−−=− 因为曲线()y g x =的切线的斜率为负数,所以020020ex x x −<,解得00x <或02x >. 在切线方程中,令0y =,得()002200002e e x x x x x x x −−−=−, 解得20000022 3.22x x x x x x −==−++−− 令02t x =−,则23(2x t t t=++<−或0)t >, 可得()),03x ∞∞ ∈−∪++ .即l 在x 轴上的截距的取值范围为()),03∞∞ −∪++ . (3)因为()e 2sin x x x x ϕ=−.则()()221e 2cos .x x x x x xϕ−−′= 当π,02x ∈−时,()0x ϕ′<.故()x ϕ在π,02 − 上单调递减. 当ππ,2x ∈−−时,令()()21e 2cos x h x x x =−− 则()()2e 4cos 2sin e 4cos 2sin 0,x x h x x x x x x x x x x ′=−+=−+< 所以()h x 在ππ,2−−上单调递减,因为()ππ0,02h h −>−< , 所以()h x 在ππ,2−−上有唯一零点.即()x ϕ在ππ,2 −− 上有唯一零点.x a = 当()π,x a ∈−时,()0h x >,即()0x ϕ′>, 当(),0x a ∈时,()0h x <,即()0x ϕ′<,所以x a =时()x ϕ取最大值.所以()()π2π22πe 1πe 0,2sin 2sin 22πe a a a a a a ϕϕϕ − >−=>=−<−< , 即()02a ϕ<<得证.。
北京市西城区2023—2024学年度第二学期期末试卷高二数学第1页(共5页)北京市西城区2023—2024学年度第二学期期末试卷高二数学2024.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在等差数列{}n a 中,13a =,35a =,则10a =(A )8(B )10(C )12(D )14(2)设函数()sin f x x =的导函数为()g x ,则()g x 为(A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )非奇非偶函数(3)袋中有5个形状相同的乒乓球,其中3个黄色2个白色,现从袋中随机取出3个球,则恰好有2个黄色乒乓球的概率是(A )110(B )310(C )15(D )35(4)在等比数列{}n a 中,若11a =,44a =,则23a a =(A )4(B )6(C )2(D )6±(5)投掷2枚均匀的骰子,记其中所得点数为1的骰子的个数为X ,则方差()D X =(A )518(B )13(C )53(D )536北京市西城区2023—2024学年度第二学期期末试卷高二数学第2页(共5页)(6)设等比数列{}n a 的前n 项和为n S ,若11a =-,1053231S S =,则6a =(A )132-(B )164-(C )132(D )164(7)设函数()ln f x x =的导函数为()f x ',则(A )(3)(2)(3)(2)f f f f ''<<-(B )(3)(3)(2)(2)f f f f ''<-<(C )(2)(3)(3)(2)f f f f ''<<-(D )(2)(3)(2)(3)f f f f ''<-<(8)设等比数列{}n a 的前n 项和为n S ,则“{}n a 是递增数列”是“{}n S 是递增数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)如果()e x f x ax =-在区间(1,0)-上是单调函数,那么实数a 的取值范围为(A )1(,][1,)e -∞+∞ (B )1[,1]e(C )1(,]e-∞(D )[1,)+∞(10)在数列{}n a 中,12a =,若存在常数(0)c c ≠,使得对于任意的正整数,m n 等式m n m n a a ca +=+成立,则(A )符合条件的数列{}n a 有无数个(B )存在符合条件的递减数列{}n a (C )存在符合条件的等比数列{}n a (D )存在正整数N ,当n N >时,2024n a >北京市西城区2023—2024学年度第二学期期末试卷高二数学第3页(共5页)第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
本套试卷根据九省联考题型命制,题型为8+3+3+52023-2024学年高二数学下学期期末试卷模式考试时间:120分钟 满分:150分 测试范围:新高考全部内容一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1}A x x a =< ,{|12}B x x =<<,若A B A = ,则实数a 的取值范围是( ) A .(1,)+∞B .(1,2]C .(2,)+∞D .[2,)+∞2.已知复数(12)(1)2i z i +−=−+,则||(z = ) AB .2CD .33.若点(1,1)P −在角α的终边上,则sin()(4πα+= )A .1−B. C .0 D .14.在直三棱柱111ABC A B C −中,各棱长均为2,其顶点都在同一球面上,则该球的表面积为( ) A .283πBC .163π D5.设两个单位向量a ,b 的夹角为θ,若a在b 上的投影向量为13b ,则cos (θ= )A .13−B .13C. D.36.推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是( )(参考数据:3 1.10ln ≈,10 2.30ln ≈,11 2.40)ln ≈A .2033年B .2034年C .2035年D .2036年7.已知1F ,2F 分别为双曲线22126x y −=的左,右焦点,直线l 过点2F ,且与双曲线右支交于A ,B 两点,O 为坐标原点,△12AF F ,△12BF F 的内切圆的圆心分别为1O ,2O ,则△12OO O 面积的取值范围是( ) A. B.C.)+∞ D. 8.已知01a b <<<,e 为自然对数的底数,则下列不等式不成立的是( ) A .a b ae be <B .b a ae be <C .alna blnb >D .b a a b <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.下列说法错误的是( )A .事件A 的概率P (A )必满足0P <(A )1<B .事件A 的概率P (A )0.999=,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有患胃溃疡的病人服用此药,则估计此药有明显的疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此券10张,一定有5张中奖10.圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A .设内切球的半径为1r ,外接球的半径为2r ,则212r r =B .设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C .设圆锥的体积为1V ,内切球的体积为2V ,则1294V V = D .设S ,T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为215a π11.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .312123122221n n b b b b a a a a n ⋅…=+B .1849既是三角形数,又是正方形数C .12311113320n b b b b +++…+<D .*m N ∀∈,2m ,总存在p ,*q N ∈,使得m p q b a a =+成立 三、填空题:本题共3小题,每小题5分,共15分. 12.已知甲组样本数据(1i x i =,2,…,6),如下表所示:= . 13.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到 个不同的对数值.14.已知抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =,直线l 过C 的焦点F ,且与C 交于M ,N 两点,则||2||MF NF +的最小值为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知函数()sin()cos()sin cos ,(0,||)222f x x x πππωϕωϕωϕ=+−+><的最小正周期为π,且()f x 图象关于直线6x π=对称.(1)求()f x 的解析式;(2)设函数2()()2sin g x f x x =+,求()g x 的单调增区间.16.华容道是古老的中国民间益智游戏,以其变化多端、百玩不厌的特点与魔方、独立钻石一起被国外智力专家并称为“智力游戏界的三个不可思议”.据《资治通鉴》注释中说“从此道可至华容也”.通过移动各个棋子,帮助曹操从初始位置移到棋盘最下方中部,从出口逃走.不允许跨越棋子,还要设法用最少的步数把曹操移到出口.2021年12月23日,在厦门莲坂外图书城四楼佳希魔方,厦门市新翔小学六年级学生胡宇帆现场挑战“最快时间解44×数字华容道”世界纪录,并以4.877秒打破了“最快时间解44×数字华容道”世界纪录,成为了该项目新的世界纪录保持者. (1)小明一周训练成绩如表所示,现用ˆˆy bxa =+作为经验回归方程类型,求出该回归方程; 第x (天) 1 2 3 4 5 6 7 用时y (秒)105844939352315(2)小明和小华比赛破解华容道,首局比赛小明获得胜利的概率是0.6,在后面的比赛中,若小明前一局胜利,则他赢下后一局的概率是0.7,若小明前一局失利,则他赢下后一局比赛的概率为0.5,比赛实行“五局三胜”,求小明最终赢下比赛的概率是多少.参考公式:对于一组数据1(u ,1)v ,2(u ,2)v , ,(n u ,)n v ,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:1ˆi β==,ˆˆv u αβ=− 参考数据:721140ii x ==∑,71994i i i x y ==∑17.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且112BD CD ==,BD CD ⊥.DE ⊥平面ABCD ,且12DEBF ==,//DE BF .