2013高考总复习闯关密训物理卷专题8磁场
- 格式:doc
- 大小:610.00 KB
- 文档页数:12
新课标人教版2013届高三物理总复习单元综合测试卷第八单元《磁场》本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分试卷满分为100分。
考试时间为90分钟。
第Ⅰ卷(选择题,共40分)一、选择题(本大题包括10小题,每小题4分,共40分。
)1.磁性是物质的一种普遍属性,大到宇宙中的星球,小到电子、质子等微观粒子几乎都会呈现出磁性.地球就是一个巨大的磁体,其表面附近的磁感应强度约为3×10-5~5×10-5 T,甚至一些生物体内也会含有微量强磁性物质如Fe3O4.研究表明:鸽子正是利用体内所含有的微量强磁性物质在地磁场中所受的作用来帮助辨别方向的.如果在鸽子的身上绑一块永磁体材料,且其附近的磁感应强度比地磁场更强,则( ) A.鸽子仍能辨别方向B.鸽子更容易辨别方向C.鸽子会迷失方向D.不能确定鸽子是否会迷失方向解析:因为鸽子是利用体内所含有的微量强磁性物质在地磁场中所受的作用来帮助辨别方向的.当在鸽子的身上绑一块永磁体材料后,改变了原有的磁场,鸽子会迷失方向,故选C.答案:C2.如图1所示,磁带录音机可用作录音,也可用作放音,其主要部件为可匀速行进的磁带a和绕有线圈的磁头b.下面对于它们在录音、放音过程中主要工作原理的描述,正确的是( )图1A.放音的主要原理是电磁感应,录音的主要原理是电流的磁效应B.录音的主要原理是电磁感应,放音的主要原理是电流的磁效应C.放音和录音的主要原理都是磁场对电流的作用D.放音和录音的主要原理都是电磁感应答案:A3.空间存在一个匀强磁场B,其方向垂直纸面向里,还有一点电荷Q的电场,如图2所示,一带电粒子-q以初速度v从图示位置垂直于电场、磁场入射,初位置到点电荷+Q 的距离为r,则粒子在电、磁场中的运动轨迹不可能为( )A.以点电荷+Q为圆心,以r为半径,在纸平面内的圆周B .初阶段在纸面内向右偏的曲线C .初阶段在纸面内向左偏的曲线D .沿初速度v 0方向的直线解析:如果此时刚好有k Qq r 2-qv 0B =m v 20r,则粒子在电磁场中可以做以点电荷+Q 为圆心、以r 为半径、在纸平面内的圆周运动,所以A 选项正确.如果k Qqr2>qv 0B ,粒子向左偏;如果k Qqr2<qv 0B ,粒子向右偏.但不会沿v 0方向做直线运动,因为粒子受到的合力方向与速度方向不可能在一条直线上,所以应选D.答案:D4.如图3所示,直导线AB 、螺线管C 、电磁铁D 三者相距较远,它们的磁场互不影响. 当开关S 闭合稳定后,则图中小磁针的北极N(黑色的一端)指示出磁场方向正确的是( )图3A .aB .bC .cD .d解析:接通电源后,直导线、螺线管、电磁铁等都将产生磁场,应用安培定则逐一进行判断.为了便于判断所标出的小磁针N 极的指向是否正确,先根据安培定则画出有关磁场中经过小磁针的磁感线及其方向,如图4所示.根据安培定则,对于通电直导线AB 的确定,磁感线是以导线AB 上各点为圆心的同心圆,且都在跟导线垂直的平面上,其方向是逆时针方向,显然磁针a 所示不对.通电螺线管C 内部的磁感线是由左指向右,外部的磁感线是由右向左,故b 所示正确、c 所示不对,对电磁铁D(与蹄形磁铁相似).由安培定则可知,电磁铁的左端为N 极,右端为S 极,可见小磁针d 所示正确,因此答案为B 、D.图4答案:BD5.如图5所示,两根平行放置的长直导线a 和b 载有大小相同、方向相反的电流,a 受到的磁场力大小为F 1.当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2,则此时b 受到的磁场力大小变为( )图5A .F 2B .F 1-F 2C .F 1+F 2D .2F 1-F 2解析:根据安培定则和左手定则,可以判定a 导线受b 中电流形成的磁场的作用力F 1,方向向左.同理b 受a 中电流形成磁场的作用力大小也是F 1,方向向右.新加入的磁场无论什么方向,a 、b 受到的这个磁场的作用力F 总是大小相等方向相反.如果F 与F 1方向相同,则两导线受到的力大小都是F +F 1.若F 与F 1方向相反,a 、b 受到的力的大小都是|F -F 1|.因此当再加上磁场时若a 受的磁场力大小是F 2,b 受的磁场力大小也是F 2,所以A 对.答案:A6.如图6所示为一种自动跳闸的闸刀开关,O 是转动轴,A 是绝缘手柄,C 是闸刀卡口,M 、N 接电源线,闸刀处于垂直纸面向里、B =1 T 的匀强磁场中,CO 间距离为10 cm ,当磁场力为0.2 N 时,闸刀开关会自动跳开.则要使闸刀开关能跳开,CO 中通过的电流的大小和方向为( )图6A .电流方向C →OB .电流方向O →C C .电流大小为1 AD .电流大小为0.5 A解析:由左手定则,电流的方向O →C ,由B =F IL 得I =FBL=2 A.答案:B 7.如图7所示,a 为带正电的小物块,b 是一不带电的绝缘物块(设a 、b 间无电荷转移),a 、b 叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F 拉b 物块,使a 、b 一起无相对滑动地向左加速运动,在加速运动阶段( )图7A .a 对b 的压力不变B .a 对b 的压力变大C .a 、b 物块间的摩擦力变小D .a 、b 物块间的摩擦力不变解析:a 向左加速时受到的竖直向下的洛伦兹力变大,故对b 的压力变大,B 项正确;从a 、b 整体看,由于a 受到的洛伦兹力变大,会引起b 对地面的压力变大,滑动摩擦力变大,整体的加速度变小,再隔离a,b对a的静摩擦力提供其加速度,由Fba =ma·a知,a、b间的摩擦力变小,选项C亦正确.答案:BC8.一圆柱形磁铁竖直放置,如图8所示,在它的右侧上方有一带正电小球,现使小球获得一水平速度,小球若能在水平面内做匀速圆周运动,则下列说法正确的是( )图8A.俯视观察,小球的运动方向可以是顺时针,也可以是逆时针B.俯视观察,小球的运动方向只能是顺时针C.俯视观察,小球的运动方向只能是逆时针D.不可能实现小球在平面内做匀速圆周运动解析:小球所受的洛伦兹力与重力的合力提供向心力.答案:B9.地球大气层外部有一层复杂的电离层,既分布有地磁场,也分布有电场.假设某时刻在该空间中有一小区域存在如图9所示的电场和磁场;电场的方向在纸面内斜向左下方,磁场的方向垂直纸面向里,此时一带电宇宙粒子,恰以速度v垂直于电场和磁场射入该区域,不计重力作用,则在该区域中,有关该带电粒子的运动情况可能的是( )图9A.仍做直线运动B.立即向左下方偏转C.立即向右上方偏转D.可能做匀速圆周运动解析:比较Eq与Bqv,因二者开始时方向相反,当二者相等时,A正确.当Eq>Bqv 时,向电场力方向偏,当Eq<Bqv时,向洛伦兹力方向偏,B、C正确.有电场力存在,粒子不可能做匀速圆周运动,D错.答案:ABC10.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能.如图10所示为它的发电原理图.将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,从整体上来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块面积S,相距为d的平行金属板与外电阻R相连构成一电路.设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流强度I及电流方向为( )图10A.I=BdvR,A→R→B B.I=BdvSSR+gd,B→R→AC.I=BdvR,B→R→A D.I=BdvSggSR+d,A→R→B解析:等离子体切割磁场的等效长度为d,切割速度为v,感应电动势为Bdv.由闭合电路欧姆定律得I=BdvR+r,其中r=ρdS=dgS,所以,电流强度I=BdvgSgSR+d.由右手定则判断可知上极板为高电势,那么外部的电流方向为A到R到B.答案:D第Ⅱ卷(非选择题,共60分)二、填空题(每小题10分,共20分)11.实验室里可以用图11甲所示的小罗盘估测条形磁铁磁场的磁感应强度.方法如图乙所示,调整罗盘,使小磁针静止时N极指向罗盘上的零刻度(即正北方向),将条形磁铁放在罗盘附近,使罗盘所在处条形磁铁的方向处于东西方向上,此时罗盘上的小磁针将转过一定角度.若已知地磁场的水平分量Bx,为计算罗盘所在处条形磁铁磁场的磁感应强度B,则只需知道________,磁感应强度的表达式为B=________.图11答案:罗盘上指针的偏转角Bxtanθ12.如图12所示,空间有一垂直纸面向外的磁感应强度为0.5T的匀强磁场,一质量为0.2 kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速度放置一质量为0.1 kg、电荷量q=+0.2 C的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左,大小为0.6 N的恒力,g 取10 m/s2,则木板的最大加速度为________;滑块的最大速度为________.图12解析:开始滑块与板一起匀加速,刚发生相对滑动时整体的加速度a=FM+m=2 m/s2,对滑块μ(mg-qvB)=ma,代入数据可得此时刻的速度为6 m/s.此后滑块做加速度减小的加速运动,最终匀速.mg=qvB代入数据可得此时刻的速度为10 m/s.而板做加速度增加的加速运动,最终匀加速.板的加速度a=FM=3 m/s2答案:3 m/s210 m/s三、计算题(每小题10分,共40分)13.有两个相同的全长电阻为9 Ω的均匀光滑圆环,固定于一个绝缘的水平台面上,两环分别在两个互相平行的、相距为20 cm 的竖直面内,两环的连心线恰好与环面垂直,两环面间有方向竖直向下的磁感强度B =0.87 T 的匀强磁场,两球的最高点A 和C 间接有一内阻为0.5 Ω的电源,连接导线的电阻不计.今有一根质量为10 g ,电阻为1.5 Ω的棒置于两环内侧且可顺环滑动,而棒恰好静止于如图13所示的水平位置,它与圆弧的两接触点P 、Q 和圆弧最低点间所夹的弧对应的圆心角均为θ=60°,取重力加速度g =10 m/s 2.试求此电源电动势E 的大小.图13解析:在图中,从左向右看,棒PQ 的受力如图14所示,棒所受的重力和安培力F B 的合力与环对棒的弹力F N 是一对平衡力,且F B =mgtan θ=3mg而F B =IBL ,所以I =3mgBL=3×10×10-3×100.87×0.2A =1 A图14在右图所示的电路中两个圆环分别连入电路中的电阻为R ,则R =93×(9-93)9Ω=2 Ω由闭合电路欧姆定律得E =I(r +2R +R 棒) =1×(0.5+2×2+1.5) V =6 V 答案:6 V14.如图15所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子进入匀强磁场,以半径R 1=20 cm 做匀速圆周运动.第一次垂直穿过铅板后以半径R 2=19 cm 做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?图15解析:粒子每穿过铅板一次损失的动能都相同,但是粒子每穿过铅板一次其速度的减少却是不同的,速度大时,其速度变化量小;速度小时,速度变化量大.但是粒子每次穿过铅板时受铅板的阻力相同,所以粒子每次穿过铅板克服阻力做的功相同,因而每次穿过铅板损失的动能相同.粒子每穿过铅板一次损失的动能为:ΔE k =1221-12mv 22=q 2B 22m (R 21-R 22)粒子穿过铅板的次数为:n =12mv 21ΔE k =R 21R 21-R 22=10.26次,取n =10次. 答案:1015.如图16所示,厚度为h 、宽度为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系为U =k IBd.式中的比例系数k 称为霍尔系数.霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场.横向电场对电子施加与洛伦兹力方向相反的静电力.当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差.