数学方法论第一章
- 格式:doc
- 大小:197.00 KB
- 文档页数:9
第一章数学的萌芽 1古埃及的数学 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。
从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。
例如基底直角的误差与底面正方形两边同正北的偏差都非常小。
现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做兰德纸草书,一卷藏在莫斯科。
2埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。
除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。
两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。
3古埃及的计数制 埃及很早就用十进记数法,古埃及人的计数系统是叠加制,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。
例如111,象形文字写成三个不同的字符,而不是将 1重复三次。
埃及算术主要是加法,而乘法是加法的重复。
他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。
占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是1的分数)的和。
兰德纸草书用很大的篇幅来记载2/N(N 从5到101)型的分数分解成单位分数的结果。
为什么要这样分解以及用什么方法去分解,到现在还是一个谜。
这种繁杂的分数算法实际上阻碍了算术的进一步发展。
纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。
计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。
根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。
总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。
4埃及几何的突出成就:古埃及人在建筑规模宏大的教堂、金字塔等都需要测量,尼罗河水泛滥后冲刷了许多边界标记,为他们认识基本几何形状和形成几何概念提供了实际背景。
因此古埃及人的几何学知识较为丰富,在两种纸草书中,有26个十几何问题,许多与金字塔有关,如:在莫斯科纸草书中有:一个截顶金,字塔的垂直高度为6,底边为4,顶边为2求体积。
第一部分数学史第一章数学的起源和远古数学文献1.计数意识的起源。
数学的起源和人类文明的起源几乎是同步的。
恩格斯在《反杜林论》中指出:“和其他各门科学一样,数学是从人的需要中产生的,如丈量土地和测量容积,计算时间和制造器械。
”“数”的概念萌发于早期人类对事物的计数,结绳与书契可能是所有早期文明中最主要的计数方法。
随着文字的出现,人类开始用一些文字符号按照一定的规则表记数字,这些规则就是进位制和符号布列方式,它们是记数法的要素。
在世界各地文明中,形成了各自独特的数字符号体系和记数方法,例如:简单分群数系、乘法分群数系、字码数系、定位数系(位值制)等。
我们今天通常使用的记数方式就是10进制定位系统,与其它记数方法相比,它在计算上有明显的优势,被誉为人类社会进步的基础。
2.埃及的两种主要的数学纸草书、埃及数制,埃及几何的突出成就。
著名的古埃及纸草书有两份,这两份纸草书都直接书写着数学内容,一份叫“莫斯科纸草书”,大约出自公元前1850年左右,它包括25个数学问题。
这份纸草书于1893年被俄国人戈兰尼采夫买得,也称之为“戈兰尼采夫纸草书”,现藏于莫斯科美术博物馆。
另一份叫“莱因特纸草书”,大约成书于公元前1650年左右,开头写有“获知一切奥秘的指南”的字样,接着是作者阿默士从更早的文献中抄下来的85个数学问题。