点H ,G 分别为线段DC ,EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线//GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,2)D ,直线:l y kx =与椭圆C 交于A ,B 两点,且直线DA 与DB 的斜率之积为13−,(1)求椭圆C 的方程;(2)若直线//l l ′,直线l ′与椭圆C 交于M ,N 两点,且直线DM 与DN 的斜率之和为1,求l ′与l 之间距离的取值范围.19.已知函数2cos ()x xf x x −=,(0,)x ∈+∞. (1)证明:函数()f x 在(0,)+∞上有且只有一个零点; (2)当(0,)x π∈时,求函数()f x 的最小值; (3)设()i i g x k x b =+,1i =,2,若对任意的[2x π∈,)+∞,12()()()g x f x g x 恒成立,且不等式两端等号均能取到,求12k k +的最大值.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符2023-2024学年高二数学下学期期末试卷答案合题目要求的.1.已知集合{|1}A x x a =< ,{|12}B x x =<<,若A B A = ,则实数a 的取值范围是( ) A .(1,)+∞B .(1,2]C .(2,)+∞D .[2,)+∞【分析】由题知B A ⊆,再根据集合关系求解即可. 【解答】解:因为A B A = , 所以B A ⊆,因为{|1}A x x a =< ,{|12}B x x =<<, 则2a ,所以实数a 的取值范围是[2,)+∞. 故选:D .【点评】本题主要考查并集及其运算,属于基础题. 2.已知复数(12)(1)2i z i +−=−+,则||(z = ) AB .2CD .3【分析】利用复数的除法运算法则求出复数,再利用复数模的公式,即可求解. 【解答】解:2(2)(12)5111112(12)(12)5i i i iz i i i i −+−+−=+=+=+=+++−,则||z = 故选:A .【点评】本题主要考查复数模公式,属于基础题. 3.若点(1,1)P −在角α的终边上,则sin()(4πα+= )A .1−B. C .0 D .1【分析】由任意角的三角函数求出sin α,cos α,再由两角和的正弦公式代入即可得出答案. 【解答】解:因为点(1,1)P −在角α的终边上,则sin α=,cos α==所以sin()sin coscos sin0444πππααα+=+==. 故选:C .【点评】本题考查了任意角的三角函数的定义,两角和的正弦公式在三角函数求值中的应用,考查了转化思想,属于基础题.4.在直三棱柱111ABC A B C −中,各棱长均为2,其顶点都在同一球面上,则该球的表面积为( )A .283πB .27C .163π D 【分析】作出图形,找到球心,解三角形求出半径,再根据球的表面积公式,即可求解. 【解答】解:如图,设上下底面中心分别为E ,F , 取EF 的中点O ,连接BO ,BF ,则三棱柱111ABC A B C −外接球的半径R OB =,根据题意易知23BF =1OF =, 222247133R OB BF OF ∴==+=+=,∴三棱柱111ABC A B C −外接球的表面积为22843R ππ=. 故选:A .【点评】本题考查正三棱柱的外接球问题,属基础题.5.设两个单位向量a ,b 的夹角为θ,若a在b 上的投影向量为13b ,则cos (θ= )A .13−B .13C . D【分析】根据投影向量的定义可得13||||a b b b b b ⋅⋅=,结合向量的数量积运算求解即可. 【解答】解: a在b 上的投影向量为13b ,∴13||||a b b b b b ⋅⋅=, ∴211||33a b b ⋅== , ∴1||||cos 3a b θ=,1cos 3θ∴=. 故选:B .【点评】本题主要考查了向量的数量积运算,考查了投影向量的定义,属于基础题.6.推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是( )(参考数据:3 1.10ln ≈,10 2.30ln ≈,11 2.40)ln ≈A .2033年B .2034年C .2035年D .2036年【分析】设经过n 年之后,每年度平均每户收入增加y 元,且4000(110%)12000n y =⋅+>,解不等式可得答案.【解答】解:设经过n 年之后,每年度平均每户收入增加y 元, 由题得4000(110%)12000n y =⋅+>,即1.13n >, 则 1.13nln ln >,33111.11110ln ln n ln ln ln >=≈−,又*n N ∈,则12n =.所以所求年份大约是2035年. 故选:C .【点评】本题考查函数模型的运用,考查学生的计算能力,属于中档题.7.已知1F ,2F 分别为双曲线22126x y −=的左,右焦点,直线l 过点2F ,且与双曲线右支交于A ,B 两点,O 为坐标原点,△12AF F ,△12BF F 的内切圆的圆心分别为1O ,2O ,则△12OO O 面积的取值范围是( )A. B.C.)+∞ D. 【分析】先根据切线长定理判定两个内切圆的横坐标值,再设△12AF F 的内切圆半径为1r ,根据图形性质计算得△12OO O面积的解析式12112)OO O S r r =+ ,再利用函数单调性即可求得△12OO O 面积的取值范围.【解答】解:设圆1O 与1AF ,2AF ,12F F 分别切于点M ,N ,P ,由双曲线定义知,12||||2AF AF a −=,∴12||||||||2AM MF AN NF a +−−=||||AM AN = ,11||||MF F P =,22||||NF F P =,∴12||||F P F P −12||||2F P F P c +=∴12|||F P F P c a ==−,即点P 为双曲线的右顶点,1O P x ⊥ 轴,1O2O12O F 平分21AF F ∠,22O F 平分21BF F ∠,∴1222O F O π∠=, 设△12AF F 、△12BF F 的内切圆半径分别为1r ,2r ,12O O x ⊥ 轴,∴2122||2r r PF ⋅==,||OP =∴12121112()||)2OO O S r r OP r r =+⋅=+ ,设直线AB 倾斜角为α,又AB 为双曲线右支上两点,又渐近线方程为y=,∴由题意得2(,)33ππα∈,∴121(,)63O F Fππ∠∈,∴121tan O F F∠,即1(3r∈,又12112)OO OS rr=+在单调递减,在单调递增,当1r=时,122OO OS=,此时取得最小值,当1r=12OO OS=,当1r=时,12OO OS=,∴12OO OS∈.故选:B.【点评】本题考查了双曲线的性质,属于中档题.8.已知01a b<<<,e为自然对数的底数,则下列不等式不成立的是()A.a bae be<B.b aae be<C.alna blnb>D.b aa b<【分析】采用逐一验证的方法,通过构造函数()xf x xe=,()xeh xx=,()t x xlnx=,()lnxg xx=,根据这些函数在(0,1)上的单调性可得结果.【解答】解:因为01a b<<<,e为自然对数的底数,对于A,设()xf x xe=,01x<<,则()()0xf x x e′=+>,()f x在(0,1)上单调递增,故f(a)f<(b),即a bae be<,故A正确;对于B,设()xeh xx=,01x<<,则2(1)()0xe xh xx−′=<在(0,1)上恒成立,故()h x在(0,1)上单调递减,故h(a)h>(b),即a be ea b>,故b aae be<,故B正确;对于C,设()t x xlnx=,01x<<,则()1t x lnx′=+,当1(0,)xe∈时,()0t x′<,当1(xe∈,1)时,()0t x′>,故()t x在1(0,)e上单调递减,在1(e,1)上单调递增,故t(a)与t(b)得大小关系不确定,故C错误;对于D,设()lnxg xx=,01x<<,则21()0lnxg xx−′=>,故函数()g x在(0,1)上单调递增,所以g (a )g <(b ),即lna lnba b<,化为blna alnb <,即b a lna lnb <,即b a a b <,故D 正确. 故选:C .【点评】本题考查了利用导数研究函数的单调性,依题意合理构造函数,并判断出所构造的函数的单调性是解决问题的关键,考查逻辑推理能力与数学运算能力,属于中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.下列说法错误的是( )A .事件A 的概率P (A )必满足0P <(A )1<B .事件A 的概率P (A )0.999=,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有患胃溃疡的病人服用此药,则估计此药有明显的疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此券10张,一定有5张中奖 【分析】根据概率的定义和性质逐个判断各个选项即可.【解答】解:对于A ,由概率的基本性质可知,0P (A )1 ,故A 错误; 对于B ,事件A 的概率P (A )0.999=,则事件A 是随机事件,故B 错误; 对于C ,由题意可知,估计此药有明显的疗效的可能性为380100%76%500×=,故C 正确; 对于D ,某奖券的中奖率为50%,则某人购买此券10张,可能有5张中奖,故D 错误. 故选:ABD .【点评】本题主要考查了概率的定义和性质,属于基础题.10.圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A .设内切球的半径为1r ,外接球的半径为2r ,则212r r =B .设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C .设圆锥的体积为1V ,内切球的体积为2V ,则1294V V = D .设S ,T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为215a π【分析】作出圆锥的轴截面,依题意可得PAB ∆为等边三角形,设球心为G (即为PAB ∆的重心),即可求出PAB ∆的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D . 