群论讲义1
- 格式:ppt
- 大小:4.81 MB
- 文档页数:45
第七章群论§1 群的基本概念和一般理论一、群的定义和例子群是按照某种规律互相联系着的一些元素的集合,我们用G来表示这个集合,并设它含有的元素是A,B,C,E等等。
不是随便什么样的元素集合都构成群,要组成数学群必须满足下列四个条件:1.封闭性G中任何两个元素相“乘”(包括一个元素本身“平方”),其结果任然是G中的元素。
如A属于G:B属于G:则有()(7.1-1)“乘”这个术语是通用的说法,在这里它含有比初等代数里的“乘”更广泛的意义,也许用“组合”来代替更恰当一些,我们将在下面通过几个例子来阐明。
一个数学群必须首先定义一种乘法。
2.缔合性三个以上的元素相乘满足乘法的结合律。
如A B C=A ( B C )= (A B ) C (7.1-2)即在保持三个元素相乘先后次序一定的前提下,其结果与哪两个元素相乘无关。
3.单位元素G中有一个元素E,它同每一个元素相乘,都等于该元素本身,即E A=A E=A,(7.1-3)称E为单位元素或恒等元素。
4.逆元素G中每一个元素A,都有另一个元素A-1,两者相乘等于单位元素E,即A=A=E,(7.1-4) 称为的逆元素。
逆元素可以是该元素本身。
下面我们举几个群的例子(2)G={所有大于0的实数}集合G包含所有大于0的实数,对普通的乘法而言,组成一个群。
满足封闭性和缔合性是显然的。
1是单位元素,任一实数m的逆元素为。
(3) G={0,±1, ±2, ±3……±n…}集合G包含0和所有正负整数,对于加法而言,组成一个群,成为整数加群。
此例中“乘”的意思是加。
1+2=3 封闭性满足1+2+3=1+(2+3)=(1+2)+3=6 缔合性满足0+3=3+0=3 0是单位元素n+(-n)=0 n有逆元素-n 213(4)G={E、I} ( C i )这个群(称为C i)里面的二个元素是“对称操作”,E是不动,I为对原点的倒反。
这种群(组成元素是一些对称操作)称为对称群或点群。
第一章第一章 抽象群概论§1 什么是群什么是群??群公理不同元素的集合不同元素的集合,,赋予一定的合成规则赋予一定的合成规则((称为群称为群““乘法乘法””—— 加、乘、对易子等对易子等)。
)。
满足下列满足下列条件条件((群公理群公理)): (1)封闭性 i g 和G g j ∈,则G g g g k j i ∈=⋅; (2)结合律 )()(k j i k j i g g g g g g ⋅⋅=⋅⋅;(3)存在唯一的单位元素e (或E )G ∈ ,对任一元素j g 有j j j e g g e g ⋅=⋅=; (4)对每一元素有逆元对每一元素有逆元,,对i g 有 1−i g ,使e g g ii =⋅−1。
阶 —— 群元的个数群元的个数::阶有限为有限群阶有限为有限群;;阶无穷为无限群阶无穷为无限群。
无限群又分无限离散和无限连续无限群又分无限离散和无限连续。
注:1. 乘法不可对易乘法不可对易,,即i j j i g g g g ⋅≠⋅。
若可对易若可对易,,则称为阿贝尔称为阿贝尔((Abel )群。
2. 若G c b a ∈,,,则G 中包含p l k c b a ,,(其中p l k ,,为整数为整数))。
例1.复数1,i ,-1,-i 组成四阶群组成四阶群。
四阶循环群 —— 由一个元素由一个元素,,i (或-i )出发出发,,由它及其幂由它及其幂次次生成整个群G ,称为循环群称为循环群。
循环群必是阿贝尔群环群必是阿贝尔群。
n 阶循环群可表为{23,,...n a a a a e =}。
例2.所有实数组合所有实数组合,,加法运算下成群加法运算下成群。
全体正实数在乘法运算下成连续群全体正实数在乘法运算下成连续群。
例3.定轴转动定轴转动::Π<Θ≤20,)2(SO 无限连续群无限连续群。
特例 —— 转角为m 倍nπϑ2=构成n 阶群n C ;定点转动定点转动((三维空间转动三维空间转动)):),,(γβαR ,)3(SO 群。
