知能演练轻松闯关
本部分内容讲解结束
按ESC键退出全屏播放
OA、OB.
(1)求线段AB中点M的轨迹方程;
(2)分别以弦OA、OB为直径画圆,求两圆另一交点H的轨迹.
【解】 (1)设点 A(2pt21,2pt1),B(2pt22,2pt2),M(x,y), 则 x=p(t21+t22),① y=p(t1+t2),y2=p2(t21+t22+2t1t2).② 又 OA⊥OB,且 kOA=t11,kOB=t12, 则t11·t12=-1,t1·t2=-1.③
所以,中点 M 的轨迹方程是py22=xp-2,
即 y2=p(x-2p)(p>0).
题型四 应用参数求曲线的轨迹方程
例4 设抛物线y2=2px(p>0)的准线为l,焦点为F,顶点为
O,P为抛物线上任一点,PQ⊥l于Q,求QF与OP的交点M的轨
迹方程. 【解】 设 P 点的坐标为(2pt2,2pt),当 t≠0 时,直线 OP 的方 程为 y=1t x,QF 的方程为 y=-2t(x-p2),它们的交点 M(x,y)
x=asec θ _y_=__b_t_a_n_θ____(θ
为参数,0≤θ<2π,_θ_≠__π2_,3_2π______,a>0,b>0).
4.抛物线 y2=2px(p>0)的参数方程 x=2pt2
__y_=__2_p_t ____(p>0,t 为参数,t∈R),
其中参数 t 可以视为该抛物线 y2=2px(p>0)上任一点 P 与 抛物线顶点 O 所连直线 OP 的斜率的倒数,即对抛物线上任 一点 P(x,y),都有 t=xy.
则
d1·d2=|absec
φ+abtan a2+b2