这份纸草书于1858年被苏格兰人莱因特购得,后为英国博物馆收藏。
这两份纸草书是我们研究古埃及数学的重要资料,其内容丰富,记述了古埃及的记数法,整数四则运算,单位分数的独特用法,试位法,求几何图形的面积、体积问题,以及数学在生产、生活实践中的应用问题。
埃及数制:据史料记载,早在公元前4000年左右,埃及就有了象形文字,在这种文字中他们以10为基数进行记数。
这些文字是用单独的图画来表示一个数的,1是垂直的木棍,10是放牛用的弯曲工具,102是一端卷起的测量绳,103是一朵莲花,104是竖着的手指,105是小鸟,106是举起双手受惊的人,107是太阳。
高纲1264江苏省高等教育自学考试大纲28122数学史与数学方法论江苏教育学院编江苏省高等教育自学考试委员会办公室一课程性质及其设置目的与要求(一)课程性质与特点数学史以数学发展的脉络为主线,讲述了数学学科的一些重要的思想方法及其产生、发展的过程。
数学方法论研究了数学的发展规律、数学的思想方法以及数学中的发现、发明与创新等法则。
数学方法论的研究以数学史为依据,人们对数学史的思考、总结与提升促着数学方法论的发展和完善。
对于数学史与数学方法论的学习,有助于教师提高数学素养。
(二)课程设置目的课程内容包括:数学史与数学方法论两部分。
课程设置目的和要求:使应考者了解数学发展的历史和一些常用的思想方法,从而提高应考者分析问题、解决问题的能力;进一步提高应考者的数学素养;通过对历史的学习,激发应考者数学学习的积极性,为他们今后成为合格的数学教师提供帮助。
二课程内容与考核目标第一部分数学史第一章数学的萌芽(一)课程内容古埃及的数学、古巴比伦的数学。
(二)学习与考核要求了解数学的起源;埃及和巴比伦的主要远古数学文献,以及重要数学成就。
第二章希腊的数学(一)课程内容数学学派与演绎数学的产生、希腊数学的黄金时代、希腊数学的衰落。
(二)学习与考核要求1.了解希腊数学初创期、黄金时代和后期的主要数学发现和发展。
2.了解阿基米德、托勒密、丢番图和海伦等重要数学家的数学成就。
3.正确理解《几何原本》的历史贡献、希腊数学的特色和局限性。
4. 三大几何难题。
第三章印度与阿拉伯的数学(一)课程内容印度的数学、阿拉伯的数学。
(二)学习与考核要求1.了解印度和阿拉伯在中世纪前后的数学发展2. 了解印度和阿拉伯数学的杰出的数学家的主要数学贡献。
第四章中国古代数学(一)课程内容先秦时期、汉唐时期、宋元时期、明清时期中国传统数学的发展、中国传统数学的特点。
(二)学习与考核要求1.了解中国古典数学的形成和发展情况。
《九章算术》等算经的主要内容。
绪论数学思想方法的对象和意义第一节中学数学思想方法的研究对象第二节学习中学数学思想方法的意义第三节中学数学思想方法的学习方法第一章数学的起源与发展第一节数学发展各个时期简析第二节中国数学的起源与发展第三节数学发展的动力第二章数学概观第一节数学的对象和特征第二节数学的地位第三节辩证唯物主义数学观第四节数学基础论及其简要评介第三章数学研究的一般方法第一节观察与实验第二节划分与比较第三节分析与综合第四节抽象与概括‘第五节特殊与一般第四章数学的逻辑方法第一节逻辑思维的基本形式第二节形式逻辑方法与辩证逻辑方法第三节逻辑推理规则第四节常用逻辑推理方法第五节数学证明与逻辑推理错误剖析第五章几种重要的数学方法第一节模型方法第二节化归方法第三节公理化方法第六章数学思维方法第一节思维及数学思维第二节数学逻辑思维方法第三节数学形象思维方法第四节创造性思维及其培养第七章数学思想方法的教学第一节数学思想方法教学的原理第二节符号化意识的培养第三节化归意识的培养第四节整体化意识的培养第五节帮助学生形成正确的数学观1、方法:就是人们处理某种事物的策略、思路、途径和步骤,解决不同学科的不同问题,需要用不同的方法。
2、方法论:研究各种方法共同规律和原则的学问3、数学方法论:狭义:解决数学问题的方法和手段,包括:数学概念的定义方法、数学的推理和证明方法、数学的计算和解决问题的思想方法等。