【解答】解:作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB ∆为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB ∆的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==, 所以212r r =,故A 正确;设内切球的表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则23113V a a π==, 内切球的体积2V,则3324)3V a π==, 所以1294V V =,故C 正确;设S 、T 是圆锥底面圆上的两点,且ST a =,则ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D,则sin3OD a π==,不妨设D 为OB 上的点,连接PD ,则PD ,过点G 作GE PD ⊥交PD 于点E ,则PEG POD ∆∆∽, 所以GE PG OD PD ==,解得GE =, 所以平面PST截内切球截面圆的半径r 所以截面圆的面积为2215a r ππ=,故D 正确.故选:ACD .【点评】本题考查圆锥的内切球与外接球问题,属中档题.11.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .312123122221n n b b b b a a a a n ⋅…=+B .1849既是三角形数,又是正方形数C .12311113320n b b b b +++…+<D .*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立 【分析】利用累加法分别求出n a ,n b ,进而分别利用裂项求和法、放缩法,逐个分析各个选项即可. 【解答】解:三角形数构成数列{}:1n a ,3,6,10,…,易发现212a a −=,323a a −=,434a a −=,…,1(2)n n a a n n −−= , 累加得,1(1)(2)2342n n n a a n −+−=+++…+=,(1)(2)2n n n a n +∴= , 显然11a =满足上式, (1)2n n n a +∴=, 正方形数构成数列{}:1n b ,4,9,16,…,易发现213b b −=,325b b −=,437b b −=,…,121(2)n n b b n n −−=− , 累加得1(22)(1)2n n n b b +−−=, 2(2)n b n n ∴= , 显然11b =满足上式,2n b n ∴=,对于A ,22(1)1n n b n na n n n ==++, 3121231231222223411n n b b b b n a a a a n n ⋅⋅⋅…⋅=×××…×=++,故A 正确; 对于B ,令(1)18492nn n a +==,得(1)3698n n +=, 606136603698×=< ,616238443698×=>,(1)3698n n ∴+=无正整数解,即1849不是三角形数,令21849nb n ==,43n ∴=,即1849是正方形数,故B 错误; 对于C ,22114112()412121n b n n n n ==<=−−−+, ∴2212311111115111111511332331()2()2()434577921214521202120nb b b b nn n n n +++…++++…+<+−+−+…+−+−−<−+++,故C 正确;对于D ,取m p q ==,且*m N ∈, 令2(1)(1)22m m m m m +−=+,有1mm m b a a −=+,故*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立,故D 正确. 故选:ACD .【点评】本题主要考查了数列的应用,考查了归纳推理,考查了转化思想和运算求解能力,属于中档题.三、填空题:本题共3小题,每小题5分,共15分. 12.已知甲组样本数据(1i x i =,2,…,6),如下表所示:1x2x3x4x5x6x2 3 3 4 6 6若乙组样本数据23i i y x =−,则乙组样本数据的平均数y = 5 ,乙组样本数据的方差2s =乙. 【分析】根据题意,求出乙组数据,结合平均数和方差定义计算,即可得答案. 【解答】解:根据题意,乙组样本数据如下表所示:1y2y3y4y5y6y1 3 3 5 9 9则乙组样本数据的平均数1(133599)56y =×+++++=, 乙组样本数据的方差()()()()()()222222212815353555959563s =−+−+−+−+−+−=乙. 故答案为:5;283. 【点评】本题考查样本数据平均数、方差的计算,注意平均数和方差的计算公式,属于基础题. 13.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到 17 个不同的对数值.【分析】分所取得两个数中是否含有1分为两类,再利用排列的计算公式、对数的运算法则和性质即可得出.【解答】解:根据题意,分2种情况讨论:①当取得两个数中有一个是1时,则1只能作真数,此时log 10a =,2a =或3或4或7或9. ②所取的两个数不含有1时,即从2,3,4,7,9中任取两个, 分别作为底数与真数可有2520A =个对数,其中3924log log =,2439log log =,4923log log =,2349log log =,综上可知:共可以得到201417+−=个不同的对数值. 故答案为:17.【点评】本题考查计数原理的应用,熟练掌握对数的运算法则和性质、排列的计算公式是解题的关键.14.已知抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =,直线l 过C 的焦点F ,且与C 交于M ,N 两点,则||2||MF NF +的最小值为 3+【分析】由已知可求得抛物线方程,设直线:1l x my =+,与抛物线联立方程组可求得111||||MF NF +=,进而根据基本不等式求||2||MF NF +最小值即可. 【解答】解:由抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =, 得到第一象限交点(1,2)在抛物线2:2(0)C y px p =>上,所以222p =, 解得2p =,所以2:4C y x =,则(1,0)F ,设直线:1l x my =+,与24y x =联立得2440y my −−=, 设1(M x ,1)y ,2(N x ,2)y ,所以124y y m +=,124y y =−,所以212|||4(1)MN y y m −=+, 由抛物线的定义,21212221221212122()41111441()||||111144()316x x m y y m y y MF NF x x x x x x m m y y ++++++=+====+++++++++,所以112||||||2||(||2||)()33||||||||NF MF MF NF MF NF MF NF MF NF +=++=+++, 当且仅当||1MF =,||1NF =+故答案为:3+【点评】本题考查求抛物线的方程,考查基本不等式的应用,考查运算求解能力,属中档题. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知函数()sin()cos()sin cos ,(0,||)222f x x x πππωϕωϕωϕ=+−+><的最小正周期为π,且()f x 图象关于直线6x π=对称.(1)求()f x 的解析式;(2)设函数2()()2sin g x f x x =+,求()g x 的单调增区间. 【分析】(1)利用诱导公式及两角和的正弦公式化简,再根据正弦函数的周期性及对称性即可得解; (2)先利用降幂公式及辅助角公式化简,再根据正弦函数的单调性即可得解. 【解答】解:(1)已知()sin()cos()sin cos cos sin sin cos sin()22f x x x x x x ππωϕωϕωϕωϕωϕ=+−+=+=+, 因为函数的最小正周期为π, 所以2ππω=,故2ω=,又因()f x 图象关于直线6x π=对称,所以262k ππϕπ×++,k Z ∈,则,6k k Z πϕπ=+∈,又||2πϕ<, 所以6πϕ=,所以()sin(2)6f x x π=+;(2)由(1)得2()sin(2)6g x x sin x π=++11cos 22cos 2222xx x −++⋅12cos 21sin(2)126x x x π−+=−+, 令222262k x k πππππ−+−+ ,得,63k x k k Z ππππ−++∈,所以函数()g x 的单调递增区间为[,],63k k k Z ππππ−++∈.【点评】本题考查了三角函数的性质,重点考查了三角恒等变换,属中档题.16.华容道是古老的中国民间益智游戏,以其变化多端、百玩不厌的特点与魔方、独立钻石一起被国外智力专家并称为“智力游戏界的三个不可思议”.据《资治通鉴》注释中说“从此道可至华容也”.通过移动各个棋子,帮助曹操从初始位置移到棋盘最下方中部,从出口逃走.不允许跨越棋子,还要设法用最少的步数把曹操移到出口.2021年12月23日,在厦门莲坂外图书城四楼佳希魔方,厦门市新翔小学六年级学生胡宇帆现场挑战“最快时间解44×数字华容道”世界纪录,并以4.877秒打破了“最快时间解44×数字华容道”世界纪录,成为了该项目新的世界纪录保持者. (1)小明一周训练成绩如表所示,现用ˆˆy bxa =+作为经验回归方程类型,求出该回归方程; 第x (天) 1 2 3 4 5 6 7 用时y (秒)105844939352315(2)小明和小华比赛破解华容道,首局比赛小明获得胜利的概率是0.6,在后面的比赛中,若小明前一局胜利,则他赢下后一局的概率是0.7,若小明前一局失利,则他赢下后一局比赛的概率为0.5,比赛实行“五局三胜”,求小明最终赢下比赛的概率是多少.参考公式:对于一组数据1(u ,1)v ,2(u ,2)v , ,(n u ,)n v ,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i nii uu v v uu β==−−=−∑∑,ˆˆv u αβ=− 参考数据:721140ii x ==∑,71994i i i x y ==∑【分析】(1)先求出,x y ,套公式求出ˆb和ˆa ,得到回归方程; (2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5,分别求出其对应的概率,利用概率的加法公式即可求解.