双闭环调速系统调节器设计及(精)
- 格式:doc
- 大小:55.00 KB
- 文档页数:7
双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。
其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。
ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。
ACR系统的设计首先需要确定控制器的参数。
其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。
这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。
在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。
积分时间决定了对速度误差的积分时间长度,即速度误差累计值。
在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。
积分时间决定了对电流误差的积分时间长度,即电流误差累计值。
ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。
速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。
这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。
在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。
然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。
这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。
ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。
通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。
1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。
根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。
2.速度内环设计速度内环负责实现期望速度的跟踪控制。
常用的设计方法是采用比例-积分(PID)控制器。
PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。
PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。
3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。
一般采用PI调节器进行设计。
PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。
4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。
稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。
分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。
常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。
5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。
通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。
常用的鲁棒性设计方法包括H∞控制、μ合成控制等。
以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。
设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
双闭环直流电机调速系统设计在今天的科技世界里,电机就像是家里的“万能小助手”,无处不在。
你想想,电风扇、洗衣机、甚至小汽车,都少不了它们的身影。
而双闭环直流电机调速系统就是这个小助手的“智囊团”,让它在各种环境中游刃有余,真是个神奇的存在。
今天,我们就来聊聊这个系统是怎么工作的,听起来是不是有点高大上?别担心,咱们用通俗易懂的语言来探讨,让你在闲聊中也能装装逼!1. 什么是双闭环控制?1.1 直流电机的基本知识直流电机,这东西其实就是通过直流电来转动的电机,简单说,就是通过电流来产生磁场,让电机的轴子转动起来。
想象一下,你在玩一辆遥控小车,控制它的速度和方向,其实和电机的工作原理类似。
电流大了,小车跑得快;电流小了,小车就慢了。
是不是很简单?不过,要把这个电机调得又快又稳,就得靠我们的双闭环系统了。
1.2 双闭环系统的工作原理双闭环控制,顾名思义,分为两个环,一个是速度环,一个是电流环。
速度环就像是你的眼睛,时刻盯着电机的转速,确保它不会跑偏。
而电流环就像是你的手,及时调整电机所需的电流,让它在需要的时候有充足的动力。
就好比你骑自行车,风一吹,你得用力蹬脚踏,让车子稳稳前行,这就是速度和电流的配合。
两者相辅相成,形成了一个良性的循环,确保电机在各种负载下都能稳定工作。
