最新版初三中考数学模拟试卷易错题及答案2513204
- 格式:doc
- 大小:771.50 KB
- 文档页数:16
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
九年级数学中考模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中, 只有一项是符合题目要求,请将正确选项前的字母代号填写在答题卡相应位置.......上) 1.-32的相反数为 ( )A .9B .-9C .-6D .62.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是 ( )3.下列运算正确的是 ()A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=5 5 4.下列说法不正确的是 ( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 5.如图是一个三视图,则此三视图所对应的直观图是 ()6.将一副三角板按图中的方式叠放,则角 等于 ( ) A .75 B .60 C .45 D .307. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 ( )A .22B .2C .1D .2A .B .C .D . A .B .C .D .第6题NMBA第10题图P O8. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ( ) ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①④B. ①③④C. ①②④D. ①②③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 因式分解:x 3y -xy 3= .10. 中国旅游研究院发布的2011年“五一”小长假旅游人气排行报告显示,江苏接待游客总人数约为1817.1万人次,1817.1万人次用科学计数法表示为 人次. 11. 函数y =3-x x 中自变量x 的取值范围是__________.12. 函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是__________. 13.已知一个圆锥的底面直径是6cm 、母线长8cm ,求得它的表面积为 cm 2.14. 如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm . 15. 有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么这组数据的方差_________. 16. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.17.如图,ABC ∆内接于⊙O ,90,B AB BC ∠==,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知4=AB ,1=CP ,Q 是线第7题第17题段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.18. 如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)先化简,再求值: x x x x x 2444222+-÷⎪⎪⎭⎫ ⎝⎛-+,其中1-=x .20. (8分)在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.各班种树情况70405010203040506070801234班级种树棵数21. (8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.22. (10分)红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树. (2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?甲 乙 丙 丁各班种树棵树的百分比 甲 35% 丁 丙乙 20%A BDO C H 23. (10分)如图,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H . (1)如果O 的半径为4,143CD =,求BAC ∠的度数;(2)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.24. (10分)某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD 是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米, ∠DCF=40°.请计算停车位所占道路的宽度EF (结果精确到0.1米). 参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.25. (10分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B 地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?26. (10分)如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).27. (12分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.28.(12分)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,2),∠BCO=60°,OH⊥BC于点H.动点P从点C在x轴正半轴上,点B坐标为(2,3点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.答案选择题:1A 2. C 3.D 4. D 5B 6. A 7.B 8. C 填空题 9 xy(x+y)(x-y) 10 1.8171710⨯ 11 x>3 12 k>1 13 33π 14 25 15 2 16 16073 17 1或1312 185+12解答题:19. 解:原式)2()2)(2(442+-+÷-+=x x x x x x x )2)(2()2()2(2-++⋅-=x x x x x x 2-=x …………………4分 当1-=x 时,321-=--=原式.…………………6分20. 1)格点△A ′B ′C ′是由格点△ABC 先绕B 点逆时针旋转90,然后向右平移13个长度单位(或格)得到的.(先平移后旋转也行)…………………3分(2)设过A 点的正比例函数解析式为y =kx , 将A (-5,2)代入上式得 2=-5k , k =-52. ∴过A 点的正比例函数的解析式为:x y 52-= …………………5分 △DEF 各顶点的坐标为:D (2,-4),E (0,-8),F (7,-7). …………………8分21.(1)ABOCH列表如下:树状图………………… 4分(2)数字之和分别为:2,4,7,4,6,9,7,9,12.算术平方根分别是:2,2,7,2,6,3,7,3,23 设两数字之和的算术平方根为无理数是事件A ∴5()9P A……………………………8分22. (1)200 ………………………………2分(2)如图 ………………………………8分(3)90%×2000=1800(棵) 答:成活1800棵树. ………………10分 23. 解:解:(1)∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 在Rt △COH 中,sin ∠COH =OC CH =23∴ ∠COH =60° ∵ OA =OC ∴∠BAC =21∠COH =30° …………………5分 (2)圆周上到直线AC 的距离为3的点有2个.各班种树棵树的百分比甲35%丁25%丙20%乙20%种树苗棵数70404050010203040506070801234班级甲 乙 丙 丁因为劣弧AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,根据圆的轴对称性,A D C 到直线AC 距离为3的点有2个. …………………10分24. 解:在Rt △CDF 中,DC=5.4m∴DF=CD •sin40°≈5.4×0.64≈3.46 …………………3分 在Rt △ADE 中,AD=2.2,∠ADE=∠DCF=40°∴DE=AD •cos40°≈2.2×0.77≈1.69 …………………6分 ∴EF=DF+DE ≈5.15≈5.2(m )即车位所占街道的宽度为5.2m …………………10分 25(1)300,1.5; …………………2分 (2)由题知道:乙的速度为30602 1.5=-(千米/小时),甲乙速度和为300301801.5-=(千米/小时),所以甲速度为120千米/小时. 2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动, 则D (2.5,30),E(3.5,210),F(5,300). 