群论及其应用绪论(一) 指导思想:学以致用, 理论与应用结合(二) 教学方式:讲课, 提问, 讨论, 习题, 自学(三) 讲义和参考书一, 讲义: 1, 内容跟不上发展2, 印刷质量差二, 参考书:(1) 基础部分: 任何一本群论方面的书(2) 应用部分: 杂志中发表的有关论文(3) 参考书目: 1, “群论基础教程”,侯云智编著,山东大学出版社 2, “群论及其在物理学中的应用”, 谢希德编著, 北京科学出版社; 3, “物理学中的群论”, 陶瑞宝编著, 上海科学技术出版社;4, “群论对分子振动的应用”, 赵择卿译, 高等教育出版社;5, “物理学中的群论”, 马中騏编著, 科学出版社;6, “群论及其在固体物理中的应用”, 徐婉棠等编著, 高等教育出版社;7, “ Elements of Group Theory for Physicists”,A.W. Joshi, John Wiley and Sons, New York;8, “Group Theorp in Physics”, Singapore National Printers, Ltd; 9, “Group Theory Application to Molecular Vibrations”,P. G. Puranik, S. Chand and Company Ltd . *questions on Galois and his Group1, When was Galois born ?(A) in 1821, (B) in 1911, (C) in 1811, (D) in 18122, How old was Galois when he first suggested the mathematical concept “group” ?(A) 16, (B) 18, (C) 20, (D) 283, What kind of talents was the famouse Ecole polytechnique in Paris for ?(A) scientiests, (B) artists, (C ) statemen, (D) enterprisers 4, How many times were the papers containing Galois’s important discoveries submitted and lost ?(A) 2, (B) 3, (C) 5, (D) 15, What did Poason think of Galois’s thought ?(A) clear, (B) great, (C) confused, (D) advanced6, What kind of man was Galois challenged by in a duel ?(A) teacher, (B) lawyer, (C) docter, (D) policeman7, How long did Galois spend for writing down his ideas on group before duel ?(A) an entire day, (B) an entire night,(C) part of a day, (D) part of a night8, Who announced Galois’s paper written at the night before death ?(A) his father, (B) his wife, (C) his friend, (D) his brother9, Who discovered and recognized Galois’s paper on Group ?(A) Cosh, (B) Poason, (C) Newwig, (D) Eienstein 10, Which kind of field in mathematics does Group belong to ?(A) biology, (B) quantum mechanics, (C) geomitry, (D) algebraGalois and his goupEvariste Galois was a brilliant young French mathematician. He was born in 1811. He firstly suggested the mathematical concept “ group” when he only was 18 years old in 1830.Although he was a mathematical genius, his abilities were not recognized by his teachers. In fact he was twice denied admission to the famous Ecole polytechnique, the school for mathematicians and scientists in