图16设电流I 是由电子的定向流动形成的,电子的平均定向速度为v ,电荷量为e ,回答下列问题:(1)达到稳定状态时,导体板上侧面A 的电势________下侧面A ′的电势(填“高于”“低于”或“等于”);(2)电子所受的洛伦兹力的大小为________;(3)当导体板上下两侧之间的电势差为U 时,电子所受静电力的大小为________;(4)由静电力的洛伦兹力平衡的条件,证明霍尔系数为k =1ne,其中n 代表导体板单位体积中电子的个数.解析:(1)导体中电子运动形成电流,电子运动方向与电流方向相反,利用左手定则可判定电子向A 板偏,A ′板上出现等量正电荷,所以A 板电势低于A ′板电势.(2)洛伦兹力大小F =Bev(3)静电力 F 电=Ee =Uh e(4)由F =F 电得Bev =Uhe U =hvB导体中通过的电流I =nev ·d ·h由U =k IB d 得hvB =k IB d hvB =k nevdhBd得k =1ne答案:(1)低于 (2)evB (3)e Uh(4)见解析16.如图17,在宽度分别为l 1和l 2的两个毗邻的条形区域中分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右.一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出.已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d.不计重力,求电场强度与磁感应强度大小之比以及粒子在磁场与电场中运动时间之比.图17解析:粒子在磁场中做匀速圆周运动(如图18).由于粒子在分界线处的速度与分子界线垂直,圆心O 应在分界线上.OP 长度即为粒子运动的圆弧的半径R.由几何关系得图18R 2=l 21+(R -d)2①设粒子的质量和所带正电荷分别为m 和q ,由洛伦兹力公式和牛顿第二定律得qvB =m v2R②设P ′为虚线与分界线的交点,∠POP ′=α,则粒子在磁场中的运动时间为t 1=R αvsin α=l 1R④粒子进入电场后做类平抛运动,其初速度为v ,方向垂直于电场.设粒子加速度大小为a ,由牛顿第二定律得qE =ma ⑤由运动学公式有d =12at 22⑥l 2=vt 2⑦式中t 2是粒子在电场中运动的时间.由①②⑤⑥⑦式得E B =l 21+d2l 22v ⑧ 由①③④⑦式得t 1t 2=l 21+d 22dl 2arcsin(2dl 1l 21+d2)⑨。
专题八磁场第1讲磁场磁场对电流的作用一、单项选择题1.(2013年上海卷)如图K811所示,足够长的直线ab靠近通电螺线管,与螺线管平行.用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图象是( )图K811A. B. C. D.2.将一个质量很小的金属圆环用细线悬挂起来,在其附近放一条形磁铁,磁铁的轴线与圆环在同一个平面内,且通过圆环中心,如图K812所示,当圆环中通以顺时针方向的电流时,从上往下看( )图K812A.圆环顺时针转动,靠近磁铁B.圆环顺时针转动,远离磁铁C.圆环逆时针转动,靠近磁铁D.圆环逆时针转动,远离磁铁3.如图K813所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.整个装置处于沿竖直方向的匀强磁场中,金属杆ab垂直导轨放置,当杆中通有从a到b的恒定电流I时,金属杆ab刚好静止.则( )图K813A.磁场方向竖直向上B.磁场方向竖直向下C.ab受安培力的方向平行导轨向上D.ab受安培力的方向平行导轨向下4.(2015年广东惠州一调)如图K814所示,在倾角为α的光滑斜面上,要使垂直纸面放置的一根长为L、质量为m的通电直导体处于静止状态,则应加的匀强磁场B的方向可能是( )图K814A.平行斜面向上B.平行斜面向下C.垂直斜面向下D.垂直斜面向上5.(2015年广东深圳南山期末)指南针是我国古代的四大发明之一.当指南针静止时,其N极指向如图K815虚线(南北向)所示,若某一条件下该指南针静止时N极指向如图实线(N极偏东北向)所示.则以下判断正确的是( )图K815A.可能在指南针上面有一导线东西放置,通有东向西的电流B.可能在指南针上面有一导线东西放置,通有西向东的电流C.可能在指南针上面有一导线南北放置,通有北向南的电流D.可能在指南针上面有一导线南北放置,通有南向北的电流6.(2015年甘肃兰州模拟)如图K816所示,均匀绕制的螺线管水平放置,在其正中心的上方附近用绝缘绳水平吊起通电直导线A,A与螺线管垂直.A导线中的电流方向垂直纸面向里,开关S闭合,A受到通电螺线管磁场的作用力的方向是( )图K816A.水平向左B.水平向右C.竖直向下D.竖直向上7.(2014年新课标卷Ⅰ)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( )A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半二、多项选择题8.(2013年海南卷)三条在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I,方向如图K817所示.a、b和c三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等.将a、b和c处的磁感应强度大小分别记为B1、B2和B3,下列说法正确的是( )图K817A.B1=B2<B3B.B1=B2=B3C.a和b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里D.a处磁场方向垂直于纸面向外,b和c处磁场方向垂直于纸面向里9.(2014年浙江卷)如图K818甲所示,两根光滑平行导轨水平放置,间距为L,其间有竖直向下的匀强磁场,磁感应强度为B.垂直于导轨水平对称放置一根均匀金属棒.从t=0时刻起,棒上有如图乙所示的持续交变电流I,周期为T,最大值为I m,图甲中I所示方向为电流正方向.则金属棒( )图K818A.一直向右移动B.速度随时间周期性变化C.受到的安培力随时间周期性变化D.受到的安培力在一个周期内做正功10.光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图K819所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2则( )图K819A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J三、非选择题11.(2014年重庆卷)某电子天平原理如图K8110所示,E形磁铁的两侧为N极,中心为S 极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量.已知线圈匝数为n,线圈电阻为R,重力加速度为g.问:图K8110(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出?(2)供电电流I是从C端还是从D端流入?求重物质量与电流的关系.(3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少?第2讲磁场对运动电荷的作用一、单项选择题1.如图K821所示,螺线管两端加上交流电压,沿着螺线管轴线方向有一电子射入,则该电子在螺线管内将做( )图K821A.加速直线运动B.匀速直线运动C.匀速圆周运动D.往返运动2.如图K822所示,一小球带负电,在匀强磁场中摆动,磁感应强度的方向垂直纸面向里.若小球在A、B间摆动过程中,由A到C点时,绳拉力为T1,加速度为a1,由B到C点时,拉力为T2,加速度为a2,则( )图K822A.T1>T2,a1=a2B.T1<T2,a1=a2C.T1>T2,a1>a2D.T1<T2,a1<a23.(2014年新课标卷Ⅰ)如图K823,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿过铝板后到达PQ的中点O,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )图K823A.2B. 3C.1D.2 24.(2014年安徽卷)“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞,已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变,由此可判断所需的磁感应强度B正比于( )A.TB.TC.T3D.T25.(2014年安徽黄山三校联考)如图K824所示,在x>0,y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带正电粒子,从x轴上的某点P沿着与x轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法正确的是( )图K824A.只要粒子的速率合适,粒子就可能通过坐标原点B.粒子在磁场中运动所经历的时间一定为5πm 3qBC.粒子在磁场中运动所经历的时间可能为πm qBD.粒子在磁场中运动所经历的时间可能为πm 6Bq6.如图K825所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c 以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )图K825A.a 粒子动能最大B.c 粒子速率最大C.c 粒子在磁场中运动时间最长D.它们做圆周运动的周期T a <T b <T c7.(2015年广东深圳一模改编)如图K826所示,ab 边界下方是一垂直纸面向里的匀强磁场,质子(11H)和α粒子(42He)先后从c 点沿箭头方向射入磁场,都从d 点射出磁场.不计粒子的重力,则质子(11H)和α粒子(42He)在磁场中运动的( )图K826A.半径之比为1∶2B.动能之比为1∶1C.速率之比为1∶2D.时间之比为1∶2二、多项选择题8.磁流体发电是一项新兴技术.如图K827所示,平行金属板之间有一个很强的磁场,将一束含有大量正、负带电粒子的等离子体,沿图中所示方向喷入磁场.图中虚线框部分相当于发电机.把两个极板与用电器相连,则( )图K827A.用电器中的电流方向从A 到BB.用电器中的电流方向从B 到AC.若只减小磁场,发电机的电动势增大D.若只增大喷入粒子的速度,发电机的电动势增大9.(2016年吉林长春质检)如图K828在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面向外的磁感应强度为12B 的匀强磁场.一带负电的粒子质量为m 电荷量为q ,从原点O 以与x 轴成θ=30°角斜向上射入磁场,且在x 轴上方运动半径为R (不计重力),则( )图K828A.粒子经偏转一定能回到原点OB.粒子在x 轴上面的轨迹为劣弧,在x 轴下面的轨迹为优弧C.粒子在x 轴上方和下方两磁场中运动的半径之比为1∶2D.粒子第二次射入x 轴上方磁场时,沿x 轴方向前进了3R10.(2015年新课标卷Ⅱ)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k 倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k 倍B.加速度的大小是I 中的k 倍C.做圆周运动的周期是Ⅰ中的k 倍D.做圆周运动的角速度是Ⅰ中的k 倍三、非选择题11.(2016年西藏日喀则第一高级中学月考)如图K829甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计,比荷q m =1×106C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过NM 时为t =0时刻),计算结果可用π表示.甲 乙图K829(1)求O 点与直线MN 之间的电势差.