2. 设计双闭环系统的重要性2.1 提高系统性能你想啊,电机如果没有双闭环控制,开得快的时候,可能转速就飙到天上,没法控制;慢的时候,又感觉力不从心。
这就像你打球,想要扣篮却被卡在了框下,真是让人心急火燎!而有了双闭环系统,电机就能在不同的环境中保持稳定的转速,性能大大提升。
无论是重载还是轻载,电机都能游刃有余,根本不在话下。
2.2 降低能耗再来谈谈能耗的问题。
我们都知道,能源危机可是个大麻烦。
双闭环系统能够通过实时监测和调节,确保电机在最优状态下运行,从而降低能耗。
想象一下,省电就像是在家里随便找零花钱,谁不乐意呢?通过科学合理的控制,电机就能用更少的电,做更多的事,真是一举两得!3. 实际应用案例3.1 工业自动化说到双闭环系统的实际应用,那可真是多得数不过来。
第一章设计概述一、课程设计的性质和任务:本课程是电气自动化本科专业学生学习完《直流调速系统》或《电力拖动控制系统》课程后进行的一个重要的独立性实践教学环节。
其任务是通过设计双闭环直流调速系统的全过程,培养学生综合应用所学的直流调速知识去分析和解决工程实际问题的能力,帮助学生巩固、深化和拓展知识面,使之得到一次较全面的设计训练,为毕业设计和实际工程设计奠定基础。
转速、电流双闭环不可逆直流调速系统是一种典型的自动控制系统。
这种调速系统只有两个调节器,即速度调节器(ASR)和电流调节器(ACR),两个调节器作串级连接,其中速度调节器的输出信号作为电流调节器的输入信号,从而形成一环套一环的转速、电流双闭环结构。
这种转速、电流双闭环调速系统,在突加转速给定信号的过程中表现为一个恒电流加速系统,而在稳态和接近稳态的运行中又表现为一个无静差调速系统,因此各项性能指标较系统开环时提高许多。
本此课程设计的目的就是同学们在调试、设计一个典型的调速系统后,能够掌握自控系统调试、设计的方法,步骤及其调试原则,加强同学们的动手能力和对理论知识的理解。
自控系统调试所遵循的原则:先部分,后系统:即首先对系统的各个单元进行调试,然后再对整个系统进行调试。
先开环,后闭环:即首先进行开环调试,然后再对系统闭环进行调试。
先内环,后外环:即首先对内环进行调试(如在本此调试中就应先对电流环进行调试),然后再对外环进行调试(如本此调试中的速度环调试)。
本次系统调试是在DJDK-1型电力电子技术及电机控制实验装置上进行。
整个调试完成后要求系统达到以下指标:二、DJDK-1 型电力电子技术及电机控制实验装置简介1 装置特点(1)设计装置采用挂件结构,可根据不同设计内容进行自由组合。
(2)装置连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电回路,造成设备损坏。
(3)控制屏供电采用三相隔离变压器隔离,分别设有电压型和电流型漏电保护装置,保护操作者的安全。
直流双闭环调速系统设计1设计任务说明书某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min375rn N =,04.0=a R ,电枢电路总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量224.11094Nm GD =. 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数⎪⎭⎫ ⎝⎛≈=N I V A V5.11201.0β 电压反馈系数⎪⎭⎫ ⎝⎛=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi ==V U U U cm im nm12===**;调节器输入电阻Ω=K R O 40。
设计要求: 稳态指标:无静差动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量0010≤n σ。
目 录1设计任务与分析 ....................................................................................................................................... 2调速系统总体设计 ................................................................................................................................... 3直流双闭环调速系统电路设计 .............................................................................................................. 3。
V-M双闭环不可逆直流调速系统设计1主电路结构设计变压器调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。
旋转变流机组简称G-M系统,适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。
静止可控整流器又称V-M系统,通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变U d,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。
直流斩波器和脉宽调制交换器采用PWM受器件限制,适用于中、小功率的系统。
根据本设计的技术要求和特点选V-M系统。