设CD 解析式为y kx b =+,则有202.530k b k b +=⎧⎨+=⎩,解得60120k b =⎧⎨=-⎩,60120y x ∴=-;同理可以求得:DE 解析式为180420y x =-;EF 解析式为60y x =.综上60120,(2 2.5)180420,(2.5 3.5)60,(3.55)x x y x x x x -<≤⎧⎪=-<≤⎨⎪<≤⎩. …………………6分图象如下.…………………7分(3)当0 1.5x <<时,可以求得AB 解析式为180300y x =-+, 当y=150时,得56x =小时,当2.5 3.5x <<时,代入180420y x =-得196x =小时. …………………10分26. (1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF …………………3分(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG 由(1)知, AE = BF ,∴ EF = BF = 2 FG …………………8分(3) DE + BF = EF …………………10分27.(1 )变小 ………………1分(2)问题一:AD=(3412-)cm问题二:设AD=x当FC 为斜边时,631=x 当AD 为斜边时,8649>=x 不合题意 当BC 为斜边 ,无解综上所述:当AD 的长是631时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 …………………9分问题三:假设∠FCD=15° 作∠CFE 角平分线可求得CD=12348>+不存在这样的位置,使得∠FCD=15°…………………12分28解:(1)∵AB ∥OC∴∠OAB=∠AOC=90°在Rt △OAB 中,AB=2,AO=23∴OB=4,∠ABO=60°∴∠BOC=60°而∠BCO=60°∴△BOC 为等边三角形∴OH=OBcos30°=4×23=23; …………………2分(2)∵OP=OH-PH=2 3-t∴Xp=OPcos30°=3- 23t Yp=OPsin30°= 3-∴S= 21•OQ•Xp= •t•(3-23 t ) =t t 23432+-(o <t <23)当t=3时,S 最大=; ………………5分(3)①若△OPM 为等腰三角形,则:(i )若OM=PM ,∠MPO=∠MOP=∠POC∴PQ ∥OC∴OQ=yp 即t=3- 解得:t=332 此时S=332 (ii )若OP=OM ,∠OPM=∠OMP=75°∴∠OQP=45° 过P 点作PE ⊥OA ,垂足为E ,则有:EQ=EP即t-(3 - t )=3-23t 解得:t=2此时S=33-(iii )若OP=PM ,∠POM=∠PMO=∠AOB ∴PQ ∥OA此时Q 在AB 上,不满足题意. …………………10分②线段PM 长的最大值为 . …………………12分。
中考数学模拟测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣53.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b25.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.12.(4分)分解因式:3y2﹣12=.13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是.16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<8080≤x<901790≤x<100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟解:第一分钟通知到1个学生;第二分钟最多可通知到1+2=3个学生;第三分钟最多可通知到3+4=7个学生;第四分钟最多可通知到7+8=15个学生;第五分钟最多可通知到15+16=31个学生;第六分钟最多可通知到31+32=63个学生;答:至少用6分钟.故选:C.2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣5解:|﹣|=,|﹣|=,|4|=4,|﹣5|=5,∵<4<5,∴在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为﹣,故选:B.3.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位解:A.0.67596(精确到0.01)≈0.68,正确,故本选项不合题意;B.近似数169.8精确到个位,结果可表示为170,正确,故本选项不合题意;C.近似数0.05049精确到0.1,结果可表示为0.1,正确,故本选项不符合题意;D.近似数9.60×106是精确到万位,故本选项符合题意.故选:D.4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b2解:A.6a2﹣5a2=a2,正确;B.(2a)2=4a2,错误;C.﹣2(a﹣1)=﹣2a+2,错误;D.(a+b)2=a2+2ab+b2,错误;故选:A.5.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁解:∵0.23<0.3<0.35<0.4,∴S甲2<S乙2<S丙2<S丁2,∴甲的成绩稳定,∴选甲最合适,故选:A.8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.解:根据题意,得甲的工作效率为,乙的工作效率为.所以甲、乙合作完成工程需要的天数为:1÷(+)=故选:C.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.解:A、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时二次函数y=﹣ax2﹣b 的图象应该开口向下,顶点的纵坐标﹣b大于零,故A正确;B、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2﹣b的图象应该开口向上,顶点的纵坐标﹣b大于零,故B错误;C、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2+b的图象应该开口向上,故C错误;D、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时抛物线y=﹣ax2﹣b的顶点的纵坐标大于零,故D错误;故选:A.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5解:连接AG,由已知AD=AF=AB,且∠AFG=∠ABG=∠D=90°,∵AG=AG,∴△ABG≌△AFG(HL),∴BG=BF∵AB=BC=CD=DA=6,G是BC的中点,∴BG=BF=3,设DE=x,则EF=x,EC=6﹣x,在Rt△ECG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,即DE=2.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.解:﹣的相反数是;绝对值是,故答案为:,.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是5.解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为6.解:根据题意x1+x2=4,x1•x2=2,∴x1(1+x2)+x2=x1+x2+x1•x2=4+2=6.故答案为:6.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是(1)(3)(4).解:图(2)的左视图为三角形,图(5)的主视图和左视图为等腰梯形,主视图与左视图都是长方形的是(1)(3)(4);故答案为:(1)(3)(4).16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是22019﹣1.解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=36°,∴∠ABD=∠A=36°,∠ABC=∠C=(180°﹣36°)÷2=72°∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°;(3)∵AB的垂直平分线MN交AC于点D,AE=8,∴AB=2AE=16,∵△CBD的周长为24,∴AC+BC=24,∴△ABC的周长=AB+AC+BC=16+24=40.