(2)求图乙中t =2π3×10-5s 时刻电荷与O 点的水平距离. (3)如果在O 点右方d =67.5 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运动到挡板所需的时间.第3讲 带电粒子在复合场中的运动一、单项选择题1.(2013年重庆卷)如图K831所示,一段长方体形导电材料,左右两端面的边长都为a 和b ,内有带电荷量为q 的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B .当通以从左到右的稳恒电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )图K831A.IB |q |aU ,负B.IB |q |aU ,正C.IB |q |bU ,负D.IB |q |bU,正 2.如图K832所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O ′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b (不计重力)仍以相同初速度由O 点射入,从区域右边界穿出,则粒子b ( )图K832A.穿出位置一定在O ′点下方B.穿出位置一定在O ′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小3.如图K833所示的是质谱仪工作原理的示意图.带电粒子a 、b 经电压U 加速(在A 点的初速度为零)后,进入磁感应强度为B 的匀强磁场做匀速圆周运动,最后分别打在感光板S 上的x 1、x 2处.图中半圆形的虚线分别表示带电粒子a 、b 所通过的路径,则( )图K833A.a 的质量一定大于b 的质量B.a 的电荷量一定大于b 的电荷量C.在磁场中a 运动的时间大于b 运动的时间D.a 的比荷q a m a 大于b 的比荷q b m b4.带电粒子垂直进入匀强电场或匀强磁场中时,粒子将发生偏转,称这种电场为偏转电场,这种磁场为偏转磁场.下列说法错误的是(重力不计)( )A.欲把速度不同的同种带电粒子分开,既可采用偏转电场,也可采用偏转磁场B.欲把动能相同的质子和α粒子分开,只能采用偏转电场C.欲把由静止经同一电场加速的质子和α粒子分开,偏转电场和偏转磁场均可采用D.欲把初速度相同而比荷不同的带电粒子分开,偏转电场和偏转磁场均可采用5.(2015年广东韶关模拟)如图K834所示,回旋加速器是加速带电粒子的装置,其主体部分是两个D 形金属盒.两金属盒处在垂直于盒底的匀强磁场中,a 、b 分别与高频交流电源两极相连接,下列说法正确的是( )图K834A.离子从磁场中获得能量B.带电粒子的运动周期是变化的C.离子由加速器的中心附近进入加速器D.增大金属盒的半径,粒子射出时的动能不变6.(2013年四川自贡二诊改编)如图K835所示,水平放置的平行板电容器两板间有垂直纸面向里的匀强磁场.开关S 闭合时,带电粒子恰好水平向右匀速穿过两板,粒子的重力不计,下列说法正确的是( )图K835A.保持开关闭合,若滑片P 向上滑动,粒子不可能从下极板边缘射出B.保持开关闭合,若滑片P 向下滑动,粒子不可能从下极板边缘射出C.保持开关闭合,若A 极板向上移动后,调节滑片P 的位置,粒子仍可能沿直线射出D.如果开关断开,粒子继续沿直线射出二、多项选择题7.在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q 、质量为m 的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B 的匀强磁场中,磁感应强度方向与管道垂直,如图K836所示.现给带电球体一个水平速度v 0,则在整个运动过程中,带电球体克服摩擦力所做的功可能为( )图K836A.0B.12m ⎝ ⎛⎭⎪⎫mg qB 2 C.12mv 20 D.12m [v 20+⎝ ⎛⎭⎪⎫mg qB 2]8.(2016年黑龙江牡丹江期中)如图K837所示,空间中存在一水平方向匀强电场和一水平方向匀强磁场,且电场方向和磁场方向相互垂直.在电磁场正交的空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°角且处于竖直平面内.一质量为m ,带电荷量为+q 的小球套在绝缘杆上.初始时,给小球一沿杆向下的初速度,小球恰好做匀速运动,电荷量保持不变.已知,磁感应强度大小为B ,电场强度大小为E =3mgq,则以下说法正确的是( )图K837A.小球的初速度为v 0=2mgqBB.若小球的初速度为3mgqB,小球将做加速度不断增大的减速运动,最后停止C.若小球的初速度为mg qB,小球将做加速度不断增大的减速运动,最后停止D.若小球的初速度为mg qB ,则运动中克服摩擦力做功为2m 3g2q 2B29.(2014年广东珠海摸底)如图K838所示,一束离子从P 点垂直射入匀强电场和匀强磁场相互垂直的区域里,结果发现有些离子保持原来的运动方向未发生偏转,这些离子从Q 点进入另一匀强磁场中分裂为a 、b 、c 三束.关于这三束离子,下列说法正确的是( )图K838A.它们的速度一定相同B.它们的电荷量一定各不相同C.它们的质荷量一定各不相同D.它们的电荷量与质量之比一定各不相同 10.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图K839所示的流量计.该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口.在垂直于上下底面方向加磁感应强度大小为B 的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,理想电压表将显示两个电极间的电压U .若用Q 表示污水流量,下列说法正确的是( )图K839A.前表面电极比后表面电极电势高B.后表面电极比前表面电极电势高C.电压表的示数U与污水中离子浓度成正比D.污水流量Q与电压表的示数U成正比,与a、b无关三、非选择题11.(2015年安徽合肥模拟)如图K8310甲所示,带正电粒子以水平速度v0从平行金属板MN间中线OO′连续射入电场中.MN板间接有如图乙所示的随时间t变化的电压U MN,电压变化周期T=0.1 s,两板间电场可看作是均匀的,且两板外无电场.紧邻金属板右侧有垂直纸面向里的匀强磁场B,分界线为CD,EF为屏幕.金属板间距为d,长度为l,磁场的宽度为d.已知:B=5×10-3T,l=d=0.2 m,每个带正电粒子的速度v0=105m/s,比荷为=108C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.试求:甲乙图K8310(1)带电粒子进入磁场做圆周运动的最小半径.(2)带电粒子射出电场时的最大速度.(3)带电粒子打在屏幕上的范围.专题提升八带电粒子在匀强磁场中运动的多解问题探析1.(多选,2014年高考冲刺卷六)如图Z81所示,空间中存在正交的匀强电场E(方向水平向右)和匀强磁场B(方向垂直纸面向外),在竖直平面内从a点沿ab、ac方向抛出两带电小球(不考虑两带电小球的相互作用,两小球电荷量始终不变),关于小球的运动,下列说法正确的是( )Z81A.沿ab、ac方向抛出的带电小球都可能做直线运动B.只有沿ab方向抛出的带电小球才可能做直线运动C.若沿ac方向抛出的小球做直线运动则小球带负电,且小球一定是做匀速运动D.两小球在运动过程中机械能均守恒2.如图Z82所示装置为速度选择器,平行金属板间有相互垂直的匀强电场和匀强磁场,电场方向竖直向上,磁场方向垂直纸面向外,带电粒子均以垂直电场和磁场的速度射入且都能从另一侧射出,不计粒子重力,以下说法正确的有( )Z82A.若带正电粒子以速度v从O点射入能沿直线OO′射出,则带负电粒子以速度v从O′点射入能沿直线O′O射出B.若带正电粒子以速度v从O点射入,离开时动能增加,则带负电粒子以速度v从O点射入,离开时动能减少C.若氘核(21H)和氦核(42He)以相同速度从O点射入,则一定能以相同速度从同一位置射出D.若氘核(21H)和氦核(42He)以相同速度从O点射入,则一定能以相同速度从不同位置射出3.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图Z83所示是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差U CD,下列说法中正确的是( )图Z83A.电势差U CD仅与材料有关B.若霍尔元件的载流子是自由电子,则电势差U CD<0C.仅增大磁感应强度时,电势差U CD变大D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平4.如图Z84所示的真空环境中,匀强磁场方向水平、垂直纸面向外,磁感应强度B=2.5 T;匀强电场方向水平向左,场强E= 3 N/C.一个带负电的小颗粒质量m=3.0×10-7 kg,带电荷量q=3.0×10-6 C,带电小颗粒在这个区域中刚好做匀速直线运动(g取10 m/s2),则( )图Z84A.这个带电小颗粒一定沿与水平方向成30°向右下方做匀速直线运动B.这个带电小颗粒做匀速直线运动的速度大小为0.4 m/sC.若小颗粒运动到图中P点时,把磁场突然撤去,小颗粒将做匀加速直线运动D.撤去磁场后,小颗粒通过与P点在同一电场线上的Q点,那么从P点运动到Q点所需时间为0.08 s5.(多选,2015年河南郑州质检)如图Z85所示为一个质量为m、电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中,不计空气阻力,现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度图象可能是下列选项中的( )图Z85A B C D6.(2014年山东菏泽二模)如图Z86所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为B0的匀强磁场;在xOy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场.一质量为m、电荷量为q的正离子(不计重力)以初速度v0沿平行于金属板方向射入两板间并做匀速直线运动,从P点垂直y轴进入第一象限,经过x轴上的A点射出电场进入磁场.已知离子过A点时的速度方向与x轴成45°角.求:图Z86(1)金属板M、N间的电压U.(2)离子运动到A点时速度v的大小和由P点运动到A点所需时间t.(3)离子第一次离开第四象限磁场区域的位置C(图中未画出)与坐标原点的距离OC.7.(2014年贵州六校联盟第一次联考)如图Z87所示传送带和水平面的夹角为37°,完全相同的两轮和传送带的切点A、B间的距离为24 m,B点右侧(B点在场的边缘)有一上下无限宽、左右边界间距为d的正交匀强电场和匀强磁场,电场方向竖直向上,匀强磁场垂直于纸面向里,磁感应强度B=103 T.传送带在电机带动下,以4 m/s速度顺时针匀速运转,现将质量为m=0.1 kg,电荷量q=+10-2 C的物体(可视为质点)轻放于传送带的A点,已知物体和传送带间的动摩擦因数为μ=0.8,物体在运动过程中电荷量不变,重力加速度取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求物体从A点传送到B点的时间.(2)若物体从B点进入复合场后做匀速圆周运动,则所加的电场强度E大小应为多少?若物体仍然从复合场的左边界出复合场,则场的右边界距B点的水平距离d至少等于多少?图Z878.(2015年陕西长安一中等五校一模)如图Z88所示,区域Ⅰ内有与水平方向成45°角的匀强电场E1,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场B和匀强电场E2,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、带电荷量为q的微粒在区域Ⅰ左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g,求:(1)区域Ⅰ和区域Ⅱ内匀强电场的电场强度E1、E2的大小.(2)区域Ⅱ内匀强磁场的磁感应强度B的大小.(3)微粒从P运动到Q的时间.