在V-M系统中,调节器给定电压,即可移动触发装置GT输出脉冲的相位,从而方便的改变整流器的输出瞬时电压U d。
由于要求直流电压脉动较小,故采用三相全控桥式整流电路。
考虑使电路简单、经济且满足性能要求,选择晶闸管三相全控桥整流器供电方案。
因三相桥式全控整流电压的脉动频率比三相半波高,因而所需的平波电抗器的电感量可相应减少约一半,这是三相整流电路的一大优点。
并且晶闸管可控整流装置无噪声、无磨损、响应快、体积小、重量轻、投资省。
而且工作可靠,能耗小,效率高。
同时,由于电机的容量较大,又要求电流的脉动小。
综上所述,选晶闸管三相全控桥整流电路供电方案。
三相桥式全控整流电路的原理如图1-1所示,习惯将其中阴极连接在一起到3个晶闸管(VT1、VT3、VT5)称为共阴极;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极,另外通常习惯晶闸管从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源相接的3个晶体管分别是VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别是VT4、VT6、VT2。
其工作特点如下:1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。
双闭环直流电机不可逆调速系统设计
一、系统介绍
双闭环直流电机不可逆调速系统是一种应用直流电动机的调速系统,该系统具有对电机转速的精确控制和安全性高的特点,一般用于低速的直流电机。
双闭环调速系统通常由电动机控制器、电动机和负载2个部分组成,分别实现电机输出扭矩控制、电流控制和转速控制,从而达到电机的调速控制。
二、系统原理
双闭环调速系统由2个调节及控制部分组成,分别是闭环电流控制系统和闭环转速控制系统,两部分互为补偿,实现了转速的精确控制。
闭环电流控制系统:围绕反馈信号monitor电流大小,调整输入指令电流,控制电机输出的扭矩,从而恒定电流,提升电机的输出功率。
闭环转速控制系统:利用信号反馈给出的电机转速参数,实时调整参考转速信号,控制功率输出,实现精确调速,提升电机的输出转速。
三、系统可靠性
随着双闭环调速系统的发展,它的可靠性也得到了极大的提高,它围绕着两个闭环模式,实现了安全性和稳定性的控制:
(1)输出电流闭环控制:可以精确控制输出电流,使电机的输出功率稳定,进而实现转速的控制;。
双闭环调速系统调节器设计及
matlab 仿真验证
1 设计内容及要求
1.1 初始条件:
不可逆的生产设备,采用双闭环调速系统,其整流装置采用三相桥式整流电路, 系统的基本数据如下:
直流电动机:750nom U V =, 760nom I A =, 375min nom n r =, 1.82min e C V r =, 允许过载倍数1.5λ=;时间常数:0.031L T s =, 0.112m T s =;晶闸管放大倍数:
75s K =;
主回路总电阻:0.14R =Ω; 额定转速时的给定电压 *10n U V =, 调节器 ASR 、ACR 饱和输出回路电压
*
10im U V =, 10cm U V =。
1.2 设计要求
稳态指标:稳态无静差。
动态指标:电流超调量5%i σ≤, 空载启动到额定转速时的转速超调量10%n σ≤。
求
2 双闭环直流调速系统的工作原理
转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广的直流调速系统。
对于经常正、反转运行的调速系统,在起动(或制动过程中,希望始终保持电流为允许的最大值,使调速系统以最大的加(减速运行。
当达到稳态转速时, 最
好使电流立即降下来, 使电磁转矩与负载转矩相平衡, 从而迅速转入稳态运行。
采用单闭环调速系统是无法实现的, 因而只能采用转速和电流两个调节器。
2.1双闭环直流调速系统的组成
为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流负反馈以调节转速和电流, 二者之间实行嵌套连接。
如下图所示。
把转速调节器的输出当做电流调节器的输入, 再用用电流调节器的输出去控制电力电子变换器 UPE 。
由于题目要求稳态无静差, 因而调节器必须采用相应的积分器调节器, 故相应转速环采用 PI 调节器进行调节。
同时电流内环也采用相应的 PI 调节器也能实现很好的动、静态特性。
2.2双闭环直流调速系统的数学模型
通过相应处理可以得到相应的双闭环直流调速系统的动态结构图如下:
+-
其中 ( ASR W s 和 ( ACR W s 分别表示转速调节器和电流调节器的传递环视。
为了引出电流反馈,在动态结构图中引出相应的电枢电流 d I ,而α表示转速反馈系数, β表示电流反馈系数。
2.3双闭环直流调速系统的动态分析 2.
3.1起动过程分析
从电流与转速变化过程所反映出的特点可以将起动过程分为电流上升、恒流升速和转速调节三个阶段:
电流上升阶段:突加给定电压 *n U 后, 经过两个调节器的跟随作用, c U 、 0d
U 、
d I 均上升,但是在 d I 没有达到负载电流 dL I 以前,电动机还不能转动。
当 d dL I I ≥后,电动机开始起动,由于几点惯性的作用,转速不会很快增长,因而转速调节
器 ASR 的输入偏差电压 (*
c n n U U U ∆=- 的数值仍较大, 其输出电压保持限幅值 *im U , 强迫电枢电流
d I 迅速上升直到d dm I I ≈, *
i im
U U ≈, 电流调节很快就压制了 d I 的增长。