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<80280≤x<901790≤x<10010(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB=S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).解:(1)设y=kx+b,从图象中可知函数经过点(200,6),(300,3),∴,∴,∴y=﹣0.03x+12;(2)由题意得:w1=4×200+(﹣0.03x+12)x=﹣0.03x2+12x+800=﹣0.03(x﹣200)2+2000,∵y≤3,﹣0.03x+12≤3,∴x≥300,∵x≥200时,w1随x的增大而减小,∴当x=300时,w1有最大值,∴产品B的每件利润为300元时,公司每月利润w1最大;(3)w2=200×(0.024x﹣3.2)+(﹣0.03x+12)x=﹣0.03x2+16.8x﹣640=﹣0.03(x﹣280)2+1712,当x=280时,w2最大值为1712万元,∴产品B每件利润定为280元时,每月可获得最大利润为1712万元.22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)解:如图,点A和点B为以OP为直径的圆与⊙O的交点,则P A和PB为所求.23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.解:(1)当t=0时,y=144=AB2,解得:AB=12;(2)当0≤t≤4时,如图1所示,y=S正方形ABCD﹣S△APM﹣S△DQM=144﹣[×DM×QD+AM×AP]=144﹣[×6t+×6×mt]即:y=144﹣3t﹣3mt,将点K(4,96)代入上式并解得:m=3;(3)当4<t≤8时,此时,点P在BC上,点Q在CD上,如下图2所示:y=S正方形ABCD﹣S△梯形ABPM﹣S△DQM=144﹣[6t+(3t﹣12+6)×12]=180﹣21t,当t=8时,y=12,故点E(8,12),同理可得点F(9,0),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故线段EF所在直线的解析式为:y=﹣12x+108中考数学模拟试卷一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.38.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O412.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.514.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.A.1个B.2个C.3个D.4个15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3B.4C.5D.716.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二.填空题(本大题有3个小题,共11分,17、18小题每题4分:19小题每空1分,把答案写在题中横线上)17.当c=25,b=24时,.18.若a,b互为相反数,则a2﹣b2=.19.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=;r:b=;正六边形T1,T2的面积比S1:S2的值是.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.21.(9分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?22.(9分)用黑白两种颜色的正六边形地砖按如图所示的方式,拼成若干个图案:(1)当黑色地砖有1块时,白色地砖有块,当黑色地砖有2块时,白色地砖有块;(2)第n(n为正整数)个图案中,白色地砖有块;(3)第几个图案中有2018块白色地砖?请说明理由.23.(9分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.24.(10分)如图,平面直角坐标系中,一次函数y x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.25.(10分)定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.26.(12分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.答案解析一.选择题(共16小题)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:D.2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿解:6.5993×109=65.993亿.故选:C.3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.解:从正面看,这个几何体有两列,从左面看这个几何体有两行,结合正面和从左面看到的形状,可知第一行第二列不可能是2个,故选:D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.3解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a b c,此选项正确;D、在a≠0的前提下,两边都除以a可得3,故此选项不一定成立;故选:D.8.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤解:①∵AD是△ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD,∴∠ADE=∠ADC故①正确;②∵△AED≌△ACD,∴ED=DC,∴△CDE是等腰三角形;故②正确;③∵DE=DC,∴∠DEC=∠DCE,∵EF∥BC,∴∠DCE=∠CEF,∴∠DEC=∠CEF,∴CE平分∠DEF,故③正确;④∵DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故④正确;⑤∵AD垂直平分CE,∴当四边形ACDE是矩形时,AD=CE,故⑤不正确;故选:B.9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=5.1,∴S甲2=S2丁>S乙2>S2丙,∴最合适的人选是丙.故选:C.10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.解:A、原式=2×(﹣2×0.5)2017=﹣2,正确;B、原式=2a3,错误;C、原式=a7,错误;D、原式b,错误,故选:A.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.12.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.5解:已知等式整理得:35m+1=321,可得5m+1=21,解得:m=4,故选:C.14.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1. 已知x 是整数,且222218339x x x x ++++--为整数,则所有符合条件的x 的值的和为( ) A .12B .15C .18D .202.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +-- 3.下列计算正确的是( ) A .112333()a b a b +=+B .22222()y y x x=C .0a aa b b a-=-- D .220()()a aa b b a -=-- 4. 如图,△ABC 的两个外角平分线交于点O, 若∠BOC=76°,则∠A 的值为( ) A .76°B .52°C .28°D .38°5.下列事件中,必然事件是( ) A .任何数都有倒数B .明年元旦那天天晴C .异号两数相乘积为负D .摸彩票中大奖 6.=⋅-n m a a 5)(( ) A .ma+-5B .ma+5C . nm a+5D .nm a+-57.21x 8÷7x 4等于( ) A .3x 2B .3x 6C .3x 4D .3x8.下列计算正确的是( ) A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 69.下列说法中正确的是( ) A .两个全等三角形一定成轴对称 B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形10.同时向空中掷两枚质地完全相同的硬币,则出现同时正面朝上的概率为( ) A .41 B .31 C .21D .1 11.计算:53x x ÷=( ) A .2xB .53x C .8x D .112.