【解答】解:(1)由题意,根据表格中的数据,可得11(1234567)4,(105844939352315)5077x y =++++++==++++++=, 可得71722179941400ˆ14.5287i ii ii x yxybxx ==−−===−−∑∑,所以ˆˆ108a y bx =−=,因此y 关于x 的回归方程为:14.5108y x =−+;(2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5, (3)0.60.70.70.294P X ==××=,(4)0.40.50.70.70.60.30.50.70.60.70.30.50.224P X ==×××+×××+×××=,(5)0.60.70.30.50.50.60.30.50.30.50.60.30.50.50.70.40.50.50.70.70.40.50.30.50.70.40.50.70.30.50.1675P X ==××××+××××+××××+××××+××××+××××=,0.2940.2240.16750.6855P =++=小明获胜.【点评】本题考查了线性回归方程的计算以及互斥事件的概率加法计算,属于中档题. 17.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且112BD CD ==,BD CD ⊥.DE ⊥平面ABCD ,且12DEBF ==,//DE BF .点H ,G 分别为线段DC ,EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线//GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.【分析】(1)法()i 过点G 作BD 的垂线,由题意可得//QH 平面BCF ,且//GQ 平面BCF ,进而可证得平面//GQH 平面BCF ,再证得线面的平行;法()ii 由题意建立空间直角坐标系,求出各点的坐标,由向量的数量积为0,可得向量垂直,再证得线面的平行;(2)由空间向量求出直线与平面的法向量的夹角的余弦值,进而可得线面所成的角的正弦值,由题意可得λ的值.【解答】(1)证明:法()i 过点G 作BD 的垂线,交BD 于点Q ,则//GQ BF , 连接QH ,则12DQ λ=,且由DH λ=,所以2DH DQ =,//QH BC ,又因为QH ⊂平面BCF ,BC ⊂平面BCF , 所以//QH 平面BCF ,且//GQ 平面BCF , 又GQ QH Q = ,所以平面//GQH 平面BCF , 又因为HG HQG ⊂, 所以//HG 平面BCF ;法()ii 因为112BDCD ==,12DE BF ==,如图,以D 为原点,分别以DC ,DB ,DE 方向为x ,y ,z 轴建立坐标系,由题意可得(2C ,0,0),(0B ,1,0),(2A −,1,0),E,F , (2,1,0)BC =−,BF =,(2,AE =−,EF = , 设平面BCF 的法向量为1111(,,)n x y z =,则1100n BC n BF ⋅= ⋅=,即111200x y −= = ,取11x =,解得1(1,2,0)n =, 因为2DC EF ==,EG DH λ==,所以,22DH DC EG EF λλ== ,2EG EF λ=,解得(H λ,0,0),(0,)2G λ+,(,,)2GH λλ=−−, 所以10n GH ⋅=,且GH ⊂/平面BCF ,所以//GH 平面BCF ;(2)设平面AEF 的法向量为2222(,,)n x y z =, 则由2200n AE n EF ⋅= ⋅=,即22222200x y y −= +=,令21z =−,解得2n =1)−,所以2n GH ⋅=++=,||GH=,||n =,所以2cos n <,GH >=,设直线GH 与平面AEF 所成的角为θ, 则2sin |cos n θ=<,||GH >= , 解得1λ=.【点评】本题考查线面平行的证法及空间向量的方法求线面所成角的正弦值,属于中档题.18.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,2)D ,直线:l y kx =与椭圆C 交于A ,B 两点,且直线DA 与DB 的斜率之积为13−,(1)求椭圆C 的方程;(2)若直线//l l ′,直线l ′与椭圆C 交于M ,N 两点,且直线DM 与DN 的斜率之和为1,求l ′与l 之间距离的取值范围.【分析】(1)联立方程组,根据13DA DB k k =−,利用韦达定理可求a ,从而得解;(2)设直线:l y kx m =+,(2)m ≠±,联立方程 组,根据1DM DN k k +=,利用韦达定理可得42m k =−,由两平行直线间的距离公式,并利用导数求最值. 【解答】解:(1)设1(A x ,1)kx ,2(B x ,2)kx ,由题意,可知2b =,则椭圆222:14x y C a +=, 联立方程组22214y kxx y a=+= ,整理可得:2222(4)40a k x a +−=,显然△0>,且120x x +=,2122244a x x a k −=+, 因为13DA DB k k =−,即12122213kx kx x x −−⋅=−, 化简得21212(31)6()120k x x k x x +−++=,所以22224(31)1204a k a k −+⋅+=+, 解得212a =,所以椭圆22:1124x y C +=; (2)由直线//l l ′,设直线:l y kx m =+,(2)m ≠±,设3(M x ,3)kx m +,4(B x ,4)kx m +, 联立方程组221124y kx m x y =+ +=,整理可得:222(13)63120k x kmx m +++−=, 则△222222364(31)(4)12(124)0k m k m k m −+−=−+>,可得22124m k + ,① 且342631kmx x k −+=+,234231231m x x k −=+, 又因为1DM DN k k +=,即3434221kx m kx m x x +−+−+=, 化简得3434(21)(2)()0k x x m x x −+−+=,则2223126(21)(2)03131m kmk m k k −−−+−=++, 化简得(2)(42)0m k m −−−=,因为2m ≠±,所以42m k =−, 结合①可知04k <<,l ′与l之间距离d = 设22441()1k k g k k −+=+,则222(21)(2)()(1)k k g k k −+′=+, 当12k =时,()0g k ′=, 则当1(0,)2k ∈,()0g k ′<,则()g x 单调递减,当1(,4)2k ∈,()0g k ′>,则()g x 单调递增,所以1()()02min g x g ==,又(0)1g =,(4)g =所以49()17g x <,所以d ∈.【点评】本题考查椭圆方程的求法,直线与椭圆的综合应用,平行线间的距离公式的应用,用导函数的性质可得函数值域的求法,属于中档题. 19.已知函数2cos ()x xf x x−=,(0,)x ∈+∞. (1)证明:函数()f x 在(0,)+∞上有且只有一个零点; (2)当(0,)x π∈时,求函数()f x 的最小值; (3)设()i i g x k x b =+,1i =,2,若对任意的[2x π∈,)+∞,12()()()g x f x g x 恒成立,且不等式两端等号均能取到,求12k k +的最大值.【分析】(1)设()cos h x x x =−,求导分析单调性,可得存在唯一0(6x π∈,)π,使得0()0h x =,进而可得答案.(2)求导得3sin 2cos ()x x x xf x x −−′=,分析()f x ′的符号,进而可得()f x 的单调性,即可得出答案.(3)分析当2b π<−时,0b 时,当2b π=−时,20b π−< 时,12k k +的最大值,即可得出答案.【解答】解:(1)证明:设()cos h x x x =−, 则()sin 1h x x ′=−−, 因为1sin 1x − , 所以()0h x ′ 恒成立,所以()h x 在(0,)+∞上单调递减,又因为()066h ππ−>,()10h ππ=−−<, 所以存在唯一0(6x π∈,)π,使得0()0h x =,所以()f x 在(0,)+∞上有且只有一个零点, (2)3sin 2cos ()x x x xf x x −−′=, 设()sin 2cos m x x x x x =−−,()1sin cos 1cos (tan )m x x x x x x x ′=+−=+−, ()cos cos sin m x x x x x ′′=−+, 当(0,)x π∈上,sin 0x x >,()0m x ′′>,()m x ′单调递增, 又(0)10m ′=>,所以()m x 在(0,)π上的单调递增,因为()02m π=,所以当(0,)2x π∈时,()0m x <,()f x 单调递减,当(2x π∈,)π时,()0m x >,()f x 单调递增,所以()f x 在(0,)π上有最小值2()2f ππ=−.(3)由(1)可知,[2x π∈,)+∞时,()0f x <,由(2)可知2x π=为()f x 的极小值点,且[x π∈,)+∞时,222cos 112x x x x x πππ−−−−−>− , 所以[2x π∈,)+∞时,()f x 在2x π=取到最小值2π−,2b π<−时,10k >,存在1(x m ∈,)+∞使得1()0g x >与1()()f x g x 矛盾,0b 时,20k <,存在2(x m ∈,)+∞使得22()g x π<−与2()()f x g x 矛盾,当2b π=−时,令10k =,则12()g x π=−,满足题,此时1k 取得最大值,再过点2(0,)π−作函数()f x 的切线,设切点为(P t ,())f t ,则2()()f t b f t t +′=,解得32t π=, 所以切线方程为2829x y ππ=−, 当2b π=−时,2k 的最大值为289π−,又因为3(2x π∈,)+∞时,33sin 2cos 22cos ()x x x x x x f x x x −−−′=, 设322cos ()x xx x ϕ−=, 4442sin 3cos 233()0x x x x x x xx x x x ϕ−++−++−′=<=<,所以()x ϕ单调递减, 即3222cos 8()9x x f x x π−′,所以20π−< 时,12k k +取得最大值289π,接下来证明当[2x π∈,)+∞时,22cos 829x x x x ππ−− , 先证:32282()cos 09x x q x x x ππ=−+− ,[2x π∈,3]2π恒成立, 2284()1sin 3x xq x x ππ′=−++, 2164()cos 3x q x x ππ′′=−+,216()sin 3q x x π′′′=−, 当[2x π∈,3]2π时,()q x ′′′单调递增, 216()1023q ππ′′′=−+<,2316()1023q ππ′′′=+>,216()03q ππ′′′=>, 所以存在唯一的1(2x π∈,)π使得()0q x ′′′=,且(2x π∈,1)x 时,()0q x ′′′<,()q x ′′单调递减,1(x x ∈,3)2π时,()0q x ′′′>,()q x ′′单调递增, 因为2()023q π′=>,1()03q π′=−<,3()02q π′=, 所以存在唯一的3(2x π∈,)π使得()0q x ′=,且(2x π∈,3)x 时,()0q x ′>,()q x 单调递增, 3(x x ∈,3)2π时,()0q x ′<,()q x 单调递减, 又因为()29q ππ=,3()02q π=,所以当[2x π∈,3]2π时,32282()cos 09x x q x x x ππ=−+− , 当3[2x π∈,)+∞时,228442()1sin (1)1sin 0333x x x x q xx x πππ′=−++=−++ , 所以()0q x , 综上所述,[2x π∈,)+∞时,22cos 829x x x x ππ−− , 当3(2x π∈,)+∞,332sin 2cos 22cos 8()9x x x x x x f x x x π−−−′= , 所以当20b π−< 时,2k 的最大值为289π,即12k k +的最大值为289π.【点评】本题考查导数的综合应用,解题中需要理清思路,属于难题.。