该阶段结束,此阶段中, ASR 很快进入并保持饱和状态,而 ACR 一般不饱和。
恒流升速阶段:此阶段中, ASR 始终是饱和的,转速换相当于开环,系统成为在恒值电流给定下的电流调速系统, 基本上保持电流很定, 因而系统加速度恒定,转速呈线性增长。
转速调节阶段:当转速上升到给定值是,转速调节器 ASR 的输入偏差为零, 但其输出却由于积分作用还维持在限幅值,所以电动机仍在加速,使转速超调。
转速超调后, ASR 输入偏差为负,使它开始推出饱和状态,电动机开始在负载的阻力下调速,直到稳态。
此阶段中, ASR 和 ACR 都不饱和, ASR 起主导的转速调节作用,而 ACR 则力图使 d I 很快地跟随其给定值 *i U 。
起动过程归纳的特点有:(1饱和非线性控制 (2转速超调(3准时间最优控制
2.3.2动态抗扰性能分析
一般来说, 对于调速系统, 一个重要的动态性能就是抗扰性能, 主要是抗负载扰动和抗电网电压扰动。
抗负载扰动:负载扰动作用在电流环后, 因而只能靠转速调节器 ASR 来产生抗负载扰动作用。
抗电网电压扰动:在双闭环调速系统中, 由电网电压波动引起的转速变化会比单闭环系统小的多。
2.3.3双闭环调速系统调节器作用
(1转速调节器
转速调节器是调速系统的主导调节器,它使转速 n 很快的跟随给定电压变化,稳态时可以减小转速误差,若采用 PI 调节器,则可以实现无静差。
对负载变化起抗扰作用。
其输出限幅值决定电动机允许的最大电流。
(2电流调节器的作用
作为内环的调节器, 在转速外环的调节过程中, 它的作用是使电流紧紧跟随其给定电压 *
i
U (即外环调节器的输出量变化。
对电网电压的波动起及时抗扰的作用。
在转速动态过程中, 保证获得电动机允许的最大电流, 从而加快动态过程。
当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
一旦故障消失,系统立即自动恢复正常。
3双闭环直流调速系统的设计
对于双闭环直流调速系统,可以按照工程设计方法设计转速、电流调节器。
原则是先内环后外环。
步骤是:先从电流环(内环开始,对其进行必要的变换和近似处理, 然后根据电流环的控制要求确定把它校正成那一类典型系统。
电流环设计完成后,把电流环等效成转速环(外环中的一个环节,再用同样的方法设计转速环。
2.1电流调节器的设计
下图所示是电流环的动态结构图:
实际上,反电动势与转速成正比,它代表对电流环的影响。
在一般情况下, 系统的电磁时间常熟远小于机电时间常熟,因此转速的变化往往比电流慢很多。
对电流环来说, 反电动势是一个变化较慢的扰动, 在电流的瞬变过程中, 可以认为反电动势基
本不变。
这样, 在按动态特性设计电流环时, 可以暂不考虑反电动势变化的动态影响。
(1 确定时间常数
①整流装置滞后时间 s T 的确定。
查书上表 2-2可以知道,三相桥式电路的平均失控时间为 0.0017s s T =。
②电流滤波时间常数 oi T 的确定。
三相桥式整流电路的每个波头的时间
3.3ms ,为了基本滤平波头,应有 (12 3.33oi T ms = , 因此取 20.002oi T ms s ==。
③由于 s T 和 oi T 一般都比 l T 小的多,可以当做小惯性群近似地看作是一个惯性环节时间常数为0.0037i s oi T T T s ∑=+=
(2 选择电流调节器结构
根据设计要求5%i σ≤, 并保证稳态电流无差, 因而可以按照典型Ⅰ型系统设计电流调节器。
电流环控制对象是双惯性型的,因此可用 PI 型电流调节器。
其传递函数如下:
由此可以得到电流环开环传递函数
由于L i T T ∑ , 因而可选取调节器的0.031i L T s τ==以消除控制对象中大惯性
(1
( i i ASR i K s W s s
ττ+=
(1 ( (1(1
i i s opi i L i K s K R
W s s T s T s τβτ∑+==
++
环节,以便校正成典型Ⅰ型系统,因此相应的可以得到校正后的系统的传递函数如下 Wopi ( s = Ki β K s R Ki KI = = τ i s (TΣi s + 1 TL s (TΣi s + 1 s (TΣi s + 1 (3)计算电流调节器参数电流调节器超前时间常数:τ i = TL = 0.031s 。
电流开环增益:由于题设要求电流超调量σ i ≤ 5% ,空载启动到额定转速时的转速超调量σ n ≤ 10% 。
查表可以知道应取K I TΣi = 0.25 。
因此KI = 0.25 0.25 = = 67.57 TΣi 0.0037 故相应的可以得到 ACR 的比例系数为K τ R 67.57 × 0.031× 0.14 Ki = I i = ≈ 0.444 75 × 0.0088 Ksβ 对于上述双闭环调速系统,两个调节器的作用如下:(1)转速调节器的作用:使转速 n 跟随给定电压变化,当偏差电压为零时,实现稳态无静差;对负载变化起抗扰作用;其输出限幅值决定允许的最大电流。
(2)电流调节器的作用:在转速调节过程中,使电流跟随其给定电压变化;对电网电压波动起及时抗扰作用;起动时保证获得允许的最大电流,使系统获得最大加速度起动;当电机过载甚至于堵转时,限制电枢电流的最大值,从而起大快速的安全保护作用。
当故障消失时,系统能够自动恢复正常。
相应的可以得到双闭环调速系统的动态模型如下:其中α 表示转速反馈系数,β 表示电流反馈系数。
根据相应的稳态要求可以得到* U n 10 α= = = 0.0267 nN 375
β= * * U im U im 10 = = = 0.00877 I dm λ I N 1.5 × 760。