图Z88专题八 磁 场第1讲 磁场 磁场对电流的作用1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.AC9.ABC 解析:由左手定则可知,金属棒一开始向右做匀加速运动,当电流反向以后,金属棒开始做匀减速运动,经过一个周期速度变为0,然后重复上述运动,所以选项A 、B 正确;安培力F =BIL ,由图象可知前半个周期安培力水平向右,后半个周期安培力水平向左,不断重复,选项C 正确;一个周期内,金属棒初、末速度相同,由动能定理可知安培力在一个周期内不做功,选项D 错误.10.AB 解析:导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A 正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL ·L sin θ-mgL (1-cos θ)=0,代入数值得导体棒中的电流为I =3 A ,由E =IR 得电源电动势E =3.0 V ,B 正确;由F =BIL 得导体棒在摆动过程中所受安培力F =0.3 N ,C 错误;由能量守恒定律知电源提供的电能W 等于电路中产生的焦耳热Q 和导体棒重力势能的增加量ΔE 的和,即W =Q +ΔE ,而ΔE =mgL (1-cos θ)=0.048 J ,D 错误. 11.解:(1)由右手定则可知线圈向下运动,感应电流从C 端流出. (2)设线圈受到的安培力为F A ,外加电流从D 端流入. F A =mg F A =2nBIL由以上两式解得m =2nBLgI .(3)设称量的最大质量为m 0,有m =2nBLgIP =I 2R由以上两式解得m 0=2nBL gP R. 第2讲 磁场对运动电荷的作用 1.B 2.B 3.D 4.A5.C 解析:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于5πm6Bq,故D 错;如图D104所示,对应轨迹①时,t 1=T 2=πmqB,C 正确;另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 错误.图D1046.B7.B 解析:两粒子从c 点沿箭头方向射入磁场,都从d 点射出磁场,则两粒子的圆心、半。
新课标人教版2013届高三物理总复习单元综合测试卷第八单元《磁场》本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分试卷满分为100分。
考试时间为90分钟。
第Ⅰ卷(选择题,共40分)一、选择题(本大题包括10小题,每小题4分,共40分。
)1.磁性是物质的一种普遍属性,大到宇宙中的星球,小到电子、质子等微观粒子几乎都会呈现出磁性.地球就是一个巨大的磁体,其表面附近的磁感应强度约为3×10-5~5×10-5 T,甚至一些生物体内也会含有微量强磁性物质如FeO4.研究表明:鸽子正是利用体内所3含有的微量强磁性物质在地磁场中所受的作用来帮助辨别方向的.如果在鸽子的身上绑一块永磁体材料,且其附近的磁感应强度比地磁场更强,则() A.鸽子仍能辨别方向B.鸽子更容易辨别方向C.鸽子会迷失方向D.不能确定鸽子是否会迷失方向解析:因为鸽子是利用体内所含有的微量强磁性物质在地磁场中所受的作用来帮助辨别方向的.当在鸽子的身上绑一块永磁体材料后,改变了原有的磁场,鸽子会迷失方向,故选C.答案:C2.如图1所示,磁带录音机可用作录音,也可用作放音,其主要部件为可匀速行进的磁带a和绕有线圈的磁头b.下面对于它们在录音、放音过程中主要工作原理的描述,正确的是()图1A.放音的主要原理是电磁感应,录音的主要原理是电流的磁效应B.录音的主要原理是电磁感应,放音的主要原理是电流的磁效应C.放音和录音的主要原理都是磁场对电流的作用D.放音和录音的主要原理都是电磁感应答案:A3.空间存在一个匀强磁场B ,其方向垂直纸面向里,还有一点电荷Q 的电场,如图2所示,一带电粒子-q 以初速度v 0从图示位置垂直于电场、磁场入射,初位置到点电荷+Q 的距离为r ,则粒子在电、磁场中的运动轨迹不可能为( )A .以点电荷+Q 为圆心,以r 为半径,在纸平面内的圆周B .初阶段在纸面内向右偏的曲线C .初阶段在纸面内向左偏的曲线D .沿初速度v 0方向的直线解析:如果此时刚好有k Qq r 2-q v 0B =m v 20r,则粒子在电磁场中可以做以点电荷+Q 为圆心、以r 为半径、在纸平面内的圆周运动,所以A 选项正确.如果k Qqr2>q v 0B ,粒子向左偏;如果k Qqr 2<q v 0B ,粒子向右偏.但不会沿v 0方向做直线运动,因为粒子受到的合力方向与速度方向不可能在一条直线上,所以应选D.答案:D4.如图3所示,直导线AB 、螺线管C 、电磁铁D 三者相距较远,它们的磁场互不影响. 当开关S 闭合稳定后,则图中小磁针的北极N(黑色的一端)指示出磁场方向正确的是( )图3 A .aB .bC .cD .d解析:接通电源后,直导线、螺线管、电磁铁等都将产生磁场,应用安培定则逐一进行判断.为了便于判断所标出的小磁针N 极的指向是否正确,先根据安培定则画出有关磁场中经过小磁针的磁感线及其方向,如图4所示.根据安培定则,对于通电直导线AB 的确定,磁感线是以导线AB 上各点为圆心的同心圆,且都在跟导线垂直的平面上,其方向是逆时针方向,显然磁针a 所示不对.通电螺线管C 内部的磁感线是由左指向右,外部的磁感线是由右向左,故b 所示正确、c 所示不对,对电磁铁D (与蹄形磁铁相似).由安培定则可知,电磁铁的左端为N 极,右端为S 极,可见小磁针d 所示正确,因此答案为B 、D.图4答案:BD5.如图5所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,a 受到的磁场力大小为F1.当加入一与导线所在平面垂直的匀强磁场后,a受到的磁场力大小变为F2,则此时b受到的磁场力大小变为()图5A.F2B.F1-F2C.F1+F2D.2F1-F2解析:根据安培定则和左手定则,可以判定a导线受b中电流形成的磁场的作用力F1,方向向左.同理b受a中电流形成磁场的作用力大小也是F1,方向向右.新加入的磁场无论什么方向,a、b受到的这个磁场的作用力F总是大小相等方向相反.如果F与F1方向相同,则两导线受到的力大小都是F+F1.若F与F1方向相反,a、b受到的力的大小都是|F-F1|.因此当再加上磁场时若a受的磁场力大小是F2,b受的磁场力大小也是F2,所以A对.答案:A6.如图6所示为一种自动跳闸的闸刀开关,O是转动轴,A是绝缘手柄,C是闸刀卡口,M、N接电源线,闸刀处于垂直纸面向里、B=1 T的匀强磁场中,CO间距离为10 cm,当磁场力为0.2 N时,闸刀开关会自动跳开.则要使闸刀开关能跳开,CO中通过的电流的大小和方向为()图6A.电流方向C→OB.电流方向O→CC.电流大小为1 AD.电流大小为0.5 A解析:由左手定则,电流的方向O→C,由B=FIL得I=FBL=2 A.答案:B7.如图7所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F拉b物块,使a、b一起无相对滑动地向左加速运动,在加速运动阶段()图7A.a对b的压力不变B.a对b的压力变大C.a、b物块间的摩擦力变小D.a、b物块间的摩擦力不变解析:a向左加速时受到的竖直向下的洛伦兹力变大,故对b的压力变大,B项正确;从a、b整体看,由于a受到的洛伦兹力变大,会引起b对地面的压力变大,滑动摩擦力变大,整体的加速度变小,再隔离a,b对a的静摩擦力提供其加速度,由F ba=m a·a知,a、b间的摩擦力变小,选项C亦正确.答案:BC8.一圆柱形磁铁竖直放置,如图8所示,在它的右侧上方有一带正电小球,现使小球获得一水平速度,小球若能在水平面内做匀速圆周运动,则下列说法正确的是()图8A.俯视观察,小球的运动方向可以是顺时针,也可以是逆时针B.俯视观察,小球的运动方向只能是顺时针C.俯视观察,小球的运动方向只能是逆时针D.不可能实现小球在平面内做匀速圆周运动解析:小球所受的洛伦兹力与重力的合力提供向心力.答案:B9.地球大气层外部有一层复杂的电离层,既分布有地磁场,也分布有电场.假设某时刻在该空间中有一小区域存在如图9所示的电场和磁场;电场的方向在纸面内斜向左下方,磁场的方向垂直纸面向里,此时一带电宇宙粒子,恰以速度v垂直于电场和磁场射入该区域,不计重力作用,则在该区域中,有关该带电粒子的运动情况可能的是()图9A .仍做直线运动B .立即向左下方偏转C .立即向右上方偏转D .可能做匀速圆周运动解析:比较Eq 与Bq v ,因二者开始时方向相反,当二者相等时,A 正确.当Eq >Bq v 时,向电场力方向偏,当Eq <Bq v 时,向洛伦兹力方向偏,B 、C 正确.有电场力存在,粒子不可能做匀速圆周运动,D 错.答案:ABC 10.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能.如图10所示为它的发电原理图.将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,从整体上来说呈电中性)喷射入磁感应强度为B 的匀强磁场,磁场中有两块面积S ,相距为d 的平行金属板与外电阻R 相连构成一电路.设气流的速度为v ,气体的电导率(电阻率的倒数)为g ,则流过外电阻R 的电流强度I 及电流方向为( )图10A .I =Bd vR ,A →R →BB .I =Bd v SSR +gd ,B →R →AC .I =Bd v R,B →R →AD .I =Bd v SggSR +d,A →R →B解析:等离子体切割磁场的等效长度为d ,切割速度为v ,感应电动势为Bd v .由闭合电路欧姆定律得I =Bd v R +r ,其中r =ρd S =dgS ,所以,电流强度I =Bd v gS gSR +d .由右手定则判断可知上极板为高电势,那么外部的电流方向为A 到R 到B .答案:D 第Ⅱ卷(非选择题,共60分)二、填空题(每小题10分,共20分)11.实验室里可以用图11甲所示的小罗盘估测条形磁铁磁场的磁感应强度.方法如图乙所示,调整罗盘,使小磁针静止时N 极指向罗盘上的零刻度(即正北方向),将条形磁铁放在罗盘附近,使罗盘所在处条形磁铁的方向处于东西方向上,此时罗盘上的小磁针将转过一定角度.若已知地磁场的水平分量B x ,为计算罗盘所在处条形磁铁磁场的磁感应强度B ,则只需知道________,磁感应强度的表达式为B=________.图11答案:罗盘上指针的偏转角B x tanθ12.如图12所示,空间有一垂直纸面向外的磁感应强度为0.5T的匀强磁场,一质量为0.2 kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速度放置一质量为0.1 kg、电荷量q=+0.2 C的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左,大小为0.6 N的恒力,g取10 m/s2,则木板的最大加速度为________;滑块的最大速度为________.图12解析:开始滑块与板一起匀加速,刚发生相对滑动时整体的加速度a=FM+m=2 m/s2,对滑块μ(mg-q v B)=ma,代入数据可得此时刻的速度为6 m/s.此后滑块做加速度减小的加速运动,最终匀速.mg=q v B代入数据可得此时刻的速度为10 m/s.而板做加速度增加的加速运动,最终匀加速.板的加速度a=FM=3 m/s2答案:3 m/s210 m/s三、计算题(每小题10分,共40分)13.有两个相同的全长电阻为9 Ω的均匀光滑圆环,固定于一个绝缘的水平台面上,两环分别在两个互相平行的、相距为20 cm的竖直面内,两环的连心线恰好与环面垂直,两环面间有方向竖直向下的磁感强度B=0.87 T的匀强磁场,两球的最高点A和C间接有一内阻为0.5 Ω的电源,连接导线的电阻不计.今有一根质量为10 g,电阻为1.5 Ω的棒置于两环内侧且可顺环滑动,而棒恰好静止于如图13所示的水平位置,它与圆弧的两接触点P、Q 和圆弧最低点间所夹的弧对应的圆心角均为θ=60°,取重力加速度g=10 m/s2.试求此电源电动势E的大小.