第1讲二次根式
- 格式:doc
- 大小:6.10 MB
- 文档页数:4
第一讲 二次根式及一元二次方程【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0); =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算6.分母有理化(1)定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:a =ba -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a a分别互为有理化因式。
(3)分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。
7、一元二次方程:(1)定义:在一个等式中,只含有一个未知数,且未知数的最高项的次数的和是2次的整式方程叫做一元二次方程。
第一讲二次根式的性质与运算[教学内容]暑期衔接版,八升九第一讲“二次根式的性质与运算”.[教学目标]知识与技能1.掌握二次根式的概念,并会根据二次根式的概念求被开方数中字母的取值范围.2.理解二次根式的双重非负性.3.理解二次根式的性质并能够根据性质对二次根式进行化简计算.数学思考在研究二次根式性质的过程中,建立符号意识,独立思考,体会类比、分类讨论的思想方法. 问题解决经历二次根式性质的探究与发现过程,培养学生自主学习的能力.情感态度1.通过解决现实情境中问题,增强数学素养,用数学的眼光看世界.2.通过小组活动,培养学生的合作意识和能力.[教学重点、难点]重点:二次根式的概念与性质.难点:二次根式的概念的理解及性质的运用.[教学准备]动画多媒体语言课件.第一课时第二课时答案:【类似性问题】1. D2. C3. C4. A5. 56. 解:根据题意得解得所以3x+2y=3×2+2×5=16,故3x+2y的平方根是±4.7.解:∵,∴解得6≤x<9.又∵x为奇数,∴x=7.∴===8+2.手册答案1. B2. C3. C4. A5. C6. B7.(1)(2)(3)(4)(5)(6)8.9. 810. x11. 3ab12.解:∵c<a<0<b,∴原式=|b-a|-|b|+|c-b|-|a-c|=b-a-b-(c-b)-(a-c)=b-a-b-c+b-a+c=-2a+b.13.解:(1)∵(ab-2)2+=0,∴解得(2)当a=2,b=1时,===1-=.。
第1讲 二次根式认识、性质第一部分 知识梳理知识点一: 二次根式的概念形如()的式子叫做二次根式。
必须注意:因为负数没有平方根,所以是为二次根式的前提条件知识点二:二次根式()的非负性()表示a 的算术平方根, 即0()。
非负性:算术平方根,和绝对值、偶次方。
非负性质的解题应用: (1)、如若,则a=0,b=0; (2)、若,则a=0,b=0; (3)、若,则a=0,b=0。
知识点三:二次根式的性质第二部分 考点精讲精练考点1、二次根式概念 例1、下列各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________(填序号). 例2、下列各式哪些是二次根式?哪些不是?为什么?(121 (219-(321x +(439 (56a - (6221x x ---例3)))2302,12203,1,2xx y y x x x x y +=--++f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例4、下列各式中,属于二次根式的有( )例5、若21x +的平方根是5±_____=.1、下列各式中,一定是二次根式的是( )A B C D2中是二次根式的个数有______个 3、下列各式一定是二次根式的是( )A B C D4、下列式子,哪些是二次根式, 1x、 x>0)1x y +、(x≥0,y ≥0) .51+x 、2+1x 、______个。
考点2、根式取值范围及应用例1有意义,则x 的取值范围是例2有意义的x 的取值范围例3、当_____x 时,式子4x -有意义. 例4、在下列各式中,m 的取值范围不是全体实数的是( ) A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、若y=5-x +x -5+2019,则x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,则x 、y 应满足的条件是( ) A .0≥x 且0≥y B .0>yxC .0≥x 且0>yD .0≥yx 62()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
个性化教学辅导教案教师姓名学生姓名上课时间学科数学年级教材版本浙教版课称名称二次根式(一)定义、性质、性质应用教学目标理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握结论利用它们进行计算和化简教学重点结论及其运用教学难点利用结论解决具体问题课堂教学过程知识点一:二次根式的概念一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.理解并掌握下列结论:,,并利用它们进行计算和化简.知识点二:二次根式的性质1. 非负性:a a()≥0是一个非负数.2. ()()a aa20=≥.3. a aa aa a2==≥-<⎧⎨⎩||()()4. 公式a aa aa a2==≥-<⎧⎨⎩||()()与()()a aa20=≥的区别与联系(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)()a2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()a2的运算结果都是非负的.5 积的算术平方根的性质:;6. 商的算术平方根的性质:.知识点三:代数式形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression).例题解析类型一:二次根式的概念例1、下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、、(x≥0,y≥0).思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、、(x≥0,y≥0);不是二次根式的有:、、、.例2、当x是多少时,在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数.举一反三【变式1】x 是怎样的实数时,下列各式实数范围内有意义?(1); (2);解:(1)由≥0,解得:x 取任意实数∴ 当x 取任意实数时,二次根式在实数范围内都有意义.(2)由x-1≥0,且x-1≠0,解得:x >1∴ 当x >1时,二次根式在实数范围内都有意义.【变式2】当x 是多少时,+在实数范围内有意义?思路点拨:要使+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0.解:依题意,得由①得:x ≥-由②得:x ≠-1当x ≥-且x ≠-1时,+在实数范围内有意义.练习:1若式子13x -有意义,则x 的取值范围是 .[ 2使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠43、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、当x 是什么值时,下列各式在实数范围内有意义? (1)32x -______;(2)121x -______;(3)421xx -+_________;(4)23x +_______;类型二:二次根式的性质例1、计算:(1) (2) (3)(4)(5)(b ≥0) (6)思路点拨:我们可以直接利用(a ≥0)的结论解题.解:(1) (2)=; (3);(4)=; (5);(6).举一反三【变式1】计算:(1); (2);(3); (4).思路点拨:(1)因为x ≥0,所以x+1>0; (2)a 2≥0;(3)a 2+2a+1=(a+1)2≥0; (4)4x 2-12x+9=(2x)2-2·2x ·3+32=(2x-3)2≥0. 所以上面的4题都可以运用的重要结论解题.解:(1)因为x ≥0,所以x+1>0;(2)∵a2≥0,∴;(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1;(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴=4x2-12x+9.例2、化简:(1); (2); (3); (4).思路点拨:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用去化简.解:(1)==3;(2)==4;(3)==5;(4)==3.例3、填空:当a≥0时,=____;当a<0时,=______,•并根据这一性质回答下列问题.(1)若=a,则a可以是什么数?(2)若=-a,则a可以是什么数?(3)>a,则a可以是什么数?思路点拨:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知,而要大于a,只有什么时候才能保证呢?解:(1)因为,所以a ≥0; (2)因为,所以a ≤0;(3)因为当a ≥0时,要使,即使a >a 所以a 不存在;当a <0时,,要使,即使-a >a ,即a <0;综上,a <0.练习:已知2x <,则化简244x x -+的结果是A 、2x -B 、2x +C 、2x --D 、2x -类型三:二次根式性质的应用例1、当x=-4时,求二次根式的值.思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同. 解:将x=-4代入二次根式,得=.例2、(1)已知y=++5,求的值.(2)若+=0,求的值.解:(1)由可得,,(2)例3、在实数范围内分解因式:(1)x 2-5; (2)x 3-2x ; 解:(1)原式.(2)原式举一反三:1、若23a,则()()2223a a ---等于( )52a - B. 12a - C. 25a - D. 21a -2、当a <l 且a ≠0时,化简a a a a -+-2212= . 3如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a4、实数a 在数轴上的位置如图所示:化简:21(2)______a a -+-=.5化简21816x x x ---+的结果是2x-5,则x 的取值范围是( )(A )x 为任意实数 (B )1≤x ≤4 (C ) x ≥1 (D )x ≤16.若代数式22(2)(4)a a -+-的值是常数2,则a 的取值范围是( )A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =7如果11a 2a a 2=+-+,那么a 的取值范围是( )A. a=0B. a=1C. a=0或a=1D. a ≤11-0 12 aob a【课后巩固】1.下列式子中,是二次根式的是( )A ...x 2.下列式子中,不是二次根式的是( )A D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对4.x 有( )个. A .0 B .1 C .2 D .无数5.已知a 、b =b+4,求a 、b 的值.6、若2004a a -=,则22004a -=_____________.7、已知2310x x -+=8、已知m9、 2440y y -+=,求xy 的值。
第1讲 二次根式
基础回顾
1.下列式子是二次根式的是( )
A.5-
B.4-π
C.12+x
D.5 2.x -3有意义,则x 的取值范围( )
A. x >3
B. x <3
C. x ≥3
D. x ≤3 3.2)5(-的结果是( )
A.5
B.-5
C. ±5
D.25 4.2)23(-的结果是( )
A.29
B.23
C.18
D.-18
5.若2
)-a (=a ,则a 的取值范围是( )
A. a >0
B. a ≥0
C. a ≤0
D.a <0 6.