Paris.Twice he submitted papers containing his important discovers to the Frenth Academy. However famous mathematicians Poason and Cosh had not understood his papers. Moreover Poason said that the author’s thought was confused. The papers were twice lost.At the age of 20, he became involved in a quarrel over awoman and was challenged to a dual. He spent the entire night before the dual writing down his ideas. The next morning he was killed. Someone said that the death of Galois was the result of a political intrique. Golois objected French monarchy. Practically he was killed by a king’s policeman.A friend of Galois annouced his paper written down at the night before death on an unimportant magazine and the paper was discovered and recognized by the other mathematician Newwig. It is Galois’s group.Galois studied groups in order to solve certain problems in algebra. His discoveries greatly expanded field of algebra. Furthermore, his ideas have also been applied to physics and chemistry, for example, quantem mechanics, atomic physics, solid state physics etc, and it start to be applied biology.伽罗华和他的群论伽罗华是一位年轻的数学家, 1811年生於法国, 1830年当他18岁的时候,首次提出了“群”这个数学概念。
124第7章 群论第七章中我们介绍了近世代数的一些基本概念,有了这些初步的准备,这一章我们来介绍群这个含有一个代数运算的重要的代数系统.§1群的定义群是含有一种代数运算,这个代数运算一般用符号 或•来表示,有时为了方便也可能直接用普通加法或乘法符号来表示,或者省略运算符号,仅写为ab ,所以有时就把代数运算叫做乘法.请大家注意区分它和普通乘法的不同.定义1设G 是一个非空集合,在G 上的一个二元运算 ,若 满足结合律,则称G 为一个半群.引入半群的目的是为了更方便的介绍群的概念, 下面先介绍几个名词.定义 2 设G 为一个半群,如果存在元素G e L ∈, 对于任意的G g ∈,都有g g e L = ,那么就称L e 为G 的一个左单位元;如果存在元素G e R ∈,对于任意的G g ∈,都有g e g R = .那么就称R e 为G 的一个右单位元;若e 既为G 的一个左单位元,又为G 的一个右单位元,则称e 为G 的一个单位元.注 半群既可以没有左单位元,又可以没有右单位元或者仅有左单位元或右单位元.但是,若两者都存在,则一定相等,即为单位元.因为e e e e e R L R L === .定义 3 ),( G 是含右单位元e 的半群,称G 中元素g 是右可逆,如果存在G g ∈′,使e g g =′ ,称g ′为g 的右逆元;称G 中元素g 是左可逆,如果存在 G g ∈′′,使e g g =′′ ,称g ′′为g 的左逆元;称G 中元素g 是可逆元,如果存在G g ∈−1,使125e g g g g ==−− 11,称1−g 为g 的逆元.显然,若G g ∈,g 既有左逆元,又有右逆元,则两者必定相等,并为G 中元素g 得逆元.有了半群、单位元、逆元的概念,即可引入群的定义.