广义:还应包括对数学概念、数学理论的概念、数学理论的概念认识,包括对各种数学方法进行分类、整理和总结,从中寻找某些共同的规律,从而使我们能更好地学习数学和运用数学。
更广义:研究数学的发展规律,数学的思想、方法、原则,数学的发现、发明和创新的学科。
4、正确的数学观应该包含如下成分:数学的整体观;数学的价值观;数学的问题观;数学的审美观;数学教学和数学学习观。
第一章数学的起源与发展一、数学发展史1、数学萌芽时期(公元前600年以前)(1)数学的对象:社会生活的农业生产上的实际计算和测量的问题。
第一章数学中使用的一般科学方法(共10学时)[教学目的和要求]要求学生通过本章的学习,掌握在数学研究及数学解题中如何使用观察与实验、比较与分类、归纳与类比这三类科学方法,并能独立运用这些方法解决数学问题。
[教学内容]第一节观察与实验(2学时)1 •观察与实验是收集科学事实,获取感性经验,形成、发展和检验科学理论的主要方法2 •观察与实验在数学研究及数学解题中的功能、特点和作用第二节比较与分类(2学时)1. 比较与分类是分析、整理知识的主要方法2. 比较与分类在数学研究及数学解题中的功能、特点和作用第三节归纳与类比(4学时)1•归纳与类比是提出数学猜想的主要方法2.归纳与类比在数学研究及数学解题中的功能、特点和作用习题课(2学时)通过“示例”教学使学生理解和掌握这三类科学方法在数学研究及数学解题中的功能、特点和作用。
[教学重点]观察与实验、比较与分类、归纳与类比方法在数学研究及数学解题中的功能、特点和作用。
[教学难点]根据已有的事实材料如何运用归纳与类比方法提出数学猜想。
[教学建议]本章内容是课程的重点内容,建议通过“示例”教学使学生理解和掌握这三类科学方法在数学研究及数学解题中的功能、特点和作用。
[教学过程]在科学的发展过程中,凡是对人类的认识产生过积极作用的思想家,不论是哲学家或是科学家,都对科学中的思想方法和研究方法进行过考察与分析,科学方法就是在他们的研究和探索中诞生的。
综观人类的科学认识史,大凡以算法为主导的数学发展时期,人们常常将数学归并到自然科学范畴之内,而在以演绎为主导的数学发展时期,人们则将数学独立于自然科学之外。
在当代,由于计算机的出现以及由此引起一场迅猛的技术革命,数学中“构造性观念的抬头有了一些明显的趋势。
”(吴文俊),而这种趋势致使数学及数学教育界过分偏重形式,强调逻辑思维能力,忽视了数学的活的灵魂,对于使用逻辑方法以外的科学方法不予重视。
而包括20世纪最伟大的数学家冯・诺伊曼(J.Von.Neumann)在内的许多大数学家都认为数学和其他自然科学一样源于经验。
第一讲绪论(2学时)[教学目的和要求] 通过本章的讲述,使学生掌握两个基本观点, (1)数学方法是伴随数学问题的解决而产生的;(2)数学学习不仅仅是具体的数学知识的学习,而且也是数学思想方法的学习。
[教学内容]第一节宏观的数学方法论与微观的数学方法论第二节主要介绍数学方法论的内容及其层次第三节研究数学方法论的意义和目的第四节主要介绍研究和学习数学方法论的意义和目的。
第五节数学方法伴随数学问题的解决而产生第六节主要介绍数学方法是伴随数学问题的解决而产生,同时又推动了数学的发展这一观点。
[教学重点]研究和学习数学方法论的意义和目的;使学生了解数学方法是伴随数学问题的解决而产生的。
[教学建议] 要求学生了解研究和学习数学方法论的意义和目的。
[教学过程]《数学方法论》课程是根据专业培养目标为数学与应用数学(师范类)专业四年制本科生开设的,属于数学教育专业的专业课程中的重要课程之一,是一门以数学史为知识背景,以讲授数学方法论为重点内容的专业课程。
学习《数学方法论》可以培养学生欣赏和创造数学美的能力,使学生体会到数学的活力,培养他们对数学的兴趣及研究能力。
§1.1宏观的数学方法论与微观的数学方法论“数学方法论”现今对于我国数学界特别是数学教育界已不是一个陌生的名称,然而,大多数人却未必知道,这只是一个在中国学术界得到广泛应用的名词,或者说,这在很大程度上是一个由我国学者首先加以应用的名词。
从有关的材料看,徐利治教授在1980年出版的《浅谈数学方法论》中首先采用了这样一个名词。
