三年级上数学课堂课件-用逆推法解决实际问题
- 格式:pptx
- 大小:1.18 MB
- 文档页数:16
2023《小学三年级奥数《还原问题》倒推法省公开课获奖课件说课》•课程背景与目标•教学内容与教学方法•课程实施过程目录•教学效果评估与反思•相关资源与参考文献•说课总结与展望01课程背景与目标课程背景介绍01小学三年级是学生学习奥数的关键阶段,奥数题目对于这个年龄段的学生来说具有一定的挑战性。
02在此之前,学生已经学习了一些基本的数学概念和问题解决的方法,但是奥数题目需要他们运用更高级的思维技巧来解决问题。
03《还原问题》是小学三年级奥数中的一个重要课题,它涉及到倒推法的运用,对于培养学生的逻辑思维和问题解决能力具有重要意义。
课程目标确立使学生掌握还原问题的基本概念和解题思路,能够运用倒推法解决相关问题。
增强学生的数学应用意识和实践能力,让学生认识到数学在实际生活中的应用价值。
培养学生的逻辑思维能力和创新思维能力,教会学生如何分析问题、寻找规律并解决问题。
通过小组合作、互动讨论等方式培养学生的合作精神和团队意识,提高学生的学习兴趣和自信心。
02教学内容与教学方法本节课选取了小学三年级奥数中的还原问题作为教学内容,通过倒推法帮助学生解决这类问题。
教学内容的选取按照倒推法的解题思路,将教学内容分为问题建模、方法讲解和练习巩固三个部分,逐步引导学生掌握解题方法。
教学内容的组织教学内容设计教学方法的设计本节课采用了讲解、示范、小组讨论和案例分析等多种教学方法,旨在帮助学生更好地理解和掌握倒推法。
教学方法的实施在讲解过程中,注重引导学生自主思考和发现解题思路,通过小组讨论和案例分析,让学生在互动中加深对倒推法的理解。
教学方法选择教学重点倒推法的解题思路和步骤是本节课的重点,需要学生熟练掌握并能够运用到实际问题中。
教学难点如何引导学生理解倒推法的本质,以及如何运用倒推法解决实际问题,是本节课的难点。
为了突破难点,教学中采用了案例分析和小结回顾等方法,帮助学生加深对难点的理解。
教学重点与难点解析03课程实施过程1导入新课23回顾之前学过的简单还原问题,引出新课题。
第十讲逆推问题初步教学课题:逆推问题教学课时:两课时教学目标:1.经历“逆推问题”的探究过程,理解并掌握“逆推问题”的典型特点。
2.掌握逆向思维的方式,学会画线段图、列表的方法。
3.通过“逆推问题”的灵活应用感受数学的魅力。
教学重难点:理解逆推的意义,习惯并熟悉逆向思维方式,学会举一反三。
教具准备:本周通知:一、故事导入从前有一个国王邀请一些大臣参加晚宴,但是到了晚宴的时间还有一些大臣没有到,国王很生气,嘟哝着说:该来的没有来,结果已经到了的大臣听到了就想我是不是不该来的,就走掉了一半。
国王看到后又说了一句:不该走的又走了,结果剩下的那批大臣想自己是不是该走的那一批。
然后又走了一半,最后只剩下10个大臣。
请问,聪明的你能不能算出来原来一共来了多少个大臣二、例题精讲例1、一种细菌,经过1小时增长1倍,现在有一批这样的细菌,10小时可增长到400万个,问增长到100万个时需要多少小时分析:通过列表法可以看出在8小时的时候能够增长到100万。
例2、某数乘7,除以2,再加上8,最后减去6后,等于9,求这个数是多少分析:首先老师提出一些问题看同学们能不能快速的回答出来:一个数加上6等于10,这个数是多少 10-6=4一个数减去7等于20,这个数是多少 20+7=27一个数乘5等于15,这个数是多少 15÷5=3一个数除以4等于6,这个数是多少 6×4=24从上面的例子可以看出如果知道结果,要求原数是多少的时候,我们就从结果出发“加变减”“减变加”“乘变除””除变乘”从而求出结果。
9+6=1515-8=77×2=1414÷7=2总结并提问知道结果,求原数是多少。
就从结果出发“加变减”“减变加”“乘变除””除变乘”。
需要特别注意的是,在计算过程中尽量不要用综合算式。
例3、小马虎在做一道加法算式时,把加数个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
小学-数学-打印版
小学-数学-打印版 1 运用画线段图法和逆推法解决复杂的质量问题
例 仓库里有一些水泥,第一天用去一半,第二天用去剩下的一半,最后还剩4吨,仓库里原来有多少吨水泥?