图13解析:在图中,从左向右看,棒PQ的受力如图14所示,棒所受的重力和安培力F B的合力与环对棒的弹力F N是一对平衡力,且F B=mg tanθ=3mg而F B =IBL ,所以I =3mgBL=3×10×10-3×100.87×0.2A =1 A图14在右图所示的电路中两个圆环分别连入电路中的电阻为R ,则R =93×(9-93)9 Ω=2 Ω由闭合电路欧姆定律得E =I (r +2R +R 棒)=1×(0.5+2×2+1.5) V =6 V 答案:6 V14.如图15所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子进入匀强磁场,以半径R 1=20 cm 做匀速圆周运动.第一次垂直穿过铅板后以半径R 2=19 cm 做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?图15解析:粒子每穿过铅板一次损失的动能都相同,但是粒子每穿过铅板一次其速度的减少却是不同的,速度大时,其速度变化量小;速度小时,速度变化量大.但是粒子每次穿过铅板时受铅板的阻力相同,所以粒子每次穿过铅板克服阻力做的功相同,因而每次穿过铅板损失的动能相同.粒子每穿过铅板一次损失的动能为:ΔE k =12m v 21-12m v 22=q 2B 22m (R 21-R 22) 粒子穿过铅板的次数为: n =12m v 21ΔE k =R 21R 21-R 22=10.26次,取n =10次.答案:1015.如图16所示,厚度为h 、宽度为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系为U =k IBd.式中的比例系数k 称为霍尔系数.霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场.横向电场对电子施加与洛伦兹力方向相反的静电力.当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差.图16设电流I 是由电子的定向流动形成的,电子的平均定向速度为v ,电荷量为e ,回答下列问题:(1)达到稳定状态时,导体板上侧面A 的电势________下侧面A ′的电势(填“高于”“低于”或“等于”);(2)电子所受的洛伦兹力的大小为________;(3)当导体板上下两侧之间的电势差为U 时,电子所受静电力的大小为________;(4)由静电力的洛伦兹力平衡的条件,证明霍尔系数为k =1ne,其中n 代表导体板单位体积中电子的个数.解析:(1)导体中电子运动形成电流,电子运动方向与电流方向相反,利用左手定则可判定电子向A 板偏,A ′板上出现等量正电荷,所以A 板电势低于A ′板电势.(2)洛伦兹力大小F =Be v(3)静电力 F 电=Ee =Uh e(4)由F =F 电得Be v =Uhe U =h v B导体中通过的电流I =ne v ·d ·h由U =k IB d 得h v B =k IBd h v B =k ne v dhB d得k =1ne答案:(1)低于 (2)e v B (3)e Uh(4)见解析16.如图17,在宽度分别为l 1和l 2的两个毗邻的条形区域中分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右.一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出.已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d .不计重力,求电场强度与磁感应强度大小之比以及粒子在磁场与电场中运动时间之比.图17解析:粒子在磁场中做匀速圆周运动(如图18).由于粒子在分界线处的速度与分子界线垂直,圆心O 应在分界线上.OP 长度即为粒子运动的圆弧的半径R .由几何关系得图18R 2=l 21+(R -d )2①设粒子的质量和所带正电荷分别为m 和q ,由洛伦兹力公式和牛顿第二定律得q v B =m v 2R ②设P ′为虚线与分界线的交点,∠POP ′=α,则粒子在磁场中的运动时间为t 1=Rαv ③sin α=l 1R ④粒子进入电场后做类平抛运动,其初速度为v ,方向垂直于电场.设粒子加速度大小为a ,由牛顿第二定律得qE =ma ⑤由运动学公式有d =12at 22⑥l 2=v t 2⑦式中t 2是粒子在电场中运动的时间.由①②⑤⑥⑦式得 E B =l 21+d2l 22v ⑧ 由①③④⑦式得t 1t 2=l 21+d 22dl 2arcsin(2dl 1l 21+d 2)⑨。
1.(2012·北京西城区抽样)两个电荷量相等的带电粒子,在同一匀强磁场中只受洛伦兹力作用而做匀速圆周运动.下列说法中正确的是( )A .若它们的运动周期相等,则它们的质量相等B .若它们的运动周期相等,则它们的速度大小相等C .若它们的轨迹半径相等,则它们的质量相等D .若它们的轨迹半径相等,则它们的速度大小相等解析:选A.由洛伦兹力提供向心力可得r =m v qB ,T =2πm qB ,由此可知,在粒子的电荷量相同的情况下,半径由粒子的质量、速度大小共同决定,周期由带电粒子的质量决定,A 正确.2.(2012·长沙模拟)如图8-2-22所示,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B .现有一质量为m 、电量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响.由这些条件可知( )图8-2-22A .能确定粒子通过y 轴时的位置B .能确定粒子速度的大小C .能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对解析:选ABC.粒子在磁场作用下沿垂直于y 轴的方向射出磁场,可知半径大小等于x 0,A选项正确;由r =m v Bq =x 0⇒v =Bqx 0m ,所以B 选项正确;画出轨迹可知粒子完成了四分之一圆周的路径,所以有t =14T =14·2πm Bq =πm 2Bq ,C 选项正确,D 选项错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图8-2-23所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( )图8-2-23A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电解析:选C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =m v qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 、带电荷量q 不变.又据E k =12m v 2知,v 在减小,故R 减小,可判定粒子从b 向a 运动;另据左手定则,可判定粒子带正电,C 选项正确.4.如图8-2-24所示,在第Ⅰ象限内有垂直于纸面向里的匀强磁场,一对正、负电子分别以相同速率与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图8-2-24A .1∶2B .2∶1C .1∶ 3D .1∶1解析:选B.由T =2πm qB 可知,正、负电子的运动周期相同,故所用时间之比等于轨迹对应的圆心角之比.作出正、负电子运动轨迹如图所示,由几何知识可得正电子运动的圆心角等于120°,负电子运动的圆心角等于60°,而电荷在磁场中的运动时间t =θ2πT ,所以t 正∶t 负=θ正∶θ负=2∶1,故B 正确,A 、C 、D 错误.5.(2012·皖南八校联考)带电粒子的质量m =1.7×10-27 kg ,电荷量q =1.6×10-19 C ,以速度v =3.2×106 m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度l =10 cm ,如图8-2-25所示.图8-2-25(1)求带电粒子离开磁场时的速度和偏转角.(2)求带电粒子在磁场中运动的时间以及出磁场时偏离入射方向的距离.解析:粒子所受的洛伦兹力F =q v B =8.7×10-14 N ,远大于粒子所受的重力G =1.7×10-26 N ,因此重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106m/s.由q v B =m v 2r 得轨道半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17 m =0.2 m由图可知偏转角θ满足sin θ=l r =0.10.2=0.5,故θ=30°. (2)带电粒子在磁场中运动的周期T =2πm qB ,可见带电粒子在磁场中运动的时间t =⎝⎛⎭⎫30°360°T =112Tt =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s =3.3×10-8 s离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×⎝ ⎛⎭⎪⎫1-32 m =2.7×10-2 m. 答案:(1)3.2×106 m/s 30° (2)3.3×10-8 s 2.7×10-2 m一、选择题1.(2012·潍坊模拟)如图8-2-26所示,电子束沿垂直于荧光屏的方向做直线运动,为使电子打在荧光屏上方的位置P ,则能使电子发生上述偏转的场是( )图8-2-26A .匀强电场B .负点电荷的电场C .垂直纸面向里的匀强磁场D .垂直纸面向外的匀强磁场答案:ABD2.用绝缘细线悬挂一个质量为m ,带电荷量为+q 的小球,让它处于如图8-2-27所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在图中位置,这时悬线与竖直方向夹角为α,并被拉紧,则磁场的运动速度和方向是( )图8-2-27A .v =mg Bq ,水平向左B .v =mg tan αBq ,竖直向下C .v =mg tan αBq ,竖直向上D .v =mg Bq ,水平向右解析:选AC.根据运动的相对性,带电小球相对磁场的速度与磁场相对于小球(相对地面静止)的速度大小相等、方向相反.洛伦兹力F =q v B 中的v 是相对于磁场的速度.根据力的平衡条件可以得出,当小球相对磁场以速度v =mg tan αBq 竖直向下运动或以速度v =mg Bq 水平向右运动,带电小球都能处于图中所示的平衡状态,故本题选A 、C.3.一个带正电的小球沿光滑绝缘的桌面向右运动,速度方向垂直于一个水平方向的匀强磁场,如图8-2-28所示,小球飞离桌面后落到地板上,设飞行时间为t 1,水平射程为x 1,着地速度为v 1.撤去磁场,其余的条件不变,小球飞行时间为t 2,水平射程为x 2,着地速度为v 2,则下列论述不正确的是( )图8-2-28A .x 1>x 2B .t 1>t 2C .v 1和v 2大小相等D .v 1和v 2方向相同解析:选D.当桌面右边存在磁场时,由左手定则,带电小球在飞行过程中受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上分量向上,因此小球水平方向存在加速度,竖直方向加速度a <g ,所以t 1>t 2,x 1>x 2,A 、B 对;又因为洛伦兹力不做功,C 对;两次小球着地时方向不同,D 错,故本题选D.4.(2012·兰州模拟)如图8-2-29所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径r 1>r 2并相切于P 点,设T 1、T 2,v 1、v 2,a 1、a 2,t 1、t 2,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P 点算起到第一次通过图中虚线MN 所经历的时间,则( )图8-2-29A .T 1=T 2B .v 1=v 2C .a 1>a 2D .t 1<t 2解析:选ACD.由T =2πm qB 知,T 1=T 2,故A 正确;由r =m v qB 知 v 1>v 2,故B 错;由a =⎝⎛⎭⎫2πT 2 ·r 知a 1>a 2,故C 正确;由图可知质子1从P 到虚线位置对应的圆心角小,故t 1<t 2,D 正确.5.