2020-2021学年高二数学下学期期末考试试题 (III)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个) 1. 抛物线218yx 的准线方程是( ) A . 132x =- B .2yC .132yD .2y2.设命题2:0 , log 23p x x x ∀><+,则p ⌝为 ( )A .20 , log 23x x x ∀>+≥B .20 , log 23x x x ∃><+C .20 , log 23x x x ∃>+≥D .20 , log 23x x x ∀<+≥ 3. 已知命题2:,10P x R x x ;命题q 若22a b ,则a b .下列命题为真命题的是( ) A. pq B. pq C. p q D.p q4. 设函数()f x 的导函数为()f x ',且2()2(1)f x x xf '=+,则(1)f '-= ( ) A .0 B .6- C .3- D .2-5. 过双曲线C:2213y x 的右焦点作直线l 交该双曲线于B A ,两点,则满足6AB的直线l 有( )A. 1条B. 2条C. 3条D.4条6. 函数()3123f x x x =-+,()3xg x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 ( )A.11B.12C.13D.147.如图,三棱锥V ABC -的底面ABC 是等腰直角三角形,AB BC =,侧面VAC 与底面垂直,已知其正视图的面积为3,则其侧视图的面积为( )A .223B .23C . 43D .2438.若关于x 的不等式0x e ax -≥对任意(0,)x ∈+∞恒成立,则a 的取值范围是 ( ) A .[]0,e B .(,0]-∞C .[,)e +∞D .(,]e -∞9.如图,060的二面角的棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB . 已知4,6,8AB AC BD ===,则CD 的长为 ( ) A .17 B .7 C .217 D .910. 椭圆221164x y +=上的一点A 关于原点的对称点为B ,F 为它的右焦点, 若AF BF ⊥,则AFB ∆的面积是( )A .4 B. 2 C.1 D.3211.已知椭圆2212:1(1)x C y m m+=>与双曲线()01:2222>=-n y nx C的焦点重合,12,e e 分别为12,C C 的离心率,则( )A. m n >且121e e >B. m n >且121e e <C. m n <且121e e >D. m n <且121e e <12. 已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A. 1(,)2-∞ B. 1(0,)2C. (0,1)D. (,1)-∞二、填空题(本大题共4小题,每小题5分,共20分) 13.复数()()141i i z i--=+的共轭复数是__________.14.由直线01x x ==,,曲线xy e =及x 轴围成的图形的面积是 . 15. 已知aR ,设函数()ln f x ax x 的图象在点(1,(1))f 处的切线为,则在轴上的截距为_________________.16.已知抛物线2:4yx 的焦点为F ,准线与x 轴的交点为K ,点P 在抛物线Γ上,且2PK PF =,则△PKF 的面积为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=-=ty t x 33,(t 为参数),以坐标原点为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为03cos 42=+-θρρ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点P 是曲线C 上的一个动点,求它到直线l 的距离d 的取值范围.18.(本小题满分12分)已知函数()2f x x a a =-+. (1)当3a =时,求不等式()6+f x x ≤的解集;(2)设函数()23g x x =-.x ∀∈R ,()()5f x g x +≥,求a 的取值范围.19.(本小题满分12分)已知命题()21:,2102p x R x m x ∃∈+-+≤,命题:q “曲线222:128x y C m m +=+表示焦点在x 轴上的椭圆”,命题:s “曲线22:11x y C m t m t +=---表示双曲线”(1)若“p q ∧”是真命题,求m 的取值范围; (2)若q 是s 的必要不充分条件,求t 的取值范围.20.(本小题满分12分)如图,在四棱锥P -ABCD 中,PA ⊥面ABCD ,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =PA =2,E ,F 分别为PB ,AD 的中点.(1) 证明:AC ⊥EF ;(2)求直线EF 与平面PCD 所成角的正弦值.21.(本小题满分12分)已知椭圆E :22221x y a b +=(0a b >>)经过点53,22⎛⎫ ⎪ ⎪⎝⎭,离心率为255,点O 为坐标原点. (1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点F 任作一直线l ,交椭圆E 于P ,Q 两点,求OP OQ ⋅的取值范围.22.(本题满分12分)已知()212ln xf x x+=. (1)求()f x 的单调区间;(2)令()22ln g x ax x =-,则()1g x =时有两个不同的根,求a 的取值范围;(3)若存在1x ,()21,x ∈+∞且12x x ≠,使|ln ln ||)()(|2121x x k x f x f ->-成立,求k 的取值范围.一、选择题1-5 D C B B C 6-10 D B D C A 11-12 A B 二、填空题13、14i 14、1e - 15、1 16、 2 三、解答题17解:(Ⅰ)直线l 的普通方程为:0333=+-y x ; (2分) 曲线C 的直角坐标方程为:1)2(22=+-y x (5分) (Ⅱ)设点)sin ,cos 2(θθ+P )(R ∈θ,则2|35)6cos(2|2|33sin )cos 2(3|++=+-+=πθθθd所以d 的取值范围是5353[1,1]22-+(10分) (注:几何法略)18.解:(1)当3a =时,()6f x ≤等价于233x x --≤ 当23≥x 时,解得]6,23[∈x ; 当 230〈〈x 时,解得)23,0(∈x 当0≤x 时,解得{}0∈x ; 所以解集为{}06x x ≤≤. (5分)(2)当x ∈R 时,()()232f x g x x a a x +=-++-2323x a x a a a ≥-+-+=-+, 所以当x ∈R 时,()()5f x g x +≥等价于35a a -+≥.① (7分) 当5a ≤时,①等价于35a a -+≥,无解;当3a >时,①等价于35a a -+≥,解得4a ≥, 所以a 的取值范围是[)4,+∞.(10分) 19.(Ⅰ)解:若p 为真,则21(1)4202m ∆=--⨯⨯≥解得:m ≤-1或m ≥3 2分 若q 为真,则228280m m m ⎧>+⎨+>⎩解得:-4 < m < -2或m > 4 4分若“p 且q ”是真命题,则13424m m m m ≤或≥或-⎧⎨-<<->⎩解得:42m -<<-或m > 4 6分∴m 的取值范围是{ m |42m -<<-或m > 4} 7分 (Ⅱ)解:若s 为真,则()(1)0m t m t ---<,即t < m < t + 1 8分 ∵由q 是s 的必要不充分条件∴{|1}{|424}m t m t m m m <<+-<<->或 9分 即412t t -⎧⎨+-⎩≥≤或t ≥4 11分 解得:43t --≤≤或t ≥4∴t 的取值范围是{ t |43t --≤≤或t ≥4} 12分20. 解:(1)易知AB ,AD ,A P 两两垂直.如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为:A(0,0,0),B(t,0,0),C(t,1,0),D(0,2,0),P(0,0,2), E(t 2,0,1),F(0,1,0).从而EF →=(-t 2,1,-1),AC →=(t,1,0),BD →=(-t,2,0).因为AC ⊥BD ,所以AC →·BD →=-t2+2+0=0.解得t =2或t =-2(舍去). (3分) 于是EF →=(-22,1,-1),AC →=(2,1,0).因为AC →·EF →=-1+1+0=0,所以AC →⊥EF →,即AC ⊥EF. (5分) (2) 由(1)知,PC →=(2,1,-2),PD →=(0,2,-2).设n =(x ,y ,z)是平面PCD 的一个法向量,则⎩⎨⎧2x +y -2z =02y -2z =0令z =2,则n =(1,2,2). (10分) 设直线EF 与平面PCD 所成角为θ,则sinθ=|cos <n ,EF →>|=15.即直线EF 与平面PCD 所成角的正弦值为15. (12分)21.