从甲、乙两工人做的同一种零件中,各抽取4个,量得它们的直径(单位:mm )如下: 甲:9.98,10.02,10.00,10.00; 乙:l0.O0,10.03,10.09,9.97. 他们做零件更符合尺寸规定的是( ) A .甲 B .乙C .二人都一样D .不能确定13.方程512552x x x+=--的解x 等于( ) A .-3B .-2C . -1D .014.当2x =-时,分式11x+的值为( ) A .1B .-1C .2D .-215. 如图,一块三角形绿化园地,三个角处都做有半径为 R 的圆形喷水池,则这三个喷水池 占去的绿化园地(阴影部分)的面积为( ) A .212R πB .2R πC .22R πD .不能确定16.如图所示的一些交通标志中,是轴对称图形的有( ).A . 1个B . 2个C .3个D .4个17.下列事件中,为必然事件的是( )A .掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B .一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数便是偶数C .随机从0,1,2,·…,9这十个数中选取两个数,和为 20D .开电视,正在播广告18.计算234()(2)x x ⋅-的结果是( )A .916xB . 1016xC .1216xD .2416x19. 如图,下列条件中不能判断直线1l ∥2l 的是( ) A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°20.△ABC 和△DEF 都是等边三角形,若△ABC 的周长为24 cm ,△DEF 的边长比△ABC 的边长长3 cm ,则△DEF 的周长为( ) A .27 cmB .30 cmC .33 cmD .无法确定21.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m /s ,摩托车的速度为10 m /s ,那么10 s 后,两车大约相距 ( ) A .55 mB .l03 mC .125 mD .153 m22.下列生活现象中,属于相似变换的是( ) A .抽屉的拉开 B .汽车刮雨器的运动C .荡秋千D .投影片的文字经投影变换到屏幕23.下列说法中正确的是( ) A .直四棱柱是四面体 B .直棱柱的侧棱长不一定相等 C 直五棱柱有五个侧面D .正方体是直四棱柱,长方体不是直四棱柱24.如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ) A .32 B .21 C .31D .4125.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换26.若3-=b a ,则a b -的值是( ) A .3B .3-C .0D .627. a 、b 、c 均是不为 0 的有理数,则||||||a b c a b c ++的值有( )A . 2 个B .3 个C .4 个D .无数个28.若a 、b 是整数,且12ab =,则a b +的最小值是( ) A .-13 B .-7C .8D . 729.计算5313716⨯最简便的方法是( ) A .53(13)716+⨯B .23(14)716-⨯C .53(103)716+⨯D .23(162)716-⨯30. 下列各式中,运算结果为负数的是( ) A .(-2)×(-3)÷(+4) B .(+1)÷(-1)×(-1)÷(+1) C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)31.432()()()7143-÷-÷-=( )A .169-B .449-C .4D .-432.一块木板厚20.4 mm ,一大卡车中有10000块木板,若平放到地上,它的高度用科学记 数法表示为( ) A .204×103 mmB .20.4×104 mmC .2.O4×105 mmD .20.4×10000 mm33.下列计算结果为负数的是( ) A .3-B .3--||C .2(3)-D .3(3)--34.若|2|a -与2(3)b +互为相反数,则a b 的值为( ) A .-6B .18C .8D .935.若29a =,216b =,则a b +的结果是( ) A .7B . -7C .7±或1±D .以上都不是36.一个数的立方根是它本身,则这个数是( ) A .0B .1,0C .1,-1D .1,-1或037.下列各多项式分解因式正确的个数是( )①432318273(69)x y x y x y x y +=+;②3222()x y x y xy x xy +=+;③3222+622(3)x x x x x x +=+;④232224682(234)x y x y xy xy xy x y -+-=-+-A .3 个B . 2 个C .1 个D .0 个38.当122x =-,4y =-时,代数式222x xy y -+的值是( ) A .124-B .124C .1424D .1424-39.若0(2)1x -=,则 x 满足的条件是( ) A .x 可取任何实数B .0x ≠C .2x ≠D .2x =40.分式3a x ,22x y x y +-,22a b a b -+,x y x y +-中最简分式有( )A .1 个B .2 个C . 3 个D .4 个41.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中的部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列出方程( ) A .51x+52x+1=x B 51x+52x+1+1=x C .51x+52x +1-1=x D .51x+52x=1 42.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A . 12B . 6C .-6D . -1243.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( ) A .1个B .2个C .3个D .4个44.下列说法中不正确的是( )A .在同一平面内,若OA ⊥OB ,OB ⊥OC 垂足为0,则A 、0、C 在同一直线上B .直线外一点P 与直线l 上各点连结的线段中,最短的线段长为2 cm ,则点P 到直线l 的距离为2 cmC .过点M 画MN ⊥l ,则MN 就是垂线段D .测量跳远成绩时,一定要使皮尺与起跳线垂直45.据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是( ) A .2.952×102亿美元 B .0.2952×103亿美元 C .2.952×103亿美元 D .0.2952×104亿美元46.如图,0A ⊥OC ,OB ⊥OD ,4位同学观察图形后分别说了自己的观点. 甲:∠AOB=∠COD 乙:∠BOCC+∠AOD=180° 丙:∠AOB+∠COD=90° 丁:图中小于平角的角有5个 其中正确的结论有( ) A .1个B .2个C .3个D .4个47.如图所示,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 的度数为( )A.30°B.10°C.50°D.60°48.如图,四边形ABCD是正方形,E点在边DC上,F点在线段CB的延长线上,且∠EAF=90°,则△ADE变化到△ABF是通过下列的()A.绕A点顺时针旋转l80°B.绕A点顺时针旋转90°C.绕A点逆时针旋转90°D.绕A点逆时针旋转l80°49.下列计算中,正确的是()A.23523x x x+=B.223(3)x x-=-C.236(2)6x x-=D.2224()ay a y=50.一个画家有l4个边长为1 cm的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有()A.21m2 B.24 m2 C.33 m2 D.37m251.多项式2235x y+与214y xy-+的差是()A.229x y-B.223146xy xy y++C.223146x xy y-+D.223144x xy y++52.已知β为锐角,且tanβ=3.387 ,则β等于()A.73033′B. 73027′C. 16027′D. 16021′53.使代数式912x-+的值不小于代数式113x+-的值的x应为()A.17x>B.17x≥C.17x<D.29x≥54.已知反比例函数的图象经过点(3,2),则当x=y的值是()A.2 B C.-6 D55.下列各点在抛物线23y x =上的是( ) A .(-1,-3)B .(一1,3)C .(-2,6)D .( 13,1)56.如图所示,抛物线顶点坐标 P (1,3),则函数y 随自变量 x 的增大而减小的x 的取值范围是( ) A .x ≥3B .x ≤3C .x ≥1D .x ≤157.