质谱仪的两大重要组成部分是加速电场和偏转磁场,如图8-2-30为质谱仪的原理图.设想有一个静止的质量为m 、带电量为q 的带电粒子(不计重力),经电压为U 的加速电场加速后垂直进入磁感应强度为B 的偏转磁场中,带电粒子打到底片上的P 点,设OP =x ,则在下图中能正确反映x 与U 之间的函数关系的是( )图8-2-30图8-2-31解析:选B.带电粒子先经加速电场加速,故qU =12m v 2,进入磁场后偏转,OP =x =2r =2m v qB ,两式联立得OP =x =8mU B 2q ∝U ,所以B 正确.6.(2012·哈师大附中、东北师大附中、辽宁省实验中学联考)如图8-2-32所示,回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,用来加速质量为m 、电荷量为q 的质子,质子从下半盒的质子源由静止出发,加速到最大能量E 后,由A 孔射出.则下列说法正确的是( )图8-2-32A .回旋加速器不能无限加速质子B .增大交变电压U ,则质子在加速器中运行时间将变短C .回旋加速器所加交变电压的频率为2mE 2πmRD .下半盒内部,质子的轨道半径之比(由内到外)为1∶3∶ 5解析:选ABC.本题考查回旋加速器原理.当回旋加速器所加交变电压周期与质子在磁场中运动周期相同时,质子才能被加速;质子在匀强磁场中运动周期T =2πm qB ,质子在回旋加速器中运动的最大半径R =m v qB ,E =12m v 2,交变电压频率f =1T ,解以上各式得:f =2mE 2πmR ,C正确;当随着质子速度的增大,相对论效应逐渐显现,质子质量增大,做圆周运动周期不能保持与所加电场变化的周期同步,从而不能再被加速,A 正确;增大电压,质子每次经过电场时获得的动能增大,质子在磁场中运动半径增大,加速次数和所做圆周运动次数减少,因此运动时间减小,B 正确.由v =2qU m ,R =m v qB 知,质子在下半盒内部,质子的轨道半径之比(由内到外)与被电场加速的次数的平方根成正比,即为2∶4∶6,D 错误. 7.(2012·西安八校联考)环形对撞机是研究高能粒子的重要装置,其核心部件是一个高真空的圆环状的空腔,若带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B .带电粒子将被局限在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法错误的是( )A .对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越大B .对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越小C .对于给定的带电粒子,加速电压U 越大,带电粒子运动的频率越小D .对于给定的带电粒子,不管加速电压U 多大,带电粒子运动的周期都不变解析:选ACD.在电场中,带电粒子加速,有qU =12m v 2,进入磁场中由半径公式:R =m v qB =m qB 2qU m =1B 2mUq ,依题意R 保持不变,则电压U 恒定时,带电粒子的比荷q /m 越小,磁感应强度B 越大,由周期T =2πR v =2πR m 2qU ,对于给定的带电粒子,比荷恒定,加速电压U 越大,周期越小,频率越大,A 、C 、D 均错误.8.比荷为e m 的电子以速度v 0沿AB 边射入边长为a 的等边三角形的匀强磁场区域中,如图8-2-33所示,为使电子从BC 边穿出磁场,磁感应强度B 的取值范围为( )图8-2-33A .B >3m v 0eaB .B <3m v 0eaC .B >2m v 0eaD .B <2m v 0ea解析:选B.电子进入磁场后向上偏,刚好从C 点沿切线方向穿出是临界条件,要使电子从BC 边穿出,其运动半径应比临界半径大,由R =m v qB 可知,磁感应强度应比临界值小,如图,由几何关系可得,半径R =a 2sin60°,又e v 0B =m v 20R ,解得B =3m v 0ea ,B 选项正确.9.(2011·高考浙江卷)利用如图8-2-34所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )图8-2-34A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析:选BC.本题考查带电粒子在磁场中的运动,意在考查考生应用数学知识处理问题的能力和分析问题的能力.由左手定则和粒子的偏转情况可以判断粒子带负电,A 错误;根据洛伦兹力提供向心力q v B =m v 2r 可得v =qBr m ,r 越大v 越大,由题图可知r 最大值为r max =3d +L 2,B 正确;又r 最小值为r min =L 2,将r 的最大值和最小值代入v 的表达式后得出速度之差为Δv=3qBd 2m ,可见C 正确、D 错误.10.(2012·安庆模拟)如图8-2-35所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( )图8-2-35A .小球下滑的最大速度为v =mg sin θμBqB .小球下滑的最大加速度为a m =g sin θC .小球的加速度一直在减小D .小球的速度先增大后减小解析:选B.小球开始下滑时有:mg sin θ-μ(mg cos θ-q v B )=ma ,随v 增大,a 增大,当v =mg cos θqB 时,达最大值g sin θ,此后下滑过程中有:mg sin θ-μ(q v B -mg cos θ)=ma ,随v 增大,a 减小,当v m =mg (sin θ+μcos θ)μqB时,a =0.所以整个过程中,v 先一直增大后不变;a 先增大后减小,所以B 选项正确.二、非选择题11.(2012·湖南部分中学调研)如图8-2-36所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向外、大小为B ,沿x 轴放置一个垂直于xOy 平面的较大的荧光屏,P 点位于荧光屏上,在y 轴上的A 点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为m 、电荷量为+q 的同种粒子,这些粒子打到荧光屏上能在屏上形成一条亮线,P 点处在亮线上,已知OA =OP =l ,求:图8-2-36(1)若能打到P 点,则粒子速度的最小值为多少?(2)若能打到P 点,则粒子在磁场中运动的最长时间为多少?解析:(1)粒子在磁场中运动,洛伦兹力提供向心力,设粒子的速度大小为v 时,其在磁场中的运动半径为R ,则F =qB v由牛顿运动定律有:F =m v 2R若粒子以最小的速度到达P 点时,其轨迹一定是以AP 为直径的圆(如图中圆O 1所示)由几何关系知:s AP =2lR =s AP 2= 22l则粒子的最小速度v =2qBl 2m .(2)粒子在磁场中的运动周期T =2πm qB设粒子在磁场中运动时其轨迹所对应的圆心角为θ,则粒子在磁场中的运动时间为:t =θ2πT =θm qB由图可知,在磁场中运动时间最长的粒子的运动轨迹如图中圆O 2所示,此时粒子的初速度方向竖直向上则由几何关系有:θ=32π则粒子在磁场中运动的最长时间:t =3πm 2qB .答案:(1)2qBl 2m (2)3πm 2qB12.如图8-2-37所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B .离子源中的离子带电荷量为+q ,质量为m ,通过小孔O 1进入两板间电压为U 的加速电场区域(可认为初速度为零),离子经电场加速后由小孔O 2射出,再从O 点进入磁场区域Ⅰ,此时速度方向沿纸面垂直于磁场边界MN ,不计离子的重力.图8-2-37(1)若加速电场两板间电压U =U 0,求离子进入磁场后做圆周运动的半径R 0.(2)在OQ 上有一点P ,P 点到O 点距离为L ,若离子能通过P 点,求加速电压U 和从O 点到P 点的运动时间.解析:(1)离子在电场中加速时U 0q =12m v 20-0离子在磁场中运动时,洛伦兹力提供向心力q v 0B =m v 20R 0解得R 0=1B 2U 0mq .(2)离子进入磁场时的运动轨迹如图所示,由几何关系可知OP ′=P ′P ″=R要保证离子通过P 点,则L =nR解得U =B 2L 2q 2mn 2,其中n =1,2,3…离子在磁场中运动的周期T =2πm qBt =n ·T 2π·π3=πnm 3qB ,其中n =1,2,3….答案:(1)1B 2U 0m q(2)B 2L 2q 2mn 2,其中n =1,2,3… πnm 3qB ,其中n =1,2,3…。
C .在磁场中转过的角度之比为D .离开电场区域时的动能之比为专题8 磁场1.丢分指数少^ (新课标卷I )如图,半径为 R 的圆是一圆柱形匀强 磁场区域的横截面(纸面),磁感应强度大小为 B ,方向垂直于纸面向外。
一电荷量为q (q>0),质量为m 的粒子沿平行于直径 ab 的方向射人磁场 区域,射入点与 方向间的夹角为 A qBR/2m ab 的距离为R/2。
已知粒子射出磁场与射入磁场时运动 60°。
,则粒子的速率为(不计重力) B . qBR/m C . 3qBR/2m D 2qBR/m (新课标卷II ) 僖它间有一圜柱形匀强磯场区域,该区域的橫戡面的半朋为R ,雄场方向垂直横眩亂一质量为血、电 荷StAq (q>0)的粒予囚速率vO 沿横戡面的某直桎射入曉场*离斤磁场时速度方向倫爲入射方向* • 不计歳力,滾逾场的战感吨强段人小为 占tn% D .3.丢分指数少^ 5*如题3图所禾.一段长方体形导电材料,左右两竭面的边长都为 立利肌内有带电量为?的某种门由运动电荷.导电材料置于方向垂 直于其前表血向些的匀强磁场屮,内部磁够应强度人小为肌 当通以 从左到右的穩恒电流f 时,测得导电材料仁卜农面之间的屯压为乩 且」•我而的电势比卞表而的电势低.由此可得该导电材料单位体积内 口由运动电荷数及自由运幼电荷的正负别为 (重庆)下A. /liqaU qbU Hi \q^U * ll ;4.丢分指数☆☆(安徽)图中 导线,其横截面积位于正方形的四个顶点上,导线中通有大小相等的 电流,方向如图所示。
一带正电的粒子从正方形中心 面的方向向外运动,它所受洛伦兹力的方向是 A .向上B .向下C .向左 a 、b 、c 、d 为四根与纸面垂直的长直 0点沿垂直于纸D .向右 5.丢分指数^☆(浙江)在半导体离子注入工艺中,初速度可忽略的 离子P +和P 3+,经电压为U 的电场加速后,垂直进入磁感应强度大小为 B 、方向垂直纸面向里,有一定的宽度的匀强磁场区域,如图所示。
专题9 磁场一、单项选择题1.(江西省重点中学协作体2012届高三第二次联考卷)关于科学家和他们的贡献,下列说法正确的是()A.古希腊学者亚里士多德用科学推理论证重物体和轻物体下落一样快,推翻了意大利物理学家伽利略的观点B.德国天文学家开普勒发现了万有引力定律,提出了牛顿三大定律C.法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值D.丹麦物理学家奥斯特发现了电流的磁效应,并总结出了右手螺旋定则2.(福建省福州八中2012届高三质检)在赤道上某处有一支避雷针.当带有负电的乌云经过避雷针上方时,避雷针开始放电形成瞬间电流,则地磁场对避雷针的作用力的方向为()A.正东B.正西C.正南 D.正北3.(上海市杨浦区2012届高三第一学期期末抽测)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流引起的。
在下列四个图中,正确表示安培假设中环形电流方向的是()4.(甘肃省天水市一中2012届高三上学期期末考试)在我们生活的地球周围,每时每刻都会有大量的由带电粒子组成的宇宙射线向地球射来,地球磁场可以有效地改变这些宇宙射线中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义。
若有一束宇宙射线在赤道上方沿垂直于地磁场方向射向地球,如图所示。