他写道:“数学方法论是研究数学中的发现、发明以及创造性活动的规律和方法。
”其后,在1983年问世的《数学方法论选讲》中,徐利治教授又给出了如下的定义:“数学方法论主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。
”显然,与1980年的定义相比,后一定义包含了更加丰富的内容,徐利治教授还在《数学方法论选讲》中提出了关于“宏观的数学方法论”与“微观的数学方法论”的区别:关于数学发展规律的研究(如果撇开数学内在因素不提)属于宏观的数学方法论,关于数学思想方法以及对数学中的发现、发明与创新等法则的研究则属于微观的数学方法论。
数学方法论《数学方法论》学习指南一、课程性质《数学方法论》是高等师范院校数学教育专业及相关专业本科生的一门通识教育选修课,也可作高师数学教育专业研究生必修的一门基础课.本课程是研究数学的发展规律,数学思想、方法、原则以及数学的发现、发明和创新的学科.它是方法论学科中一门独立的学科,它在数学研究和教学中的地位与作用日益受到人们的普遍重视.现代科技与经济发展成熟的标志是数学化,“数学化”不仅是数学知识的应用,更多的是数学思想方法的应用.二、课程的意义新的数学教育理念认为,要提高中学生的数学素质,不仅要学生掌握数学知识,还要使学生掌握渗透于数学知识中的、对人的素质有重要影响的数学方法,并能用数学知识和方法去解决实际问题.我国中学数学课程改革中新的《数学课程标准》已将数学方法的教学列为中学数学教育的主要目标之一,因此要求中学数学教师应具备较为系统的数学方法知识结构以及运用数学方法解决实际问题的能力.三、教学目的了解“数学方法论”课程的性质及其意义,了解该课程的研究对象、范围以及它与所学知识的联系,理解它在中学数学教学中的作用;掌握数学研究的一般方法和有关概念,包括数学逻辑方法、思维方法和中学数学中常用的数学思想方法;能够用所学的、较为系统的数学方法来探求数学认知和应用的一般规律.四、教学内容第一章绪论知识点一:数学方法论的主要概念针对方法、科学方法、方法论、科学方法论、数学方法、数学思想方法、数学方法论等概念的讲解.知识点二:数学方法论的性质、对象及其产生与发展数学方法论的性质和对象简介,讲述数学方法的积累及数学方法论学科的产生、形成与发展过程.知识点三:学习数学方法论的意义从促进数学的发展、发挥数学的功能和数学教育改革几方面阐述学习、掌握数学方法论知识的意义.重点:掌握数学方法论的主要概念,了解数学方法论的性质、对象等.难点:掌握数学方法论的概念和理解数学方法论的意义.第二章化归知识点一:化归思想和方法的有关概念介绍规范问题、问题的规范化、数学中的化归方法、化归的模式、化归的方向和原则等概念,包括对熟悉性、简单性、直观性等概念的讲解.知识点二:化归的方向通过具体的数学例题,理解化归方法在实施中的方向及其原则的具体内容和内涵,包括符合化难为易、化繁为简、化未知为已知等思想应用的例子,以及利用熟悉性、简单性、直观性等思路找到化归途径的范例.知识点三:化归策略介绍常用的3种化归策略,以及3种化归的常用方法.通过大量的典型实例,分别对这些策略和方法予以应用,从而掌握它们的特点.知识点四:化归的方法主要介绍把一类数学问题化归为另一类数学问题的方法.知识点五:辩证地认识化归主要从化归的核心思想以及化归的实践性、局限性等三方面重新认识化归的特点.重点:掌握化归的主要概念及其原则、策略和方法,了解化归的基本方法.难点:在数学化归思想指导下分析具体问题,并在解题中顺利实施化归的策略和方法.第三章类比与归纳知识点一:类比法与归纳法类比、简单类比、复杂类比、常见的几种类比、归纳、数学归纳法、数学归纳原理等方面的概念讲解.知识点二:常见的几种类比和归纳介绍数学研究中常见的几种类比模式以及归纳模式.知识点三:类比与归纳的再认识整体上重新认识类比、归纳与化归的关系,并由此进一步理解类比和归纳是数学发现的重要方法.理解“培养学生提出问题的能力比解决问题的能力更重要”的意义.重点:掌握类比和归纳的相关概念和数学归纳原理,了解利用类比和归纳的常见类型及方法解决数学例题的过程.