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<58.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<59.已知扇形的半径为3 cm ,弧长为 4πcm ,则圆心角为( ) A .120°B . 240°C . 270°D . 320°60.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm ,•母线长50cm ,则制成一顶这样的纸帽所需纸面积至少为( ) A .250πcm 2B .500πcm 2C .750πcm 2D .100πcm 261.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( ) A .22cmB .2cmC .22cm D .21cm 62. 如图,DE ∥BC ,点D 、E 分别在 AB 、AC 上,且AD : AB= 1 : 3 , CE=4,则 AC的长为( )A .6B .5C .7D . 83AOB63. 若代数式232x x ++的值为 6,则代数式2395x x +-的值为( ) A .17B .7C .0D .-764.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( ) A .1 个B .2 个C .3 个D .4 个65.如图,0是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是 OA ,OC 的中点.下列结论:①ADE BOD S S ∆∆=;②四边形 BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO. 其中正确的结论有( ) A .1个B .2个C .3个D . 4个66.在△ABC 中,∠C=90°,AB=2,AC=1,则Sin B 的值是( )A .12B .CD .267.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A .1B .12C .13D .2368.给出下列四个事件: (1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形. 其中不确定事件是( ) A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)69.如图, AP 为圆O 的切线, P 为切点, OA 交圆O 于点B , 若40A ∠=, 则APB ∠等于( ) A .25B .20C .40D .3570.如图所示,已知一渔船上的渔民在A 处看见灯塔 M 在北偏东 60°方向,若这艘渔船以 28 海里/小时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方 向,此时灯塔M 与渔船的距离是( )A .B .C .7 海里D . 14 海里71.已知两圆的半径分别是 2 和 3,圆心距是 d ,若两圆有公共点,则下列结论正确的是( ) A .d=1B .d=5C .1≤d ≤5D .1<d<572.球体的三种视图是( ) A .三个圆B .两个圆和一个长方形C .两个圆和一个半圆D .一个圆和两个半圆73.在同一时刻的阳光下,小强的影子比小明的影子长,那么在同一路灯下( ) A .小强与小明一样长 B .小强比小明长 C .小强比小明短 D .无法判断谁的影子长74.如图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .75.如图①所示,为五角大楼示意图,图②是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,小红应站在( )A .A 区域B .B 区域C .C 区域D .三个区域都可以76.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )A .长方体B .圆柱体C .球体D .三棱柱77. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( ) A .45y x =B .54y x =C .485y x =-D .584y x =-78.如果把多边形的边数增加l 倍,它的内角和是2160°,那么原多边形的边数是( ) A .24 B .12C .7D .679.21-的绝对值等于( ) A . 2 B .-2C .22 D .-2280. ) A . a ,b 均为非负数 B .0a ≥且0b > C .0ab> D .0ab≥ 81.等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是( ) A .15B .15或7C .7D .1182.顺次连结矩形ABCD 各边中点所得的四边形是( ) A .平行四边形B .矩形C .菱形D .不能确定83.点P 在第二象限,若该点到2,到有y 轴的距离为1,则点P 的坐标是 ( )A .(-1B .(1)C ,-l )D .(1)84.下列四句话中不是定义的是( ) A .三角形的任何两边之和大于第三边B .三条线段首尾顺次连结而成的图形叫做三角形C .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离D .有一个角是直角的三角形叫做直角三角形85.在一次函数y=kx+3中,当x=3时,y=6,则k 的值为 ( ) A .-1B .1C .5D .-586.,则x 的取值范围是( ) A .x>-5 B .x<-5 C .x ≠-5D .x ≥-587.如图,△BDC 是将长方形纸片ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( ) A .3对B .4对C .5对D .6对88.下列推理正确的是()A.∵a>0,b>0,∴a>bB.∵a>0,b>a,∴b>0C.∵a>0,a>6,∴b>0D.∵a>0,a>b,∴ab>O89.下列性质平行四边形具有而一般四边形不具有的是()A.灵活性 B.内角和等于360° C.对角相等 D.有两条对角线90.已知△ABC在平面直角坐标系中的位置如图所(图中小方格的边长均代表1个单位),将△ABC向右平移2个单位,则平移后的点B的坐标是()A.(-l,1)B.(1,-l)C.(1,-2)D.(0,2)91.若2a a>,则a应满足()A.0a<B.01a<<C.11a-<<D.1a>或0a<92.图 1 是甲、乙、丙三人玩跷枝的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A. B.C.D.93.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.41xx>⎧⎨-⎩,≤B.41xx<⎧⎨-⎩,≥C.41xx>⎧⎨>-⎩,D.41xx⎧⎨>-⎩≤,94.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分()A.10组B.9组C.8组D.7组95.下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段ABA .30°B .45°C .60°D .80°97.已知方程ax+by=10的两个解为1105x x y y =-=⎧⎧⎨⎨==⎩⎩与,则a 、b 的值为( ) A .10101010 (44)10a a a a B C D b b b b ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩ 98.下列各式中,能用平方差公式分解因式的是( )A .321x -B .21x --C .21x +D .21x -+ 99.关于x 、y 的方程组244x y a x y a +=⎧⎨-=⎩解是方程3210x y +=的解,那么a 的值为( ) A . -2 B . 2C .-1D . 1 100.底面是n 边形的直棱柱棱的条数共有( )A .2n +B .2nC .3nD .n101.若 01a b <<<,下列各式成立的是( )A .11a b ->-B .11a b <C .11a b -<-D .b a >-102.反比例函数k y x=的自变量x 的取值从1增加到3时,函数值减少 4,则k 为 ( ) A .6 B .16C .-6D . 16- 103.我们知道,32+和32-互为相反数,现有A 、B 、C 、D 四个同学分别提出有关相反数的语句,正确的说法是( )A .符号相反的两个数B .互为相反数的两个数肯定是一正、一负C .32-的相反数可以用3()2--表示D .因为32+的相反数是32-,所有有理数的相反数小于它本身104.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A . 该班总人数为50人B . 骑车人数占总人数的20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人105.