在地磁场的作用下,射线方向发生改变的情况是()A.若这束射线由带正电荷的粒子组成,它将向南偏移B.若这束射线由带正电荷的粒子组成,它将向北偏移C.若这束射线由带负电荷的粒子组成,它将向东偏移D.若这束射线由带负电荷的粒子组成,它将向西偏移5.(河北省石家庄市2012届高三下学期第一次模拟考试理科综合能力测试)在实验精度要求不高的情况下,可利用罗盘来测量电流产生磁场的磁感应强度,具体做法是:在一根南北方向放置的直导线的正下方10cm处放一个罗盘。
导线没有通电时罗盘的指针(小磁针的N 极)指向北方;当给导线通入电流时,发现罗盘的指针偏转一定角度,根据偏转角度即可测定电流磁场的磁感应强度。
专题十、磁场1.(2013高考上海物理第13题)如图,足够长的直线ab靠近通电螺线管,与螺线管平行。
用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是答案:C解析:通电螺线管外部中间处的磁感应强度最小,所以用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是C 。
2.(2013高考安徽理综第15题)图中a ,b ,c ,d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。
一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是A .向上B .向下C .向左D .向右 【答案】B【 解析】在O 点处,各电流产生的磁场的磁感应强度在O 点叠加。
d 、b 电流在O 点产生的磁场抵消,a 、c 电流在O 点产生的磁场合矢量方向向左,带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,由左手定则可判断出它所受洛伦兹力的方向是向下,B 选项正确。
3. (2013全国新课标理综II 第17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面。
一质量为m 、电荷量为q (q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力。
该磁场的磁感应强度大小为 A .33mv qRB .qR m v 0C .qRmv 03 D .qR m v 03答案.A【命题意图】本题考查带电粒子在匀强磁场中的运动及其相关知识点,意在考查考生应用力学、电学知识分析解决问题的能力。
【解题思路】画出带电粒子运动轨迹示意图,如图所示。
设带电粒子在匀强磁场中运动轨迹的半径为r ,根据洛伦兹力公式和牛顿第二定律,qv 0B=m 2v r,解得r=mv 0/qB 。
由图中几何关系可得:tan30°=R/r。
联立解得:该磁场的磁感应强度B=33mv qR,选项A 正确。
【练习12】(教学案第269页针对练习3)如图为质谱仪原理示意图,电荷量为q、质量为m的带正电的粒子从静止开始经过电势差为U的加速电场后进入粒子速度选择器。
选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E、方向水平向右。
已知带电粒子能够沿直线穿过速度选择器,从G点垂直MN进入偏转磁场,该偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场。
带电粒子经偏转磁场后,最终到达照相底片的H点。
可测量出G、H 间的距离为l。
带电粒子的重力可忽略不计。
2qU 求:(1)粒子从加速电场射出时速度v的大小。
(2)粒子速度选择器中匀强磁场的磁感应强度B1的大小和方向。
(3)偏转磁场的磁感应强度B2的大小。
+ _ U 加速电场 m
垂直纸面向外 M 速度选择器 H + G - N 偏转磁场
【练习13】(教学案第269页针对练习3)电磁流量计广泛应用于测量可导电流体(如污水在管中的流量(在单位时间内通过管内横截面的流体的体积.为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其长、宽、高分别为
图中的a、b、c流量计的两端与输送流体的管道相连接(图中虚线,图中流量计的上下两面是金属材料,前后两面是绝缘材料,现给流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面,当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接, I表示测得的电流值,已知流体的电阻率为ρ ,不计电流表的内阻,则可求得流量为
(A ) b A.. I . B b D. I bc (R。
磁场综合能力测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,试卷满分为100分.考试时间为90分钟.第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内)1.下列关于电场和磁场的说法中正确的是()A.电场线和磁感线都是封闭曲线B.电场线和磁感线都是不封闭曲线C.通电导线在磁场中一定受到磁场力的作用D.电荷在电场中一定受到电场力的作用2.如图1所示,一根质量为m的金属棒AC用软线悬挂在磁感应强度为B的匀强磁场中,通入A→C方向的电流时,悬线张力不为零,欲使悬线张力为零,可以采用的办法是() A.不改变电流和磁场方向,适当增大电流B.只改变电流方向,并适当减小电流C.不改变磁场和电流方向,适当减小磁感应强度D.只改变磁场方向,并适当减小磁感应强度3.速率相同的电子垂直磁场方向进入四个不同的磁场,其轨迹如图所示,则磁场最强的是()4.如图2所示,用绝缘轻绳悬吊一个带正电的小球,放在匀强磁场中.现把小球拉至悬点右侧a点,轻绳被水平拉直,静止释放后,小球在竖直平面内来回摆动.在小球运动过程中,下列判断正确的是()A.小球摆到悬点左侧的最高点与a点应在同一水平线上B.小球每次经过最低点时所受洛伦兹力大小相等C.小球每次经过最低点时所受洛伦兹力方向相同D.小球每次经过最低点时轻绳所受拉力大小相等5.回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒.两金属盒处在垂直于盒底的匀强磁场中,并分别与高频交流电源两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图所示.现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是()A.减小磁场的磁感应强度B.减小狭缝间的距离C.增大高频交流电压D.增大金属盒的半径6.质量为m、带电荷量为q的粒子(忽略重力)在磁感应强度为B的匀强磁场中做匀速圆周运动,形成空间环形电流.已知粒子的运动速率为v、半径为R、周期为T,环形电流的大小为I.则下面说法中正确的是()A.该带电粒子的比荷为qm=BRv B.在时间t内,粒子转过的圆弧对应的圆心角为θ=qBtmC.当速率v增大时,环形电流的大小I保持不变D.当速率v增大时,运动周期T变小7.如图4所示,质量为m、带电荷量为+q的P环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中,磁感应强度大小为B.现给环一向右的初速度v0(v0>mgqB),则() A.环将向右减速,最后匀速B.环将向右减速,最后停止运动C.从环开始运动到最后达到稳定状态,损失的机械能是12mv02D.从环开始运动到最后达到稳定状态,损失的机械能是12mv02-12m(mgqB)28.如图6所示,圆柱形区域的横截面在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射时,穿过此区域的时间为t;若该区域加沿轴线方向的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转了π/3,根据上述条件可求得的物理量为()A.带电粒子的初速度B.带电粒子在磁场中运动的半径C.带电粒子在磁场中运动的周期D.带电粒子的比荷9.如图8所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电,现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则()A.经过最高点时,三个小球的速度相等B.经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变10.如图所示,虚线框中存在匀强电场E 和匀强磁场B ,它们相互正交或平行.有一个带负电的小球从该复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过下列的哪些复合场区域( )第Ⅱ卷(非选择题,共60分)二、填空题(本题共2小题,每题8分,共16分)11.实验室里可以用图9甲所示的小罗盘估测条形磁铁磁场的磁感应强度.方法如图乙所示,调整罗盘,使小磁针静止时N 极指向罗盘上的零刻度(即正北方向),将条形磁铁放在罗盘附近,使罗盘所在处条形磁铁的方向处于东西方向上,此时罗盘上的小磁针将转过一定角度.若已知地磁场的水平分量B x ,为计算罗盘所在处条形磁铁磁场的磁感应强度B ,则只需知道________,磁感应强度的表达式为B =________.12.如图10所示,空间有一垂直纸面向外的磁感应强度为0.5T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速度放置一质量为0.1 kg 、电荷量q =+0.2 C 的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左,大小为0.6 N 的恒力,g 取10 m/s 2,则木板的最大加速度为________;滑块的最大速度为________.三、计算题(本题共4小题,13、14题各10分,15、16题各12分,共44分,计算时必须有必要的文字说明和解题步骤,有数值计算的要注明单位)13.有两个相同的全长电阻为9 Ω的均匀光滑圆环,固定于一个绝缘的水平台面上,两环分别在两个互相平行的、相距为20 cm 的竖直面内,两环的连心线恰好与环面垂直,两环面间有方向竖直向下的磁感应强度B =0.87 T的匀强磁场,两球的最高点A 和C 间接有一内阻为0.5 Ω的电源,连接导线的电阻不计.今有一根质量为10 g ,电阻为1.5 Ω的棒置于两环内侧且可顺环滑动,而棒恰好静止于如图11所示的水平位置,它与圆弧的两接触点P 、Q 和圆弧最低点间所夹的弧对应的圆心角均为θ=60°,取重力加速度g =10 m/s 2.试求此电源电动势E 的大小.14.(2011·石家庄模拟)如图13所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子进入匀强磁场,以半径R 1=20 cm 做匀速圆周运动.第一次垂直穿过铅板后以半径R 2=19 cm 做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?15.如图14所示,电源电动势E 0=15 V ,内阻r 0=1Ω,电阻R 1=30 Ω,R 2=60Ω.间距d =0.2 m 的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度B =1 T 的匀强磁场.闭合开关S ,板间电场视为匀强电场,将一带正电的小球以初速度v =0.1 m/s 沿两板间中线水平射入板间.设滑动变阻器接入电路的阻值为R x ,忽略空气对小球的作用,取g =10 m/s 2.(1)当R x =29 Ω时,电阻R 2消耗的电功率是多大?(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角为60°,则R x 是多少?16.如图D8-11所示,在直角坐标系的第Ⅰ象限分布着场强E =5×103V/m 、方向水平向左的匀强电场,其余三象限分布着垂直纸面向里的匀强磁场.现从电场中M (0.5,0.5)点由静止释放一比荷为q m =2×104C/kg 、重力不计的带正电微粒,该微粒第一次进入磁场后将垂直通过x 轴.