解:(1)因为222253144415a b b a ⎧+=⎪⎪⎨⎪-=⎪⎩,所以51a b ⎧=⎪⎨=⎪⎩,从而2c =,椭圆E 的方程为2215x y +=. (4分)(2)()2,0F -,当直线l 的斜率不存在时,可得52,5P ⎛⎫- ⎪ ⎪⎝⎭,52,5Q ⎛⎫-- ⎪ ⎪⎝⎭, 此时119455OP OQ ⋅=-=; (5分) 当直线l 的斜率存在时,设l :()2y k x =+,()11,P x y ,()22,Q x y ,联立()2y k x =+与2215x y +=,可得()222215202050k x k x k +++-=, 所以21222015k x x k +=-+,212220515k x x k -=+, (7分)1212OP OQ x x y y ⋅=+()()2221212124k x x k x x k =++++, 所以()222205115k OP OQ k k -⋅=+⋅++2222202415k k k k ⎛⎫⋅-+ ⎪+⎝⎭2224419519515515k k k-==-++, (10分) 因为20k ≥,2511k +≥,所以2444450515k-≤-<+,从而1955OP OQ -≤⋅<,综上可得OP OQ ⋅的取值范围是195,5⎡⎤-⎢⎥⎣⎦. (12分) 22.解:(1)()34ln xf x x -'=.令()0f x '=得1x =, ()0,1x ∈时,()0f x '>,()f x 单调递增; ()1,x ∈+∞时,()0f x '<,()f x 单调递减.综上,()f x 单调递增区间为()0,1,单调递减区间为()1,+∞. (3分) (2)①当0≤a 时,()'0gx <,单调递减,故不可能有两个根,舍去②当0>a 时, 10,x a ⎛⎫∈ ⎪ ⎪⎝⎭时,()'0g x <,()f x 单调递减, 1,x a ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()'0g x >,()f x 单调递增.所以11g a ⎛⎫< ⎪ ⎪⎝⎭得01a <<. 综上, 01a << (7分) (注:可利用第(1)问结论用分离参数法) (3)不妨设121x x >>,由(1)知()1,x ∈+∞时,()f x 单调递减.()()1212ln ln f x f x k x x -≥-,等价于()()()2112ln ln f x f x k x x -≥-即()()2211ln ln f x k x f x k x +≥+存在1x ,()21,x ∈+∞且12x x ≠,使()()2211ln ln f x k x f x k x +≥+成立令()()ln h x f x k x =+,()h x 在()1,+∞存在减区间()234ln 0kx xh x x -'=<有解,即24ln x k x <有解,即2max4ln x k x ⎛⎫< ⎪⎝⎭ 令()24ln xt x x =,()()3412ln x t x x-'=,()0,x e ∈时,()0f x '>,()f x 单调递增, (),x e ∈+∞时,()0f x '<,()f x 单调递减,2max 4ln 2x x e⎛⎫= ⎪⎝⎭,∴2k e <. (12分)【感谢您的阅览,下载后可自由编辑和修改,关注我每天更新】。
郴州市2023-2024学年高二下学期期末教学质量监测数学(试题卷)注意事项:1.试卷分试题卷和答题卡.试卷共6页,有四大题,19小题,满分150分.考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准者证条形码粘贴在答题卡的指定位置,3.考生作答时,选择题和非选择题均须作在答题卡上,在试题卷上作答无效考生在答题卡上按答题卡中注意事项的要求答题.4.考试结束后,将试题卷和答题卡一并交回.一、单项选择题(本大题共8小题,每小题5分,共40分,在所给的四个选项中,只有一个最佳答案,多选或不选得0分)1.设x ∈R ,则“3x >”是“2x >”的( )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件2.已知i 为虚数单位,若复数12,z z 在复平面内对应的点分别为()()2,1,1,2-,则复数12z z ⋅=( )A.5iB.5i -C.45i +D.45i-+1sin170=( )A.-4B.4C.-2D.24.已知P 为椭圆2222:1(0)x y C a b a b+=>>上一动点,12F F 、分别为其左右焦点,直线1PF 与C 的另一交点为2,A APF 的周长为16.若1PF 的最大值为6,则该椭圆的离心率为( )A.14 B.13 C.12 D.235.若n 为一组数8,2,4,9,3,10的第六十百分位数,则二项式1nx ⎫+⎪⎭的展开式的常数项是( )A.28B.56C.36D.406.三位老师和4名同学站一排毕业留影,要求老师们站在一起,则不同的站法有:( )A.360种B.540种C.720种D.900种7.已知函数()2(0,0)f x x bx c b c =-+>>的两个零点分别为12,x x ,若12,,2x x -三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式0x bx c-≤-的解集为( )A.(](),45,∞∞-⋃+B.[]4,5C.()[),45,∞∞-⋃+D.(]4,58.设函数()f x 在R 上存在导数(),f x x '∀∈R ,有()()2f x f x x -+=,在()0,∞+上()f x x '<,若()()932262f m f m m --≥-,则实数m 的取值范围是( )A.1,4∞⎡⎫+⎪⎢⎣⎭B.1,2∞⎡⎫+⎪⎢⎣⎭C.[)1,∞+D.3,4∞⎡⎫+⎪⎢⎣⎭二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.如图,正方体1111ABCD A B C D -的边长为2,M 为11A D 的中点,动点P 在正方形ABCD 内(包含边界)运动,且MP =.下列结论正确的是( )A.动点P 的轨迹长度为π;B.异面直线MP 与1BB 所成角的正切值为2;C.MP AB ⋅的最大值为2;D.三棱锥P MAD -的外接球表面积为25π4.10.已知定义域在R 上的函数()f x 满足:()1f x +是奇函数,且()()11f x f x -+=--,当[]()21,1,1x f x x ∈-=-,则下列结论正确的是( )A.()f x 的周期4T =B.5324f ⎛⎫=⎪⎝⎭C.()f x 在[]5,4--上单调递增D.()2f x +是偶函数11.锐角ABC 中,角,,A B C 的对边为,,a b c .且满足4,2a b c ==+.下列结论正确的是()A.点A的轨迹的离心率e =3c <<C.ABC 的外接圆周长()4π,5πl ∈D.ABC 的面积()3,6ABC S ∈ 三、填空题(本题共3小题,每小题5分,共15分.)12.若直线:220l kx y k -+-=与曲线:C y =k 的取值范围是__________.13.已知数列{}n a 满足:()()111,11n n a na n a n n +=-+=+.若()1n nnb n a =+,则数列{}n b 的前n 项和n S =__________.14.暑假将临,大学生小明同学准备利用假期探访名胜古迹.已知某座山高䇯入人云,整体呈圆锥形,其半山腰(母线的中点)有一座古寺,与上山入口在同一条母线上,入口和古寺通过一条盘山步道相连,且当时为了节省资金,该条盘山步道是按“到达古寺的路程最短”修建的.如图,已知该座山的底面半径()2km R =,高)km h =,则盘山步道的长度为__________,其中上山(到山顶的直线距离减小)和下山(到山顶的直线距离增大)路段的长度之比为__________.(第一空2分,第二空3分)四、解答题(本大题共5小题,共77分)15.(本题满分13分)在锐角ABC 中,内角,,A B C 所对的边分别为,a b ,c ,且满足()sin cos sin 1cos c A B b C A =+.(1)证明:2A B =;(2)求ca的取值范围.16.(本题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面,2,ABCD PA AD E ==为线段PD 的中点,F 为线段PC (不含端点)上的动点.(1)证明:平面AEF ⊥平面PCD ;(2)是否存在点F ,使二面角P AF E --的大小为45 ?若存在,求出PFPC的值,若不存在,请说明理由.17.(本题满分15分)已知函数()2cos e ,xf x ax x a =+-∈R .(1)若()f x 在()0,∞+上单调递减,求实数a 的取值范围;(2)当0a =时,求证()1f x <在ππ,22x ⎛⎫∈- ⎪⎝⎭上恒成立.18.(本题满分17分)已知()2,A a 是抛物线2:2C y px =上一点,F 是抛物线的焦点,已知4AF =,(1)求抛物线的方程及a 的值;(2)当A 在第一象限时,O 为坐标原点,B 是抛物线上一点,且AOB 的面积为1,求点B 的坐标;(3)满足第(2)问的条件下的点中,设平行于OA 的两个点分别记为12,B B ,问抛物线的准线上是否存在一点P 使得,12PB PB ⊥.19.(本题满分17分)材料一:在伯努利试验中,记每次试验中事件A 发生的概率为p ,试验进行到事件A 第一次发生时停止,此时所进行的试验次数为ξ,其分布列为()()1(1)1,2,3,k P k p p k ξ-==-⋅=⋯,我们称ξ服从几何分布,记为()GE p ξ~.材料二:求无穷数列的所有项的和,如求2311111112222k k S ∞-==++++=∑ ,没有办法把所有项真的加完,可以先求数列前n 项和11112122nn k nk S -=⎛⎫==- ⎪⎝⎭∑,再求n ∞→时n S 的极限:1lim lim 2122n nn n S S →∞→∞⎛⎫==-= ⎪⎝⎭根据以上材料,我们重复抛掷一颗均匀的骰子,直到第一次出现“6点”时停止.设停止时抛掷骰子的次数为随机变量X.(1)证明:1()1k P X k∞===∑;(2)求随机变量X的数学期望()E X;(3)求随机变量X的方差()D X.郴州市2023-2024学年高二下学期期末教学质量监测数学参考答案和评分细则一、单项选择题(本大题共8小题,每小题5分,共40分,在所给的四个选项中,只有一个最佳答案,多选或不选得0分)1-5BABCA6-8CDD二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.ACD 10.BC11.CD三、填空题(本题共3小题,每小题5分,共15分)12.10,2⎛⎤ ⎥⎝⎦13.1nn +14.5:2四、解答题(本大题共5小题,共77分)15.