分析 根据题意画线段图如下:
根据线段图可清楚地看出,最后剩下的4吨是第二天用去后剩下的一半,如果第二天没用,则应有4×2=8(吨),这8吨是总数的一半,仓库里原来有水泥8×2 =16(吨)。
解答4×2 =8(吨) 8×2=16(吨)
答:仓库里原来有16吨水泥。
总结
解决这类问题可以运用画线段图法和逆推法,一步一步向前还原,最后得出要求的问题。
专题三:逆推问题姓名逆推问题又称还原问题,即已知一个数量经过若干次变化之后的结果,寻求原始的数量。
解决这类问题,我们常常先找到结果,再沿着与原始数量变化相反的顺序,倒过来思考,用倒推法一步一步还原,最终推导出原始数据。
解题过程中,一般很少用综合算式(在现阶段,使用综合算式将使问题复杂化)。
对于简单的、变化不太复杂的逆推问题,可以直接列式一步步倒着推算,如果变化比较复杂,可借助列表和画图来帮助解决问题。
逆推问题逻辑性很强、逆向思考,有利于培养孩子的推理能力和发散思维。
1、一个数减去8,乘以4,除以5,再加上3,结果是27。
这个数是多少?2、有一根绳子,第一次用去全长的一半,第二次用去余下的一半多4米,还剩9米。
这根绳子全长多少米?3、小虎在做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最好所得的差是577,这题的正确答案应该是多少?4、食堂买进一批大米,第一天吃了全部的一半少28千克,第二天吃了余下的一半少8千克,最后剩下122千克。
这批大米共有多少千克?5、三颗树上停着24只鸟,如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树上飞5只鸟到第三棵树上去,那么三棵树上的小鸟的只数都相等。
第二棵树上原来停留了多少只鸟?6、有一堆乒乓球,把它分成四等份后剩下一个,取走三份又一个,剩下的再四等份后又剩下一个,再取走三份又一个,最后剩下的再四等份后还是剩下一个,问这堆乒乓球原来有多少个?7、甲、乙、丙、3人共有图书120本,乙向甲借3本后,又送给丙5本,结果3人图书数相等,问甲、乙、丙3人原来各有多少本图书?8、杰尼斯进了一家商店,花了所带钱的一半,然后又花了10元钱,又进了另一家商店,花了余下钱的一半之后,又花了10元钱,这时他没钱了.问杰尼斯进第一家商店之前带了多少钱?9、甲、乙、丙、丁4人共有玻璃弹子100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后,4人的弹子数相等,他们原来各有弹子多少颗?。
《小学三年级奥数《还原问题》倒推法省公开课获奖课件说课》xx年xx月xx日•课程背景与目标•教学内容与过程•教学方法与手段•教学成果与反思目•参考文献与附录•个人简历与教学经验分享录01课程背景与目标课程背景介绍01小学三年级是学生学习奥数的关键阶段,对于培养学生的数学思维和解决问题的能力具有重要意义。
02在这一阶段,学生开始接触较为复杂的数学问题,其中还原问题是一个重要的题型。
03还原问题是一类需要逆向思考的问题,需要学生从问题的结果出发,逐步推算出前提条件,这类问题能够有效地考查学生的逆向思维和逻辑推理能力。
课程教学目标让学生掌握还原问题的基本思路和方法,能够正确解决这类问题。
通过讲解与演示相结合的方式,帮助学生理解并掌握倒推法的应用。
培养学生的逆向思维和逻辑推理能力,提高学生的思维敏捷度和解决问题的能力。
通过小组合作和互动讨论等方式,培养学生的合作精神和团队协作能力。
02教学内容与过程教学内容详解使学生掌握倒推法的解题思路,能够正确判断和解决还原问题。
教学目标介绍倒推法的概念和解题步骤,并通过实例引导学生掌握解题方法。
教学内容倒推法的思路和具体应用。
教学重点如何判断和识别还原问题,并灵活运用倒推法解决问题。
教学难点教学难点在实例中,如何引导学生分析问题,找到倒推法的应用时机。