用代入法解方程组342(1)25(2)x y x y +=⎧⎨-=⎩ ,使得代入后化简比较容易的变形是( ) A .由①得243y x -=B . 由①得234x y -=C . 由②得53y x +=D . 由②得25y x =-106.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定107. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同B .顶点相同C . 可以相互平移得到D . 对称轴不同108.下列各曲线中不表示y 是x 的函数的是( )A .B .C .D .109.成中心对称的图形的对称中心是 ( )A .一条线段的中点B .连结图形上任意两点的线段中点C .连结两对称点的线段的中点D .以上答案都不对110.把方程2460x x --=配方,化为2()x m n +=的形式应为( )A .2(4)6x -=B .2(2)4x -=C .2(2)0x -=D .2(2)10x -=【参考答案】***试卷处理标记,请不要删除一、选择题1.A2.A3.D4.C5.C6.D7.C8.D9.B10.A11.A12.A13.D14.B15.A16.B17.B18.B19.B20.C21.B22.D23.C24.C25.A26.A27.C28.A32.C 33.B 34.D 35.C 36.D 37.D 38.B 39.C 40.C 41.B 42.D 43.C 44.C 45.C 46.B 47.D 48.B 49.D 50.C 51.C 52.A 53.B 54.C 55.B 56.C 57.B 58.C 59.B 60.B 61.C 62.A66.A 67.D 68.B 69.A 70.A 71.C 72.A 73.D 74.C 75.B 76.C 77.C 78.C 79.C 80.D 81.C 82.C 83.A 84.A 85.B 86.D 87.D 88.B 89.C 90.B 91.D 92.C 93.B 94.A 95.A 96.B100.C 101.C 102.A 103.C 104.D 105.D 106.A 107.B 108.D 109.C 110.D。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
初三数学模拟试卷一、精心选一选,相信自己的判断!(共10小题,每小题3分,共30分)1. (★)计算屈一血的结果是()3. (★)将二次函数y = %2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A. y = (%-l)2+2 B. y = (x+l)2+2 C. y = (x-l)2-2 D. y = (% + l)2 -2况是( )A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。
6. (★★)把长为8cm 的矩形按虚线对折,按图屮的虚线剪出一个直角梯形,找开得到一个等腰梯形, 剪掉部分的面积为6cn?,则打开后梯形的周长是()A. (10 + 2-\/^3) cmB. (10 + VTJ ) cm C ・ 22cm D. 18cm7. (★★)下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是 ()A. B.C. D. ~8. (★★)己知腮的面积为36,将腮沿兀的方向平移到C 的位置,使〃和C 重合,连结化/交才C 于〃,则DC 的面 积为 ( ) A. 6 B. 9 C. 12 D. 18X 0根的情 5.4. (★)如图1,现有一个圆心角为90。
,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接 缝忽略不计),则该圆锥底面圆的半径为( )B C &)C (第8题)9. (★★)某探究性学习小组仅利用一幅三角板不能完成的操作是( )A.作已知直线的平行线B.作已知角的平分线C.测量钢球的直径D.找已知圆的圆心10. (★★★)如图,正方形力滋9的边长是3cm,—个边长为lcm 的小正方形 沿着正方形昇彩的边AB-BC-dDAfAB 连续地翻转,那么这个小正方形笫 一次回到起始位置时,它的方向是()A. B. C. D.二、细心填一填,试试自己的身手!(共6小题,每小题3分,共18分) 10. (★)在函数y =』2-x 中,自变量兀的取值范围是 ______________ .11. (★)国家游泳屮心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为 ________________ .x — 3 v 0 12. (★)不等式组彳 .的解集是2无一1三0------------13. (★★)如图,(甲)是四边形纸片ABCD ,其中Z 尿120。
精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 一、选择题1.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( ) A .65B .95C .125D .1652.点P (5,-8)关于x 轴的对称点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4C .5D .65.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2x =B .3x =C .4x =D .5x =6.为迎接图书馆的标准化检查,某中学图书馆将添置图书,用250无购进一种科普书,同时用 140元购进一种文学书. 由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多6本,求文学书的单价. 设这种文学书的单价为x 元,则根据题意,列方程正确的是( ) A .1.51402506x x ⨯-= B .14025061.5x x -=C .25014061.5x x-= D .1.51402506x x⨯=+ 7.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .AMNCB8.若∠1和∠3是同旁内角,∠1=78°,则下列说法正确的是( ) A .∠3=78°B .∠3=12°C .∠1+∠3=180°D .∠3的度数无法确定9. 如图,1l ∥2l ,将 AB 沿2l 向右平移 1.5 cm 后至 CD 位置,若AB=2,则 CD 等于( ) A .1.5cmB .2 cmC .3.5 cmD .1.5 cm 或2 cm10.如图,已知直线AB ∥CD. 若∠1 =45°,则∠2的度数为( ) A . 45°B . 90°C . 30°D .135°11.将一-直角三角板与两边平行的纸条按如图所示放置,有下列结论:(1)∠1 = ∠2;(2)∠3 =∠4;(3)∠2 +∠4 = 90°;(4)∠4 + ∠5 = 180°. 其中正确的个数为( ) A .1B . 2C .3D . 412. 如果三角形的一个内角等于其他两个内角的差,那么这个三角形是( ) A . 锐角三角形B .钝角三角形C .直角三角形D .无法确定13.已知等腰三角形的一个底角为80,则这个等腰三角形的顶角为( ) A .20 B .40C .50D .8014.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5B .5-C .2D .115.下列几何体的左视图中不可能出现长方形的是( ) A .圆柱B .直三棱柱C .长方体D .圆锥16.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D .17.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和 一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单位:分)如下:9.64,9.73,9.72,9.77,9.73,9.68,9.70,则这名选手的最后得分是( ) A .9.71分B .9.712分C .9.72分D .9.73分18.甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是( ) A .因为他们的平均分相等,所以学习水平一样B .成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C .表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D .平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低 19.下列调查工作需采用普查方式的是( ) A .环保部门对淮河某段水域的水污染情况的调查 B .电视台对正在播出的某电视节目收视率的调查 C .