定义 4 一个有单位元的半群),( G ,叫做一个群,如果G 的每一个元都为可逆元.换言之,一个非空集合G ,给定G 上的一个二元运算 ,若以下条件满足(1)任意,,G b a ∈则G b a ∈ ;(2)结合律成立:对任意的G c b a ∈,,有)()(c b a c b a =;(3)G 中存在唯一的单位元G e ∈,对任意的G g ∈都有g e g g e == ;(4)G 中任意元素g ,存在G g ∈−1使e g g g g ==−− 11.则称),( G 为一个群.在群的定义中,(1)是多余的,因为已知 是集合G 上的一个二元运算,当然任意两个元素的运算结果仍在G 中,此处只是强调一下G 对 是封闭的.定义了群之后,来看几个群的例子.例1 G 只包含一个元素g ,二元运算定义为g g g = ,则G 对于这个二元运算来说做成一个群.(1) 结合律满足;(2)存在单位元g ;(3)对G 中元素g ,存在逆元g .例2 全体不等于零的有理数对于普通乘法来说做成一个群.结合律成立.单位元为1.a 的逆元为a1.126例3 Z n ∈,模n 剩余类}1,,1,0{}|]{[−=∈=n Z k k Z n ,二元运算定义为模n 加法,则),(+n Z 构成一个群.(1)结合律成立;(2)单位元为0;(3)0的逆元为0,1的逆元为1−n ,以此类推.例4 模m 的简化剩余系*m Z 对于模m 乘法运算构成一个群.证明 (1) 对任意的,,*m Z b a ∈ 都有,1),(,1),(==m b m a 所以*,1),(m Z ab m ab ∈=.(2)对于模m 乘法,结合律显然成立.(3)单位元为1.(4)对任意的m Z a *∈,存在唯一的1−a ,使)(mod 11m a a =⋅−,故*m Z 中每一个元素都有逆元.以上三个例子中,例1,例3 ,例4的非空集合元素个数为有限多个,例2 元素个数为无限多个.定义5 假如一个群的元的个数是一个有限整数,这个群叫做有限群,否则,这个群叫做无限群.一个有限群的元的个数叫做这个群的阶.记为G .从群得定义我们知道群满足结合律,而对于交换律,则不一定成立.定义6 一个群),( G ,假如对任意的G b a ∈,,都有 a b b a =.则这个群叫做交换群(也叫Abel 群).还有一个重要概念是利用单位元e 来定义的.定义7 若群G 的一个元g ,能够使得e gm =的最小的正整数m 叫做g 的阶(或周期).若这样的m 不存在,则称g 的阶为无限.此处定义的g 的阶类似于初等数论中定义g 的指数)(g m δ,在前面的介绍中我们知道指数满足如下性质:对任给的整数d ,如果)(mod 1m gd ≡,则d g m |)(δ.127在此处元素的阶也有类似的性质.定理1 设a 的周期为m ,当且仅当n m |时,e a n=.证明 设n m |,则存在整数k ,使得mk n =.于是 e e a a a k k m mk n ====)(.反之,设e a n=,但n m |/,则r mk n +=,m r <≤1.于是 r r r mk n a ea a a e ====+,与m 是a 的周期矛盾.实际上,群中元素的阶的定义与模的既约剩余系中元素的指数定义是一致的,所不同的是,在模的既约剩余系中,当时我们并没有提到群的概念.而在本质上,模的既约剩余系关于剩余类的乘法运算就构成一个有限群,元素的指数即为元素的阶(群中).最后我们来证明群的一个等价的定义.定义4′ 设),( G 是一个半群,如果对于G 中任意,,b a 方程b a y b x a == ,在G 中都有解,则G 为一个群.证明 (1)先证G 中有单位元e . 令b b y = 的一个解为L e ,则b b e L = .对任意的,G a ∈ 因为a x b = 有解c ,于是, ()()a c b c b e c b e a e L L L ==== ,L e 为G 的左单位元.同样可以证明b y b = 的解R e 为G 的右单位元.所以e e e R L ==为G 的单位元.(2) 下证对任意的G a ∈,逆元1−a 存在.显然e a y = 的解a ′为a 的左逆元,而e y a = 的解a ′′为a 的右逆元,a a e a a a e a a ′′=′′=′′′=′=′.故两者相等为a 的逆元,所以G 为一个群.从群的等价定义4′可以知道,在群中,一元一次方程有解且解唯一.例5 设b a ,是群G 的元素,a 的阶为p ,b 的阶为q ,(q p <为不同的素数),且 ba ab =,则ab 的阶为pq .128证明 设ab 的阶为r ,由题设知e b a ab pq pq pq ==)(,故pq r |.