难点:认识类比、归纳与化归的关系以及归纳法与数学归纳法的区别.第四章联想与直觉知识点一:联想的有关概念、意义、法则及其途径包括联想与数学联想的概念及3个联想法则和5个联想途径的介绍.知识点二:直觉的有关概念、意义、特征及数学直觉分类包括直觉与数学直觉的概念及6个直觉思维的特征介绍.知识点三:联想与直觉在解题中所起的作用本节重点是选择一个简洁、典型的例题,由此来说明联想与直觉在解题中的作用及其方法.重点:掌握联想与直觉的相关概念和思维规律,了解利用联想与直觉的方法发现或解决数学问题的过程.难点:认识联想与直觉的关系及其区别,并理解两者在解题中所起的作用.第五章数学的论证方法知识点一:论证方法概念及分析法与综合法介绍命题、推理、论证等概念及常用的论证方法的两种.知识点二:直接证法与间接证法及应用这是另外两种常用的论证方法,并介绍其在证题中的应用.知识点三:计算证题法及其应用把证明问题转化为计算的方法叫做计算证题法,该方法一般思路单纯(即使算式繁杂但难度降低),较易着手,且能避免添加过多的辅助线.重点:掌握论证的相关概念和数学推理及其证明类型,掌握计算证题的诸多方法的特点.难点:认识间接证法的本质特征,掌握同一法的特点及其与反证法的区别.第六章数学的抽象方法知识点一:数学研究对象的抽象性数学抽象与其他科学的不同之处在于研究对象的抽象性和研究方法的抽象性两个方面,并介绍研究对象的抽象性的两个特点.知识点二:数学抽象的基本形式介绍数学抽象的4种基本形式.知识点三:研究方法的抽象性及数学发展规律通过几种不同的公理化方法了解数学研究方法的抽象性,并由此探讨数学学科的发展规律.重点:掌握数学对象抽象的特点,理解数学抽象方法对数学发展的意义.难点:对数学抽象的几种常见形式的认识,对各种不同公理化方法的理解.第七章数学的模型方法知识点一:数学模型方法的有关概念及其意义介绍模型以及数学建模等概念,并介绍其4个方面的意义.知识点二:数学建模的一般步骤及建模过程利用“凳子的平稳问题”的解决过程来说明数学建模的7个步骤.知识点三:数学建模的基本方法通过具体实例介绍数学建模的3种基本方法.重点:掌握数学模型的有关概念,了解数学模型方法的意义及其作用.难点:弄清数学建模的每一步骤的特点,了解数学建模各类方法的区别.第八章数学的试验方法知识点一:试验方法的基本思想及思维过程数学试验方法的基本思想是:面对问题和题设情况→确定试验方案→逐项试验→去伪存真(剔除不合题意的解)→找出问题解答.知识点二:数学试验与数学猜想的关系对于较为复杂的数学题,且不容易找到解题思路时,可进行适当实验,并对实验结果作归纳,探索条件与结论的联系,猜测解题方向.知识点三:非标准问题及优选问题的试验求解非标准问题与优选问题,一般难以直接用常规的思考方法,而运用试验来寻找解题方向,往往容易成功.重点:了解试验方法的基本思想,掌握非标准问题试验求解的一般方法.难点:弄清数学试验与数学猜想的关系以及在猜想中的作用,了解数学试验方法与其他方法的区别.第九章数学的美学方法知识点一:数学家与艺术的关系及其对数学美的看法知识点二:数学美的基本特征数学美既有感性的色彩,又有其确定的内容,它的基本特征是相对稳定的,用美学的标准来看,它具有简单性、对称性、统一性和奇异性.知识点三:数学美的意义及审美能力的培养介绍数学美的3方面的意义,以及数学审美能力的4个层次,并探讨数学审美能力培养的方法等.重点:了解数学家对数学美的看法,了解数学美在学习数学和解题方面的作用及例题,逐步培养学生的数学审美能力.难点:掌握数学美的基本特征及其表现形式,认识研究数学美学方法的意义.第十章数学语言知识点一:数学语言的特征及其特点数学语言又叫符号语言,它具有4方面的特征以及3大特点.知识点二:数学的名词、符号和图形对于数学语言的这三种形式的使用、要求、分类等予以介绍.知识点三:数学语言运用的标准在各类数学语言的运用中,都需要符合所介绍的4点标准,也是4点要求.重点:了解数学语言的特点,认识数学符号的意义,熟悉数学语言运用的标准,提高学生准确、灵活地运用数学语言的能力.难点:理解数学名词的意义,掌握数学符号的发展变化过程及其分类.