求:(1)匀强磁场的磁感应强度;(2)带电微粒第二次进入磁场时的位置坐标;(3)为了使微粒还能回到释放点M ,在微粒第二次进入磁场后撤掉第Ⅰ象限的电场,求此情况下微粒从释放到回到M 点所用时间.图D8-111.D2.A3.D4.AB5.D6.BC7.AD8.CD9.CD 10.CD 11.答案:罗盘上指针的偏转角 B x tan θ 12.答案:3 m/s 2 10 m/s13.解析:在图中,从左向右看,棒PQ 的受力如图12所示,棒所受的重力和安培力F B 的合力与环对棒的弹力F N 是一对平衡力,且F B =mg tan θ=3mg而F B =IBL ,所以I =3mg BL =3×10×10-3×100.87×0.2A =1 A 在右图所示的电路中两个圆环分别连入电路中的电阻为R ,则R =93×9-939 Ω=2 Ω由闭合电路欧姆定律得E =I (r +2R +R 棒)=1×(0.5+2×2+1.5) V =6 V14.解析:粒子每穿过铅板一次损失的动能都相同,但是粒子每穿过铅板一次其速度的减少却是不同的,速度大时,其速度变化量小;速度小时,速度变化量大.但是粒子每次穿过铅板时受铅板的阻力相同,所以粒子每次穿过铅板克服阻力做的功相同,因而每次穿过铅板损失的动能相同.粒子每穿过铅板一次损失的动能为: ΔE k =12mv 12-12mv 22=q 2B 22m(R 12-R 22)粒子穿过铅板的次数为:n =12mv 12ΔE k=R 12R 12-R 22=10.26次,取n =10次.15,解析:(1)设R 1和R 2的并联电阻为R ,有R =R 1R 2R 1+R 2① R 1两端的电压为:U =E 0R r 0+R +R x ② R 2消耗的电功率为:P =U 2R 2③当R x =29 Ω时,联立①②③式,代入数据,得 P =0.6 W .④(2)设小球质量为m ,电荷量为q ,小球做匀速圆周运动时,有:qE =mg ⑤ E =U d⑥设小球做圆周运动的半径为r ,有 qvB =mv 2⑦ 由几何关系有r =d ⑧联立①②⑤⑥⑦⑧式,代入数据,解得 R x =54 Ω.⑨16.[解析] (1)设微粒第一次进入磁场时速度为v 0,磁感应强度为B ,在磁场中运动轨道半径为R ,带电粒子在磁场中做匀速圆周运动,由几何关系可得R =0.5 m 由动能定理可得12m v 20=Eqx由牛顿第二定律Bq v 0=m v 20R联立解得B =1.0 T(2)微粒在磁场中刚好运动34圆周后,从点(0.5,0)处垂直电场方向进入电场做类平抛运动.设微粒第二次进入磁场的位置坐标为(0,y ),则:x =12Eq mt 2y=v 0t 联立解得y =1.0 m ,即微粒第二次进入磁场的位置坐标为(0,1.0).(3)设微粒第二次进入磁场时速度为v 1,轨道半径为R 1,则 12m v 21-12m v 20=EqxBq v 1=m v 21R 1 解得R 1=2R 微粒运动34圆周后刚好从坐标原点射出磁场,其轨迹如图所示.微粒在磁场中运动周期T =2πmqB若在微粒第二次进入磁场后撤掉电场,微粒从释放到回到M 点所用时间t 1=2⎝ ⎛⎭⎪⎫34T +t +2R v 1=7.21×10-4s。
单元测试选题表
选题表的使用说明:1.首先梳理出本单元要考查的知识点填到下表
2.按照考查知识点的主次选题,将题号填到下表
测试卷
一、选择题(本题共14小题,每小题3分,共42分。
在下列各题的四个选项中,有的是一个选项正确,有的是多个选项正确,全部选对的得3分,选对但不全的得2分,有错选的得0分,请将正确选项的序号涂在答题卡上)
1、科学研究表明,地球自西向东的自转速度正在变慢,假如地球的磁场是由地球表面带电引起的,则可以断定( )
A.地球表面带正电,由于地球自转变慢,地磁场将变弱
B.地球表面带正电,由于地球自转变慢,地磁场将变强
C.地球表面带负电,由于地球自转变慢,地磁场将变弱
D.地球表面带负电,由于地球自转变慢,地磁场将变强
2、磁感应强度,与下列哪个物理量的表达式是不相同的物理方法()
A.加速度B.电场强度
C.电容D.电阻
3、取两个完全相同的长导线,用其中一根绕成如图甲所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图乙所示的螺线管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为( )
A.0 B.0.5B
C.B D.2B
4、把一根不计重力的通电的硬直导线ab放在磁场中,导线所在区域的磁感线呈弧形,如图所示。
导线可以在空中自由移动和转动,导线中的电流方向由a向b,关于导线的受力和运动情况下述说法正确的是
A.硬直导线先转动,后边转动边下移
B.硬直导线只能转动,不会向下移动
C.硬直导线各段所受安培力的方向都与导线垂直
D.在图示位置,a端受力垂直纸面向内,b端受力垂直纸面向外
5、如图,长为2l的直导线折成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的
安培力大小为( )
A.0 B.0.5BIl
C.BIl D.2BIl
6、关于安培力和洛仑兹力,以下说法正确的是()
A.放置在磁场中的通电导线,一定受到安培力作用
B.洛仑兹力对运动电荷不做功
C.运动电荷在磁感应强度为零的地方,可能受洛仑兹力作用
D.带电粒子在磁场中运动时,一定受洛仑兹力作用
7、回旋加速器是加速带电粒子的装置.其主体部分是两个D形金属盒,两金属盒处于垂直于盒底的匀强磁场中,并分别与高频交流电源有两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图8-2-27所示.现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是()
图8-2-27
A.增大金属盒的半径
B.减小狭缝间的距离
C.增大高频交流电压
D.减小磁场的磁感应强度
8、某空间存在着如图所示的水平方向的匀强磁场,A、B两个物块叠放在一起,并置于光滑的绝缘水平地面上,物块A带正电,物块B为不带电的绝缘块;水平恒力F作用在物块B上,使A、B一起由静止开始水平向左运动.在A、B一起水平向左运动的过程中,关于A、B受力情况的以下说法,正确的是
A.A对B的压力变小
B.B对A的摩擦力保持不变
C.A对B的摩擦力变大
D.B对地面的压力保持不变
9、带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,如图所示是在有匀强磁场的云室中观察到的粒子轨迹,a和b是轨迹上的两点,匀强磁场B垂直纸面向里,该粒子在运动时,其质量和电荷量不变,而动能逐渐减小。
下列说法中正确的是
A.粒子先经过a点,再经过b点
B.粒子先经过b点,再经过a点
C.粒子带负电
D.粒子带正电
1
0、某同学家中电视机画面的幅度偏小,维修的技术人员检查后认为是显像管或偏转线圈出了故障,显像管及偏转线圈如图所示,引起故障的原因可能是( )
A.电子枪发射能力减弱,电子数减少
B.加速电场的电压过大,电子速率偏大
C.偏转线圈的电流过大,偏转磁场增强
D.偏转线圈匝间短路,线圈匝数减小
11、如图所示,边界MN下方有一垂直纸面向外的匀强磁场,一电子以速度V从点O射入MN,经磁场后能返回到MN边界上方,以下正确的是
A.电子从O点右边返回边界上方
B.电子从O点左边返回边界上方
C.当只增加射入速度V大小,则电子在磁场中运动的路程一定改变
D.当只增加射入速度V大小,则电子在磁场中运动的时间一定改变
12、质谱议的构造原理如图所示.从粒子源S出来时的粒子速度很小,可以看作初速为零,粒子经过电场加速后进入有界的垂直纸面向里的匀强磁场区域,并沿着半圆周运动而达到照相底片上的P点,测得P点到入口的距离为x,则以下说法正确的是
A.粒子一定带正电
B.粒子一定带负电
C.x越大,则粒子的质量与电量之比一定越大
D.x越大,则粒子的质量与电量之比一定越小
13、如图所示,带电平行金属板相互正对水平放置,两板间存在着水平方向的匀强磁场.带电液滴a沿垂直于电场和磁场的方向进入板间后恰好沿水平方向做直线运动,在它正前方有一个静止在绝缘小支架上不带电的液滴b,带电液滴a与液滴b发生正碰,在极短的时间内复合在一起形成带电液滴c.若不计支架对液滴c沿水平方向的作用力,则液滴c离开支架后( )
A.一定做曲线运动B.可能做匀速圆周运动
C.可能做直线运动D.电场力对其做正功
1
4、随着社会生产的发展,大型化工厂已越来越多,环境污染也越来越严重.为减少环境污染,技术人员在排污管末端安装了如图8-3-16所示的流量计.该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加磁感应强度为B的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()
图8-3-16
A.若污水中正离子较多,则前表面比后表面电势高
B.若污水中负离子较多,则前表面比后表面电势高
C.污水中离子浓度越高,电压表的示数将越大
D.所测的污水流量Q与U成正比
二、填空题(本题共16分)
15、(8分)(1)如图所示,一根通电导线垂直放在磁感应强度为B=1T,方向水平向右的匀强磁场中,以导线横截面“○”为圆心,以r为半径的圆周a、c两点,其中a点为圆周最高点,且a、c两点对称。
已知a点的实际磁感应强度为零。
则通电导线的电流方向为
___________________(填“垂直纸面向里”或“垂直纸面向外”),C点的磁感应强度大小为___________T。
(2)某兴趣小组在研究长直导线周围的磁场时,为增大电流,用多根导线捆在一起代替长直导线,不断改变多根导线中的总电流和测试点与直导线的距离r,测得下表所示数据:
由上述数据可得出磁感应强度B与电流I及距离r的关系式为B=______T.(要求估算出比例系数,用等式表示)
16、(8分)如图所示,磁流体发电机的通道是一长为L的矩形管道,其中按图示方向通过速度为v等离子体,通道中左、右两侧壁是导电的,其高为h,相距为a,而通道的上下壁是绝缘的,所加匀强磁场的大小为B,与通道的上下壁垂直.不计摩擦及粒子间的碰撞,则
__________导电壁电势高(填“左”或“右”),两导电壁间的电压为___________.
三、计算题(本题共4个小题,共42分,17、18、19均为10分,20题为12分)
17、如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据求:带电粒子的比荷及带电粒子在磁场中运动的周期
18、电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求:
(1)正确画出电子由静止开始直至离开匀强磁场时的轨迹图;(用尺和圆规规范作图)
(2)匀强磁场的磁感应强度B.(已知电子的质量为m,电荷量为
19、图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面向里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的
区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ.不计重力.求
(1)离子速度的大小;
(2)离子的质量.
20、如图所示,在直角坐标系xoy的原点O处有一放射源S,放射源S在xO y平面内均匀发射速度大小相等的正电粒子,位于y轴的右侧垂直于x轴有一长度为L的很薄的荧光屏MN,荧光屏正反两侧均涂有荧光粉,MN与x轴交于O'点。
已知三角形MNO为正三角形,放射源S射出的粒子质量为m,带电荷量为q,速度大小为v,不计粒子的重力。
(1)若只在y轴右侧加一平行于x轴的匀强电场,要使y轴右侧射出的所有粒子都能打到荧光
屏MN上,试求电场强度的最小值E min及此条件下打到荧光屏M点的粒子的动能;
(2)若在xOy平面内只加一方向垂直纸面向里的匀强磁场,要使粒子能打到荧光屏MN的反面O'点,试求磁场的磁感应强度的最大值B max;
(3)若在xOy平面内只加一方向垂直纸面向里的匀强磁场,磁感应强度与(2)题中所求B max 相同,试求粒子打在荧光屏MN的正面O'点所需的时间t1和打在荧光屏MN的反面O'点所
需的时间t2之比。