质检部门对各厂家生产的电池使用寿命的调查 D .企业在给职工做工作服前进行的尺寸大小的调查 20.已知一组数据5,7,3,9,则它们的方差是( ) A . 3B . 4C . 5D . 621.如图足球是由32块黑白相间的牛皮缝制而成的,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块,则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块黑皮有三条边和白皮连在一起,故黑皮有3x 条边,要求出白皮黑皮的块数,列出的方程正确的是( ) A .3x=32-xB .3x=5(32-x )C .6x=32-xD .5x=3(32-x )22.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥23.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )24.在A),B (22,-2),C (-22D( ) A .1个B .2个C .3个D .4个ABCD25.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对26.要锻造直径为200 mm,厚为18 mm的钢圆盘,现有直径为40 mm的圆钢,不计损耗,则应截取的圆钢长为()A.350 mm B.400 mm C.450 mm D.500 mm27.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.328.12-的绝对值是()A.-2 B.12-C.2 D.1229.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.互为相反数C.一正一负,且负数的绝对值较大D.一正一负,且负数的绝对值较小30.将0.36×45×105的计算结果用科学记数来表示,正确的是()A.16.2×105B. 1.62×106 C.16.2×106D.16.2×10000031.按表示算式()A.72÷(-5)×3.2 B.-72÷5×3.2C.-72÷5×(-3.2)D.72÷(-5)×(-3.2)32.|3.14|ππ--的值是()A.3.142π-B.3.14 C.-3.14 D.无法确定33.若一个数的算术平方根为a,则比这个数大2的数是()A.2a+B2C2D.22a+34.下列整式中,属于单项式的有()①32-;②23x yπ;③21x-;④a;⑤3265x y-;⑥2x y+;⑦22x xy y++;⑧3xA.2 个B.3 个C.4 个D.5 个35.若P和Q都是关于x 的五次多项式,则 P+Q是()A.关于x 的五次多项式B .关于x 的十次多项式C .关于x 的四次多项式D .关于 x 的不超过五次的多项式或单项式36.计算222222113(22)(46)32a cb a bc +-+---的结果是( ) A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -37.下列各个物体的运动,属于旋转的是( ) A .电梯从一楼升到了八楼 B .电风扇叶片的转动 C .火车在笔直的铁路上行驶D .一块石子扔进河里,水波在不断扩大38.如果关于m 的方程 2m+b=m-1 的解是-4,那么b 的值是( ) A .3B .5C . -3D .-539.已知关于 x 的不等式组21x x x a <⎧⎪>-⎨⎪>⎩无解,则a 的取值范围是( )A .1a ≤-B .2a ≥C .12a -<<D .1a <-或2a >40.下面的图表是护士统计的一位病人一天的体温变化情况:通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃B .39.1℃C .37.6℃D .38.6℃41.下列物体的形状类似于球的是( ) A .茶杯B .羽毛球C .乒乓球D .白炽灯泡42.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A .6B .21C .156D .23143.下面四个图中,在旋转180°后还和原来一样的是( )44.小王照镜子时,发现T 恤衫上英文为“”,则T 恤衫上的英文实际是( )A .APPLEB .AqqELC .ELqqAD .ELPPA45.一道含有 A ,B ,C ,D 四个选项,某同学不会做,随手写了 A ,B ,C ,D 四个签,抽签决定选项,他恰好选对的概率是( ) A .12B .14C .1D .1346.方程41x y +=,21x y +=,0y z +=,1x y ⋅=,=23x yy +中,二元一次方程共有( ) A .1 个B .2 个C . 3 个D . 4 个47.当2x =-时,分式11x+的值为( ) A .1B .-1C .2D .-248.小王只带20元和50元两种面值的人民币,他买一件学习用品要支付270元,则付款的方式有( ) A .1种 B .2种C .3种D .4种49.由123=-yx ,可以得到用x 表示y 的式子( ) A . 322-=x y B . 3132-=x y C .232-=xy D .322x y -=50.下列多项式能用平方差公式分解因式的是( ) A .22a b +B .443a ab -C .22()a b ---D .22a b -+51.已知不等式:①1x >;②4x >;③2x <; 21x ->-,从这四个不等式中取两个,构成正整数解是 2的不等式组是( ) A . ①与②B .②与③C .③与④D . ①与④52.若⊙O 1圆心坐标为(2,0),半径为1;⊙O 2的圆心坐标为(-1,0),半径为3,则这两圆的位置关系是( ) A .相交B .相切C .相离D .内含53.从某班学生中随机选取一名学生是女生的概率为53,则该班女生与男生的人数比是( ) A .23 B .53 C .32 D .5254.已知1x =-是一元二次方程20x px q ++=的一个根,则代数式p q -的值是( ) A .1B .-1C .2D .-255.下列方程中,属于一元二次方程是( ) A .10x y --= B .2110x x+-= C .210x -= D .310y -=56.反比例函数ky x=,当自变量x 的值从 2增加到 3 时,函数值减少了12,则函数的解析式为( )A .4y x=B .2y x=C .3y x=D .4y x =57.一个不透明的袋中装有除颜色外均相同的5个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率是( ) A .18B .13C .38D .3558.抛物线2y ax =和22y x =的形状相同,则 a 的值是( ) A .2B .-2C .2±D .不确定59.下列计算中正确的是( )A .2 3 +3 2 =5 5B . 2 ·(-2)×(-4) =-4 ×-4 =(-2)×(-2)=4C . 6 ÷( 3 -1)= 6 ÷ 3 - 6 ÷1= 2 - 6D .(10 +3)2(10 -3)=10 +360.如图所示,已知一渔船上的渔民在A 处看见灯塔 M 在北偏东 60°方向,若这艘渔船以 28 海里/小时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方 向,此时灯塔M 与渔船的距离是( )A .B .C .7 海里D . 14 海里61.下列条件中,能判定四边形为平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角互补 C .一组对角相等,一组邻角互补D .一组对角相等,另一组对角互补62.在△ABC 中,∠C= Rt ∠,AC :BC=2:3,则 tanB 的值等于 ( )A .23B .13C D .1363.如图,OA 、OB 、OC 都是⊙O 的半径,∠ACB =∠CAB ,则下列结论错误的是( )A .∠AOB=∠BOCB .AB=BCC .AM=MCD .OM=MB64.下列各组线段中,能成比例的是( ) A . 3,6,7,9B .2,5,6,8C .3,6,9,18D . 1,2,3,465.如图,在正方形网格上有 6 个斜三角形:①△ABC ; ②△BCD ;③△BDE ;④△BFG ;⑤△FGH ;⑥△EFK ,其中②~⑥中与三角形①相似的是( )BA .②③④B .③④⑤C .④⑤⑥D .②③⑥66.两个相似三角形的相似比是 2:3,其中较大的三角形的面积为 36 cm 2,则较小的三角形的面积是( ) A .16cm 2B .18 cm 2C .2O cm 2D .24 cm 267.已知△ABC ,如图建立直角坐标系,则点A 的坐标是() A .(3)B ,52)C .(3,D .(52) 68.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A .1B .12C .13D .2369.如图,△ABC 的三边分别切⊙O 于D ,E ,F ,若∠A=50°,则∠DEF=( ) A .65°B .50°C .130°D .80°70.