所以 ,,,1q p r =或q p 中的一个.1=r 显然是不可能的,若p r =,则p p p p b b a e ab ===)(,因为q p <,所以与b 的周期为q 矛盾.若q r =,则q q q q a b a e ab ===)(从而q p |,此与q 为素数矛盾.所以pq r =.§2 循环群在上一节中给出了群的定义,这一节中,我们介绍一种很重要的群—循环群,并重点研究循环群的结构.研究群的结构是群论的主要目的.到目前为止,仅有少数几类群的结构完全被大家所了解.而对于多数群的结构,目前还有待继续研究.值得说明的是,本节中我们将代数运算通称为乘法.定义 1 若一个群G 的每一个元都是某一固定元a 的乘方,}|{Z n a G n∈=,则称G 为循环群,我们也说,G 是由元a 所生成的,记为)(a G =,a 叫做G 的一个生成元.我们先举两个循环群的例子.例1 ),(+=Z G 是一个循环群,因为)1(=G .例2 G 包含模n 的n 个剩余类,代数运算定义为模n 加法.剩余类的每一个元可以写成i ,10−≤≤n i .显然,1是G 的一个生成元.这两个例子具有一定的代表性,例1中的群),(+Z 通常叫做整数加群,生成元1是无限阶的.例2中的群),(+n Z 通常叫做模n 的剩余类加群,生成元1的阶为n .例3 前面我们证明了模m 的简化剩余系*m Z 构成一个群,当模m 有原根g 时,则g 为*m Z129的生成元,且任给i ,满足1))(,(=m i φ,则i g 亦为*m Z 的生成元,并由此可看出,*m Z 的生成元共有))((m φφ个.通过下列定理可以知道,所有的循环群只有两类.而例1与例2中两个具体的群即为两类循环群的代表.定理1 假定G 是一个由元a 所生成的循环群,当a 的阶无限时,那么G 与整数加群同构;若a 的阶是一个有限整数n ,那么G 与模n 的剩余类加群同构.证明 令 k a k :φ首先证明φ为G 到),(+Z 的映射:即证明k h a a k h =⇒=.反证法:若k h a a =而k h ≠,假定k h >,则得到e a k h =−,与a 的阶无限矛盾.所以φ为G 与整数加群),(+Z 间的映射.又因为k h a a ≠⇒k h ≠,所以φ为单射.显然φ为满射,所以φ为一一映射.又因为)()()()(k h k h k h a a k h a a a φφφφ=+==+.因此φ为同构映射.故G 与整数加群同构.(2)a 的阶是一个有限整数n ,令h a h :ϕ下证ϕ为G 到),(+n Z 的群同构映射.由第1节定理及初等数论中剩余类的性质知:130k h k h n e a a a k h k h =⇔−⇔=⇔=−,所以ϕ映射并且为单射.显然ϕ为满射,所以ϕ为一一映射.又因为k h a a a k h k h +=+==+)()(ϕϕ.所以ϕ为G 与模n 的剩余类加群的同构映射.得证.至此,我们对循环群的存在及构造问题就完全掌握了.但是一般的群构造极其复杂,很难得到象循环群类这样的完美结果.§3 变换群、置换群在前面介绍的群的例子中,集合上的二元运算都是一些具体的普通加法或乘法运算,本节讨论变换群,它的元素不再是普通的数,二元运算也不再是我们通常的四则运算.变换群虽然是一类具体的群,但从同构的概念上,任何抽象群都可以在这类群中找到同构的群.因此通过对变换群的研究,有助于帮助了解抽象群.首先我们再回顾一下以前介绍过的集合A 上的变换.定义1 A 是给定的集合,我们称A 到A 的一个映射A A →:φ为集合A 上的一个变换.A 到A 的一个一一映射称为A 上的一个一一变换.A 到A 的恒等映射称为A 上的恒等变换.考虑集合A 上的所有变换的全体,记为集合S ,规定变换的合成 为S 上的代数运算,显然恒等变换为S 的单位元,由第6章的基本概念知 满足结合律.因此),( S 是一个含有单位元的半群.通常),( S 并不能构成一个群.但S 的子集G 对于上述运算却有可能构成一个群.下面定理说明了),( G 构成群的一个必要条件.定理 1 假如G 是集合A 的若干个变换所作成的集合,并且包含恒等变换ε,若是对于变换的合成来说G 作成一个群,那么G 只包含A 的一一变换.证明 若G 关于变换的合成构成群.则对于任意的G 的元素φ,一定存在1−φ,使εφφφφ==−−11.下证φ为A 上的一一变换.任给A a ∈,131a a a a ===−−)())(()(11εφφφφ,所以φ为满射.