教学重点通过实例讲解,让学生掌握倒推法的解题步骤和思路。
教学难点与重点通过简单的例子引导学生思考如何解决还原问题,并引出倒推法的概念。
导入新课通过具体实例,引导学生分析问题,并逐步掌握倒推法的解题步骤和思路。
实例讲解通过练习题,让学生自己尝试解决还原问题,巩固所学知识。
练习巩固总结本节课所学内容,并回顾倒推法的解题思路和步骤。
课堂小结教学过程设计03教学方法与手段1教学方法选择23通过从问题结果逆向推理,逐步还原出问题中的初始条件,从而解决问题。
倒推法为了帮助学生更好地理解问题,通过模拟真实情境,让学生感受到问题的实际应用。
逆推法同学们在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些数学问题顺向思考很难解答,这时如果能从反向进行思考,有时能化难为易,很快找到解题途径。
其思考的方法是从问题或结果出发,一步一步倒着推理,逐步靠拢已知条件,这样,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
例1. 一种细菌,1小时增长1倍,现在有一批这样的细菌,10小时可增长到400万个,问增长到100万个需要多少小时?思路分析:因为细菌每小时增长1倍。
10小时增长到400万个,那么9小时就增长到400万个的一半,即9小时增长到200万个,8小时增长到100万个。
算式:100118-+=()(小时)答:增长到100万个时需要8小时。
例2. 四个小朋友共有课外读物120本,甲给了乙3本,乙给了丙4本,丙给了丁5本,丁给了甲6本,这时他们四个人课外读物的本数相等。
他们原来各有课外书多少本?思路分析:四个人互相给,总本数仍然是120本,那么每人应有120430÷=(本),然后各自把给别人的本数拿回来,再把别人给自己的本数退回去,就得到原有的本数。
算式:120430÷=(本)丁原有的本数:306531+-=(本)丙原有的本数:305431+-=(本)乙原有的本数:304331+-=(本)甲原有的本数:303627+-=(本)答:甲、乙、丙、丁四人原来各有书27本、31本、31本、31本。
例3. 粮仓里存大米若干袋,第一天卖出的比存米的一半少8袋,第二天又卖出剩余米的一半,这时粮仓里还存米32袋,这个粮仓原存大米多少袋?思路分析:根据粮仓里最后还有32袋,一步一步地求出粮仓原存大米多少袋。
小学数学解题方法解题技巧之逆推法小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
(一)从结果出发逐步逆推例1一个数除以4,再乘以2,得16,求这个数。
(适于四年级程度)解:由最后再乘以2得16,可看出,在没乘以2之前的数是:16÷2=8在没除以4之前的数是:8×4=32答:这个数是32。
*例2 粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走610千克,粮库现有大米1500千克。
问粮库原来有大米多少千克?(适于四年级程度)解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走610千克之前,粮库中有大米:1500+610=2110(千克)在没运进720千克之前,粮库里有大米:2110-720=1390(千克)在没运走450千克之前,粮库里有大米:1390+450=1840(千克)答:粮库里原来有大米1840千克。
*例3 某数加上9后,再乘以9,然后减去9,最后再除以9,得9。
问这个数原来是多少?(适于四年级程度)解:由最后除以9,得9,看得出在除以9之前的数是:9×9=81在减去9之前的数是:81+9=90在乘以9之前的数是:90÷9=10在加上9之前,原来的数是:10-9=1答:这个数原来是1。
*例4 解放军某部进行军事训练,计划行军498千米,头4天每天行30千米,以后每天多行12千米。