3
434--=--x x x x 成立,则x 的范围是( ) A.3≤x ≤4 B. x ≥4 C. 3<x ≤4 D. x >3 7.下列二次根式属于最简二次根式的是﹙ ﹚ A 12 B
3a C 32x x + D 12+x 8化简12—3
6的结果﹙ ﹚ A 3 B 334 C0 D 33
5 9下列计算正确的是﹙ ﹚ A 538=- B 4+139=
C 23-132= D
14_928_18== 方法运用
﹙一﹚ 利用二次根式有意义的条件解决问题
10已知y=
3_22_++x x ,求xy 6的值
11已知m 2+9+3_n =6m,求n
m 的值
﹙二﹚ 二次根式有意义的条件
12下列式子有意义,求x 的取值范围
﹙1﹚
x x -+32_ (2)3
1-+x x (3)3x -
﹙三﹚比较大小
13比较大小
﹙1﹚32与11 ﹙2﹚2-3与5-6 ﹙3﹚73+与2+6
(四)二次根式的计算
14计算
﹙1﹚﹙5.024+﹚-﹙
6-81﹚ ﹙ 2﹚﹙3-52﹚﹙352+﹚
﹙3﹚﹙64148+﹚÷27 ﹙4﹚﹙13+﹚2-﹙1-3﹚2
﹙5﹚321÷312×521 ﹙ 6﹚483316122+-
﹙7﹚8242-÷
2)23(32-+
﹙8﹚已知直角三角形的两条直角边分别为132+和132-求周长与面积
﹙五﹚先化简,再求值
15化简
x x x x 1246932-+并将自己所喜欢的x 值代入化简并求值
16一个三角形三边长分别为55x ,x 2021,x
x 5445 ﹙1﹚求他的周长 (2)请给一个合适x 的值,使其周长为整数,并求三角形的周长的值
17
2-4-x x ÷(x+2-2
12-x ﹚,其中x=43-
18已知x+y=-4,xy=2求x
y y x +的值
(六)运用整体代换求值 19.,32,32-=+=b a 求
a b b a +的值。
20.已知35.35-=-+=-c b b a ,求ac bc ab c b a ---++222的值。
(七)设辅助未知数求值 21.35635-6++
22.5-353++
23.已知415-2522=+-x x ,求221525x x ++-的值。
24.已知12013-=x ,求代数式322++x x 的值。
问题探究
25.如图1,△ABC为等腰直角三角形,AC=BC,AC⊥BC,点E、F分别在BC上,且CE=BF,CM ⊥AE,AE与MF的延长线相交于N点。
⑴求证:∠BMF=∠AMC.
⑵如图2,若CM为AN的垂直平分线,MF与AE的延长线交于N点,
求证:BM+CM=MN.
⑶若AC=2+3,在⑵的条件下,求EF的长。
26.已知:在△ABC中,AB=AC, AB⊥AC, DE在BC上,且∠ADC=BAE.
⑴求证:∠DAE=45°;
⑵过B作BF⊥AD于F,交直线AE与M,连接CM,判断BM与CM的位置关系,加以证明。