若)()(b a φφ=,则b b b a a a =====−−−−)())(())(()(1111φφφφφφφφ.所以φ为单射.定理得证.定义2 一个集合A 的若干个一一变换对于变换的合成作成的群,叫做A 的一个变换群. 我们给出了变换群的定义,但是是否存在变换群,即能否找到若干个一一变换作成变换群呢?我们来看如下定理.定理 2 一个集合A 的所有一一变换作成一个变换群G .证明 (1)首先证明集合G 对合成运算封闭.若21,φφ为一一变换,则21φφ也是A 上的一一变换.先证21φφ为满射:对任意A a ∈,因为21,φφ为一一变换,所以存在A a a ∈′′′,,使得a a =′)(2φ,a a ′=′′)(1φ,故存在A a ∈′′,使a a =′′)(21φφ.再证21φφ为单射:若b a =/,则)()(22b a φφ≠,)]([)]([2121b a φφφφ≠.因此21φφ也是A 上的一一变换.2) 结合律显然成立.3) 恒同变换ε为一一变换,即为单位元.4)若是φ一个一一变换,那么有一个A 上变换φ′,对任意A a ∈,定义()a a φφ:′容易证明φ′满足εφφφφ=′=′.所以1−=′φφ.定理得证.在证明任意抽象群同构于一个变换群之前,首先需要证明以下结论.132定理 3 ),( G 是一个群,G ′是定义了一个二元运算•的非空集合,如果存在一个G 到G ′的同态满射,对任意的G b a ∈,有)()()(b a b a φφφ•= ,则),(•′G 也是一个群.证明 因为φ是G 到G ′的同态满射,G 的二元运算 适合结合律,由第6章的定理知,G ′的二元运算•也适合结合律.若e 是G 的单位元,e e ′=)(φ,下证e ′是G ′的单位元,任意的G x ′∈′,存在,G x ∈ 使得x x ′=)(φ故)()()()()()()()(x e x x e x e x x e φφφφφφφφ=•=•⇒== .从而x e x x e ′=′•′=′•′,即e ′是G ′的单位元.任取G a ′∈′,存在,G a ∈a a ′=)(φ同理e a a a a e a a a a ′=•=•⇒==−−−−)()()()()()()(1111φφφφφφφ .可知G a ′∈−)(1φ为a ′在G ′中的逆元.从而),(•′G 也是一个群.下面定理在群的理论上是一个非常重要的结果.它使任何一个抽象的群跟一个具体的变换群联系在一起.定理4 (Cayley 定理)任意群都与一个变换群同构.证明 对于任意的G g ∈,作集合G 的下述变换 gx x g :τ133则g τ是G 的一一变换.事实上,因b gx =在G 中有解,故对任意,G b ∈存在G x ∈使()b x g =τ,即g τ是G 到G 的一个满射.又因为2121gx gx x x ≠⇒≠,故g τ是G 到G 的一个单射.从而g τ是G 到G 的一个一一变换.由于())()()()())((x x gh hx g hx x x gh g h g h g ττττττ=====•,故对任意的G h g ∈,都有,gh h g τττ=•即}|{G g G g ∈=′τ关于映射的合成是封闭的.令g g τφ :.显然φ为G 到G ′的满射,设h g ≠,则存在,G x ∈ )()(x x hx gx h g ττ≠⇒≠,即h g ττ≠,所以φ是G 到G ′的一一映射.又因为)()()(h g gh h g gh φφτττφ•=•==,由定理 3知G ′是一个群,且G G ′≅.即G 同构于集合G 上的一个变换群.从定理4知,从同构的角度,任意抽象群对应一个变换群.也就是说,如果对于抽象群的研究也可以转换成变换群研究.由此即可看出变换群在群论中的特殊地位,但往往变换群的结构并不比抽象群更容易.下面我们讨论一类简单的变换群,即有限集合A 上的一一变换群.一般一个有限集合的一个一一变换叫做一个置换.所以我们得到置换群的定义.定义 3 一个有限集合的若干个置换作成的群叫做一个置换群.134置换群是变换群的特例,在高等代数中都介绍过,在此我们将一些主要结论简单回忆一下.我们知道,n 个元的置换有!n 个,这!n 个n 次置换关于置换合成作成的群叫做n 次对称群,用n S 表示.故n 次对称群n S 的阶为!n .现在我们规定一个新符号.定义4 n S 的把1i a 变到2i a ,2i a 变到k i i a a ,,3 变到1i a ,而使其余元(假如还有的话)不变的置换,叫做一个k -循环置换.我们用符号()k i i i 21来表示.