(本题满分13分)(1)由()sin cos sin 1cos c A B b C A =+,结合正弦定理得()sin sin cos sin sin 1cos ,sin 0C A B C B A C =+≠ 可得sin cos cos sin sin A B A B B -=,所以()sin sin A B B -=,所以A B B -=或()πA B B -+=(舍去),所以2A B=(2)在锐角ABC 中,02022032B A B C B ππππ⎧<<⎪⎪⎪<<<⎨⎪⎪<=-<⎪⎩,即ππ64B <<,cos B <<sin sin3sin2cos cos2sin 12cos sin sin2sin22cos c C B B B B B B a A B B B+====-.令1cos ,2,2B t y t t t ==-∈,因为122y t t =-在上单调递增,所以y y>=<=,所以ca∈.16.(1)证明: 底面ABCD为正方形,CD AD∴⊥.PA⊥平面,ABCD PA CD∴⊥.PA AD A⋂=CD∴⊥平面PAD.又AE⊂平面,PAD CD AE∴⊥.,PA PD E=为PD的中点,AE PD∴⊥.,CD PD D AE⋂=∴⊥平面PCD.AE⊂平面,AEF∴平面AEF⊥平面PCD.(2)以AB AD AP、、分别为x轴、y轴、z轴建立空间直角坐标系,()()0,0,0,2,0,0A B,()()()()2,2,0,0,2,0,0,0,2,0,1,1C D P E设(01)PF PCλλ=<<,()()2,2,22,0,1,1AF AP PF AP PC AEλλλλ=+=+=-=,设平面AEF的法向量()111,,m x y z=,则(),12,,m AEmm AFλλλ⎧⋅=⎪=--⎨⋅=⎪⎩()()2,2,0,0,0,2AC AP==,设平面APF的法向量()222,,n x y z=,则,n ACn AP⎧⋅=⎪⎨⋅=⎪⎩解得()1,1,0n=-由题意得:cos45m nm n⋅===,即13λ-=,解得23λ=.从而23PFPC=.17.(1)解:函数(),2cos e xf x ax x=+-,则()2sin e xf x a x=--',对任意的()()0,,0x f x∞∈+'≤恒成立,所以()2e sinxa x g x≤+=,故()e cos1cos0xg x x x x=+≥++>',所以()min 2()01a g x g ≤==,故实数a 的取值范围为1,2∞⎛⎤- ⎥⎝⎦;(2)证明:由题意知,要证在ππ,22x ⎛⎫∈-⎪⎝⎭,上,cos e 1x x -<,令()cos e xh x x =-,则()sin e xh x x =--',显然在ππ,22x ⎛⎫∈-⎪⎝⎭上()h x '单调减,()π0,002h h ⎛⎫->< ⎪⎝⎭'',所以存在0π,02x ⎛⎫∈-⎪⎝⎭,则()000sin e 0x h x x '=--=,所以当0π,2x x ⎛⎫∈-⎪⎝⎭时,()0h x '>,则()h x 单调递增,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,则()h x 单调递减,所以()0max 00000π()cos ecos sin 04x h x h x x x x x ⎛⎫==-=+=+< ⎪⎝⎭,故()1f x <在ππ,22x ⎛⎫∈-⎪⎝⎭,上恒成立.18.解:(1)由题意242pAF =+=,解得4p =,因此抛物线的方程为2:8C y x =点()2,A a 在抛物线上可得216a =,故4a =±(2)设点B 的坐标为()11,,x y OA 边上的高为h ,我们知道AOB 的面积是:112S h =⨯=1h h =⇒==直线OA 的方程是2y x =,利用B 到直线OA 的距离公式可得:化简得:1121x y -=由于点B 在抛物线上,代入条件可得:22111121184y y y y ⋅-=⇒-=可以得到211440y y --=或211440y y -+=,解这个方程可以得到12y ===±12y =代入拋物线方程可以得到:1x ==或1x ==112x =综上所述,点B的坐标有三个可能的值:12312,2,,22B B B ⎛⎫+- ⎪⎝⎭(3)不存在,理由如下:由(2)知122,2B B +-则12,B B 的中点3,22M ⎛⎫⎪⎝⎭12B B ===M 到准线2x =-的距离等于37222+=因为73.52=>所以,以M 为圆心122B B 为半径的圆与准线相离,故不存在点P 满足题设条件.19.(1)证明:可知()()1151,1,2,3,666k X GE P X k k -⎛⎫⎛⎫~⋅==⋅=⋯ ⎪ ⎪⎝⎭⎝⎭012515151515115615666666666616nn nn S ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅+⋅+⋅+⋯+⋅=⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-则15()lim lim 1 1.6n n n n k P X k S ∞→∞→∞=⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⎭⎝⎭∑.(2)设1()nn k T k P X k ==⋅=∑0121152535566666666n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12151525155666666666n nn n n T --⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减,0121115151515566666666666n nn n T -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭01215555555616666666n n n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+-⨯=--⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭则随机变量X 的数学期望55()lim lim 61666n nn n n E X T n →∞→∞⎛⎫⎛⎫⎛⎫⎛⎫==--⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)1221151()(6)()lim (6)66k nn k k D X k P X k k -∞→∞==⎛⎫=-⋅==-⋅⋅⎪⎝⎭∑∑()2211111236()()(12)()36()k k k k k k P X k k P X k k P X k P X k ∞∞∞∞=====-+⋅===+-=+⋅=∑∑∑∑2211()12636()36;k k k P X k k P X k ∞∞====-⨯+==-∑∑【也可利用()()()22D XE XE X =-】而012122222151515151()123466666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⎛⎫==+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑ 121222215515151()12(1)6666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⨯==+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 两式相减:012121151515151()135(21)666666666n k k P X k n -∞=⎛⎫⎛⎫⎛⎫⎛⎫==++++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑ 112()()2()111k k k P X k P X k E X ∞∞===⋅=-==-=∑∑从而:21()66k kP X k ∞===∑.那么21()()3630k D X k P X k ∞===-=∑.。
B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
2023-2024学年山东省淄博市高二下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设等差数列{a n },a 2=3,d =5,则a 5=( )A. −5B. 18C. 23D. 282.若函数f(x)满足lim Δx→0f(1−Δx)−f(1)Δx =18,则f′(1)=( )A. −18B. −14C. 18D. 143.设{a n }是等比数列,且a 2+a 3=2,a 5+a 6=−16,则公比q =( )A. −2B. 2C. −8D. 84.在(2− x )7的展开式中,含x 2的项的系数为( )A. −280B. 280C. −560D. 5605.某志愿者小组有5人,从中选3人到A 、B 两个社区开展活动,其中1人到A 社区,则不同的选法有( )A. 12种B. 24种C. 30种D. 60种6.直线y =kx 与曲线y =ln 2x 相切,则实数k 的值为( )A. 1B. 12C. 2e D. 2e 27.若P(B|A)=13,P(A)=34,P(B)=12,则P(A|B)=( )A. 14 B. 34 C. 13 D. 128.不等式2ln x > x ln2的解集是( )A. (1,2)B. (4,+∞)C. (2,+∞)D. (2,4)二、多选题:本题共3小题,共15分。
在每小题给出的选项中,有多项符合题目要求。
9.已知随机变量X ~N (3,1),则下列说法正确的是( )A. 若Y =X +3,则E (Y )=6B. 若Y =3X +1,则D (Y )=3C. P (X ≤2)=P (X ≥4)D. P (0≤X ≤4)=1-2P (X ≥4)10.若函数f(x)的定义域为(−4,3),其导函数f′(x)的图象如图所示,则( )A. f(x)有两个极大值点B. f(x)有一个极小值点C. f(0)>f(1)D. f(−2)>f(−3)11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,它的前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,则数列1,3,6,10被称为二阶等差数列,现有二阶等差数列{c n},其前6项分别为4,8,10,10,8,4,设其通项公式c n=g(n).则下列结论中正确的是( )A. 数列{c n+1−c n}的公差为2B. ∑20(c i+1−c i)=−300i=1C. 数列{c n}的前7项和最大D. c21=−296三、填空题:本题共3小题,每小题5分,共15分。