若a < )A . (-2,B .(-2,a -)C .(a ,-2)D . (a -,2)71.22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A .k >4-B .k >14-且0k ≠ C .k <14-D .14k ≥-且0k ≠ 72.某服装销售商在进行市场占有情况的调查时,他应该最关注已售出服装型号的( ) A .平均数B .众数C .中位数D .最小数73.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为( ) A .136000B .11200C .150D .13074.如图,几何体的主视图是( )A .B .C .D .75.某学习小组7个男同学的身高(单位:米)为:l .66,1.65,1.72.1.58.1.64,1.66.1.70.那么这组数据的众数是( ) A .1.65米B .1.66米C . 1.67米D .1.70米76.校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用图象近似地刻画,其图象是下图中的( )A .B .C .D .77.某同学用计算器计算30个数据的平均数数时.错将其中的一个数据l05输入成了l5,那么由此求的的平均数与实际平均数的差是( ) A .3.5B .3C .-3D .0.578.如图1的俯视图的是( )79.a 的取值范围是( ) A .a ≤1B .a ≥1C .a>1D .a<180.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( ) A .1,0B .-1,0C .1,-1D .无法确定81.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,82.△ABC 的内切圆与三边的切点构成△DEF ,则△ABC 的内心是△DEF 的( ) A .内心B .重心C . 垂心D . 外心83.如图,△ABC 中,E ,D 分别是AB .AC 上的点,AB=AC ,BD=BC ,AD=DE=EB ,那么∠A 等于( ) A .30°B .36°C .45°D .54°84.如图,已知在△ABC 中,AB=BC ,BD 是角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则下列四个结论中正确的个数有 ( )①BD 上任意一点到点A 和点C 的距离相等; ②BD 上任一点到AB 和BC 的距离相等;③AD=CD ,BD ⊥AC ; ④∠ADE=∠CDF . A .1个B .2个C .3个D .4个85.在四边形中,直角最多可以有 ( ) A .1个B .2个C .3个D .4个86.矩形具有而一般的平行四边形不具有的特征是( ) A .四个角都是直角B .对边相等C .对角相等D .对角线互相平分87.已知数据 12,-6,-1.2,π,,其中负数出现的频率是( ) A .20%B . 40%C .60%D .80%88.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下 列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .AC=AFD .CH=HD89.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( ) A .12B .14C .16D .1890.有两块同样大小且含60°角的三角板,把它们相等的边拼在一起(两块三角板不重叠),可以拼出的四边形的个数( ) A .1B .2C .3D .491.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,若∠ABC=45°,则下列结论正确的是( ) A .AC >ABB .AC=ABC .AC <ABD .AC=12BC 92.在下列方程中,属于分式方程的有( )21102x -=;②213x x -=;③114x y -=;④111x x x x--=- ①A .1 个B .2 个C .3 个D .4 个93.m =8,a n =2,则a m+n 等于( ) A . 10B .16C .28D .不能确定94.下列分解因式正确的是( ) A .32(1)x x x x -=-B .26(3)(2)m m m m +-=+-C .2(4)(4)16a a a +-=-AB OC 45°D .22()()x y x y x y +=+-95.如图,在四边形ABCD 中,AD ∥/BC ,AB ∥DC ,BD=CD ,∠BCE=15°,CE ⊥BD 于E ,则∠A 的度教为( )A . 75°B . 70°C . 65°D . 60°96.如图①,在△ABC 中,D ,E 分别是AB ,AC 的中点,把△ADE 沿线段DE 向下折叠.使点A 落在BC 上,记作点A ′,得到图②,下列四个结论中,不一定成立的是( )A .DB=DAB .∠B+∠C+∠l=180°C .BA=CAD .△ADE ≌△A ′DE97.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A .2个B .3个C .4个D .5个98.下列语句正确的是( )A .不相交的两条直线叫平行线B .在同一平面内,两条直线的位置关系只有相交、平行两种C .如果线段AB 、CD 不相交,那么AB ∥CDD .如果a ∥b ,b ∥c ,那么a 不一定平行c99.(-2)2 的结果是( )A .2B .-2C .±2D .4100.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )A .线段BE 的长度B .线段EC 的长度 C .线段BC 的长度D .线段EF 的长度101.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12B .2C .2D .2102.某人沿坡度为 26°的斜坡行进了 100 米,他的垂直高度上升了( )A .0100sin 6米B .0100cos 26米C .0100tan 26米D .0100tan 26米 103.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( )A .19B .29C .13D .23104.如图,以Rt ABC △的直角边AC 所在的直线为轴,将ABC △旋转一周,所形成的几何体的俯视图是( )105.如图所示,CD 是Rt △ABC 斜边 AB 上的高,将△BCD 沿 CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于( )A .25°B . 30°C . 45°D . 60°106.若关于x 的方程332x k +=的解是正数,则k 为( )A .23k <B .23k >C .为任何实数D .0k >107.若a<b ,有下列不等式:①a m b m +<+;②a m b m -<-;③ma mb >;④a b m m >(0m <). 其中恒成立的不等式的个数为( )A .1B .2C .3D . 4108. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同 B .顶点相同C . 可以相互平移得到D . 对称轴不同109.下列语句是命题的有 ( )①若两个角都等于50o ,则这两个角是对顶角; ②直角三角形一定不是轴对称图形;③画线段AB =2㎝;④在同一平面内的两条直线,若不相交,则平行A .1个B .2个C .3个D .4个A.一条线段的中点B.连结图形上任意两点的线段中点C.连结两对称点的线段的中点D.以上答案都不对【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.C4.A5.B6.B7.C8.D9.B10.A11.D12.C13.A14.A15.D16.A17.B18.C19.D20.C21.B22.C23.A27.C 28.D 29.C 30.B 31.A 32.C 33.D 34.B 35.D 36.C 37.B 38.A 39.B 40.D 41.C 42.D 43.C 44.A 45.B 46.C 47.B 48.C 49.C 50.D 51.D 52.A 53.A 54.A 55.C 56.C 57.C61.C 62.A 63.D 64.C 65.B 66.A 67.D 68.D 69.A 70.B 71.B 72.B 73.D 74.C 75.B 76.A 77.C 78.D 79.B 80.C 81.A 82.D 83.C 84.D 85.D 86.A 87.C 88.D 89.B 90.D 91.B95.A 96.C 97.C 98.B 99.A 100.A 101.A 102.A 103.A 104.A 105.B 106.A 107.C 108.B 109.C 110.C。