特别地,当2=k 时,称()21i i 为一个对换.每一个n 个元的置换π都可以写成若干个互不相交的循环置换的乘积,而每一个循环置换可以表示成对换的乘积.虽然每个置换表示成对换的乘积时,表示法不唯一,但奇偶性不变.通常将表示成偶数个对换的置换为偶置换,表示成奇数个对换的置换为奇置换.!n 个n 次置换中奇偶置换各占一半.所有的偶置换构成一个置换群,称为n 次交代群.最后我们描述在有限群下的Cayley 定理.定理 5 每一个有限群都与一个置换群同构.定理5说明了,每一个有限群都可以在置换群中找到例子.置换群是一种比较容易计算的例子.因此利用定理 5寻找有限群的例子是一种较好的方法.例1 设)(a G =是n 阶循环群,则G 与置换群G ′同构,求G ′.解 由于G 是n 阶循环群,故G ′也是n 阶循环群.为了找到G ′,只要找到G ′的生成元即可.G G ′≅,故G 的生成元的象即为a 的象.由Cayley 定理的证明知n f a :ax x()n e a a a a a a e f n n 213212=⎟⎟⎠⎞⎜⎜⎝⎛=−, 即()()n G 21=′.例2 证明:4S 有生成元{)41(),31(),21(}.证明 因为任一置换可表示成对换的乘积.4S 中不同的对换为{)43(),42(),32(),41(),31(),21(} 只需证明由)41(),31(),21(可生成)43(,)42(),32(即可.135)231()31)(21(=, )431()31)(41(=,)241()41)(21(=, )341()41)(31(=,)321()21)(31(=, )421()21)(41(=,)43()43)(21)(21()431)(231)(21(==,)32()32)(41)(41()341)(241)(41(==,)42()42)(31)(31()421)(321)(31(==,所以由)}41(),31(),21{(=S 可生成4S .例3 证明:3S 不是交换群.证明 3S 有 6个元.这6个元可以写成I ,)12(,)13(,)23(,)123(,)132(因为)123()23)(12(=≠)132()12)(23(=所以3S 不是交换群.§4 子群 子群的陪集集合论中我们学了子集的概念,在群论中,集合G 的非空子集合H 对于G 上的二元运算是否也可构成一个群.我们规定定义 1 群() ,G 非空子集H ,若对于G 的运算作成群,则说H 是G 的一个子群.我们用符号G H ≤表示.给定一个任意群G ,则G 至少有两个子群G 和}{e ,称之为平凡子群;其它的子群,称为G 的真子群.例1 设136},,1|{Z n C x x x G n ∈∈==∗,∗C 表示除去零元素以外的复数域,对于某个固定的n ,},1|{∗∈==C x x x H n构成G 的子群.因为任取H x x ∈21,,1)(21=nx x ,故H x x ∈21.G 中的元素满足结合律,所以H 中的元素也满足结合律.,11=n 所以H 中有单位元. H x x x x n n n ∈⇒==⇒=−−−1111)()(1,即H 是一个子群.例2 模4的剩余类加群}3,2,1,0{),(4=+Z ,4Z 和}0{为其平凡子群.}2,0{=H 为其真子群.子群的定义给出了子群的判定方法,以下介绍一个更简单的判定方法,而不需要每次验证子集合H 是否符合群的所有条件.定理 1 H 为群G 的非空子集,H 作成G 的一个子群的充分必要条件是⑴ H ab H b a ∈⇒∈,;⑵ H a H a ∈⇒∈−1.证明 充分性:因为由⑴可知H 是闭的.结合律在G 中成立,在H 中也成立.又因为H 中至少有一个元a ,由⑵知H 中含有1−a ,所以由⑴得 H e aa ∈=−1.故H 中存在单位元.因此H 构成一个群.反过来,若H 作成一个群,则⑴显然成立.下证(2)成立.因为H 是一个群,H 有单位元e ′.任意的H a ∈,a e a a e =′=′.由于G e a ∈′,,所以e ′是a ya =在G 的解.但这个方程在G 里只有一个解,就是G 的单位元e ,所以H e e ∈=′.因为H 是一个群,方程e ya =137在H 中有解a ′,a ′也是这个方程在G 里的解,而方程在G 里有且只有一个解1−a ,所以,H a a ∈=′−1.证毕.推论 1 H 为群G 的非空子集,H 作成G 的一个子群的充分必要条件是H ab H b a ∈⇒∈−1,.有了子群的概念,我们讨论循环群的子群的结构.定理2 循环群的子群仍为循环群。