一、填空题(本大题共有12小题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1. 抛物线的准线方程是________.【答案】【解析】分析:利用抛物线的准线方程为,可得抛物线的准线方程. 详解:因为抛物线的准线方程为,所以抛物线的准线方程为,故答案为.点睛:本题考查抛物线的准线方程和简单性质,意在考查对基本性质的掌握情况,属于简单题.2. 设复数满足,则=__________.【答案】【解析】分析:由可得,再利用两个复数代数形式的除法法则化简,结合共轭复数的定义可得结果.详解:满足,,所以,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 若一个球的体积为,则该球的表面积为_________.【答案】【解析】由题意,根据球的体积公式,则,解得,又根据球的表面积公式,所以该球的表面积为.4. 在正四面体P-ABC,已知M为AB的中点,则PA与CM所成角的余弦值为____.【答案】【解析】分析:取的中点,连接,由三角形中位线定理可得即为与所成的角或其补角,利用余弦定理可得结果.详解:取的中点,连接,由三角形中位线定理可得,,故即为与所成的角或其补角,因为是正四面体,不妨设令其棱长为,则由正四面体的性质可求得,故,故答案为.点睛:本题主要考查余弦定理的应用以及异面直线所成角的求法,求异面直线所成的角的做题步骤分为三步,分别为:作角、证角、求角,尤其是第二步证明过程不可少,是本题易失点分,切记.5. 若复数满足,则的取值范围是________【答案】【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段,表示线段上的点到的距离,根据数形结合思想,结合点到直线距离公式可得结果.详解:因为复数满足,在复平面内设复数对应的点为,则到的距离之和为,所以点的轨迹为以为端点的线段,表示线段上的点到的距离,可得最小距离是与的距离,等于;最大距离是与的距离,等于;即的取值范围是,故答案为.点睛:本题考查复数的模,复数的几何意义,是基础题. 复数的模的几何意义是复平面内两点间的距离,所以若,则表示点与点的距离,表示以为圆心,以为半径的圆.6. —个四面体的顶点在空间直角坐标系中的坐标分别是(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1),则该四面体的体积为________.【答案】【解析】分析:满足条件的四面体为正方体的一个角,利用三棱锥的体积计算公式即可得出结果.详解:如图所示,满足条件的四面体为正方体的一个角,该四面体的体积,故答案为.点睛:本题主要考查空间直角坐标系与三棱锥的体积计算公式,考查了空间想象力、推理能力与计算能力,属于中档题.7. 若复数为纯虚数,则实数=______.【答案】【解析】分析:纯虚数的表现形式是中,且,根据这个条件,列出关于的方程组,从而可得结果.详解:复数为纯虚数,且,,故答案为.点睛:本题主要考查纯虚数的定义,意在考查对基本概念掌握的熟练程度,属于简单题. 8. 以椭圆的顶点为焦点,焦点为顶点的双曲线方程的标准方程是_______.【答案】【解析】分析:由椭圆的焦点为,顶点为,可得双曲线的焦点与顶点,从而可得双曲线方程.详解:椭圆的焦点为,顶点为,双曲线的顶点与焦点分别为,可得,所以双曲线方程是,故答案为.点睛:本题考查椭圆与双曲线的简单性质应用,意在考查综合应用所学知识解决问题的能力,解题时要认真注意审题,特别注意考虑双曲线的焦点位置.9. 将圆心角为,面积为的扇形围成一个圆锥的侧面,则此圆锥的体积为___.【答案】【解析】分析:由扇形的面积公式求出扇形的半径,得到圆锥的母线长,由弧长公式得圆锥底面半径,由勾股定理求得圆锥的高,由圆锥的体积公式可得结果.详解:如图,设扇形的半径为,则,即,圆锥的母线长为,设圆锥底面半径为,由,解得,则圆锥的高为,圆锥的体积为,故答案为.点睛:本题考查圆锥的体积公式,圆锥的侧面展开图、考查数形结合的解题思想方法,明确圆锥侧面展开图中的量与圆锥中的量之间的关系是解题的关键,本题属于中档题.10. 球的半径为,被两个相互平行的平面所截得圆的直径分别为和,则这两个平面之间的距离是_______.【答案】7或1【解析】分析:两条平行的平面可能在球心的同旁或两旁,应分两种情况进行讨论,分别利用勾股定理求解即可.详解:球心到两个平面的距离分别为,,故两平面之间的距离(同侧)或(异侧),故答案为或.点睛:本题考查球的截面性质,属于中档题.在解答与球截面有关的问题时,一定要注意性质的运用.11. 三棱锥V-ABC的底面ABC与侧面VAB都是边长为a的正三角形,则棱VC的长度的取值范围是_________.【答案】【解析】分析:设的中点为,连接,由余弦定理可得,利用三角函数的有界性可得结果.详解:设的中点为,连接,则是二面角的平面角,可得,在三角形中由余弦定理可得,,即的取值范围是,为故答案为.点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题.12. 给出下列几个命题:①三点确定一个平面;②一个点和一条直线确定一个平面;③垂直于同一直线的两直线平行;④平行于同一直线的两直线平行.其中正确命题的序号是____. 【答案】④【解析】分析:由三点可能共线可判断①错;由点可能在直线上可判断②错;由两直线可能相交、异面判断③错;根据公理可判定④正确.详解:①不共线的三点确定一个平面,故①错误;②一条直线和直线外一点确定一个平面,故②错误;③垂直于同一直线的两直线相交、平行或异面,故③错误;④平行于同一直线的两直线平行,故④正确,故答案为④.点睛:本题考查命题真假的判断,是基础题,解题时要认真审题,注意平面的基本性质及推理的合理运用. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价. 二、选择题(本大题共有4小题,满分12分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13. 在空间中,“直线平面”是“直线与平面内无穷多条直线都垂直”的( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】若“直线平面”则“直线与平面内无穷多条直线都垂直”,正确;反之,若“直线与平面内无穷多条直线都垂直”则“直线平面”是错误的,故直线平面”是“直线与平面内无穷多条直线都垂直”的充分非必要条件.故选A.14. 已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为( )A. B. C. D.【答案】D【解析】略视频15. 设直线的一个方向向量,平面的一个法向量,则直线与平面的位置关系是().A. 垂直B. 平行C. 直线在平面内D. 直线在平面内或平行【答案】D【解析】∵直线的一个方向向量,平面的一个法向量∴∴直线在平面内或平行故选D.16. 对于复数,给出下列三个运算式子:(1),(2),(3).其中正确的个数是()A. B. C. D.【答案】D【解析】分析:根据复数的几何意义可得(1)正确;根据复数模的公式计算可得到(2)正确;根据复数乘法运算法则可判断(3)正确,从而可得结果.详解:根据复数的几何意义,由三角形两边之和大于第三边可得,(1)正确;设,则,,(2)正确;根据复数乘法的运算法则可知,(3)正确,即正确命题的个数是,故选D.点睛:本题主要考查复数模的公式、复数的几何意义、复数乘法的运算法则,意在考查基础知识掌握的熟练程度,以及综合运用所学知识解决问题的能力,属于难题.三、解答题(本大题共有5小题,满分52分)解答下列各题必须写出必要的步骤.17. 已知关于的方程x2+kx+k2﹣2k=0有一个模为的虚根,求实数k的值.【答案】1【解析】分析:设两根为、,则,,得,利用韦达定理列方程可求得的值,结合判别式小于零即可得结果.详解:由题意,得或,设两根为、,则,,得,.所以.18. 如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.【答案】16【解析】分析:由正四棱柱的性质得,从而,进而,由此能求出正四棱柱的体积.详解:∵∴为与所成角且∵,∴点睛:本题主要考查异面直线所成的角、正四棱柱的性质以及棱柱的体积的公式,是中档题,解题时要认真审题,注意空间思维能力的培养. 求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角.19. 已知双曲线,为上的任意点。
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值;【答案】(1)见解析(2)(1)设点,由题意知双曲线的两条渐近线方程分别为和,则点到两条渐近线的距离分别为和,则,得证;(2)设点,则当时,有最小值.视频20. 如图,为圆锥的高,B、C为圆锥底面圆周上两个点,,,,是的中点.(1)求该圆锥的全面积;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)【答案】(1)(2)【解析】分析:(1)根据,,,可求得圆锥的母线长以及圆锥的底面半径,利用圆锥侧面积公式可得结果;(2)过作交于,连则为异面直线与所成角,求出,在直角三角形中,,从而可得结果.详解:(1)中,即圆锥底面半径为2圆锥的侧面积故圆锥的全面积(2)过作交于,连则为异面直线与所成角在中,是的中点是的中点在中,,,即异面直线与所成角的大小为点睛:求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.21. 已知抛物线C的顶点为原点,焦点F与圆的圆心重合.(1)求抛物线C的标准方程;(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;(3)若弦过焦点,求证:为定值.【答案】(1)(2)4(3)1,【解析】分析:(1)化圆的一般方程为标准方程,求出圆心坐标,可得抛物线的焦点坐标,从而可得抛物线方程;(2)设点在抛物线的准线上的射影为点,根据抛物线定义知,要使的值最小,必三点共线,从而可得结果;(3),设,,根据焦半径公式可得,利用韦达定理化简可得结果.详解:(1)由已知易得,则求抛物线的标准方程C为.(2)设点P在抛物线C的准线上的摄影为点B,根据抛物线定义知要使的值最小,必三点共线.可得,.即此时.(3),设.点睛:本题主要考查抛物线的标准方程和抛物线的简单性质及利用抛物线的定义求最值,属于难题.与抛物线的定义有关的最值问题常常实现由点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线的距化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将拋物线上的点到焦点的距离转化为到准线的距离,利用“点与直线上所有点的连线中垂线段最短”原理解决.本题是将到焦点的距离转化为到准线的距离,再根据几何意义解题的.。