五、教学特点和学习方法1、本课程以讲授为主,2学分共36个课时,以南京师大出版社2006年出版的《数学方法论简明教程》(主编:章士藻)为主讲的教材.2、我们假定学员们都了解一些形式逻辑和数学公理方面的知识(包括命题、推理、论证及数学公理系统、公理化思想等),所以,我们是在此基础上学习本课程,因此,建议学员们在学习中查看一些形式逻辑和数学公理方面的材料,以便于更好地理解相关的内容.3、由于本课程课时有限,而教材内容又太多,因此有些内容不讲或略讲,例如:所讲的内容一般是各章节最基本的部分,所选的例题也是尽可能简单的、典型的,有不少过难或过繁的例题不讲.即只选讲该学科的入门知识.。
数学方法论课件一、数学方法论概述数学方法论是研究数学方法的学问,它探讨数学方法的来源、性质、适用范围和局限性,以及如何运用数学方法解决实际问题。
数学方法论旨在为数学学习和应用提供理论支持和实践指导。
二、数学方法的分类与特点数学方法可根据不同的标准进行分类。
按照性质可分为演绎法和归纳法;按照用途可分为构造方法和抽象方法;按照范围可分为初等数学方法和高等数学方法。
每种数学方法都有其独特的特点和应用范围。
三、数学方法的理论基础数学方法的理论基础主要包括集合论、逻辑学、数学分析、微分学、线性代数等学科。
这些学科为数学方法的运用提供了理论基础和工具支持。
四、数学方法的实践应用数学方法在各个领域都有广泛的应用,如科学计算、工程设计、经济分析、金融建模等。
通过运用数学方法,可以简化问题,提高计算精度,为决策提供科学依据。
五、数学方法的发展与创新随着科学技术的发展,数学方法也在不断发展和创新。
新的数学方法不断涌现,如人工智能与数学结合形成的机器学习方法、大数据分析中的统计学习方法等。
这些新方法为解决复杂问题提供了更多选择和工具。
六、数学方法的应用案例分析为了更好地理解数学方法的应用,我们可以通过一些具体案例进行分析。
例如,利用数学模型预测股票价格变动、通过统计分析探究消费者行为等。
通过对这些案例的分析,可以深入了解数学方法在解决实际问题中的作用和价值。
七、数学方法论在教学中的意义在数学教学中,引入数学方法论有助于提高学生对数学的认识和理解,培养学生的逻辑思维和创新能力。
通过学习数学方法论,学生可以更好地掌握数学的本质和应用,提高解决实际问题的能力。
同时,数学方法论的教学也有助于提升教师的专业素养和教学水平,促进数学教学的发展和进步。
《数学方法论》教学大纲《数学方法论》教学大纲课程编号:12307056学时:30学分:2课程类别:专业任选课面向对象:小学教育专业本科学生课程英文名称:Mathematics Teaching Approaches一、课程的任务和目的任务:数学方法是人们从事数学活动时所使用的方法,数学方法论则是对古往今来的数学方法进行概括、分类、评价以及如何运用的论述。
其中必然涉及数学思维、数学发展中的发现、发明与创新的思维过程等内容的研究。
数学方法或数学思维方法是初等教育专业本科的一门任意选修课。
课程的任务目的主要是使学生了解最核心的数学思想和不同层次的数学方法;较全面的了解数学思维方法的基本内容以及国、内外的发展状况;一定程度的体会和理解本课程与数学哲学、数学文化及数学教育的关系。
目的:通过教育教学实践,逐步培养学生的数学和数学思维品质,形成正确的数学观,提高他们解决数学和实际问题的能力,增强综合素质,为从事小学数学教学打下坚实基础。
二、课程教学内容与要求(一)第一章数学方法引论教学内容:1.数学思想方法的基本内容和历史发展2.数学方法的层次分析3.数学方法论与数学思维方法的关系4.数学方法论与数学教育教学要求:了解数学方法论的内容和范围,以及数学思维方法的基本内容;了解二者的发展历史及其相互联系;理解数学方法论或数学思维方法对数学教育的积极影响。
数学重点:数学思想民方法的基本内容和历史发展。
教学难点:数学方法论,数学思维方法与数学教育的关系。
(二)第二章数学中的逻辑思维与非逻辑思维教学内容:1.数学中的逻辑思维(1)逻辑思维的主要类型(2)逻辑思维的基本规律(3)数学逻辑思维的基本形式2.数学中的非逻辑思维(1)数学中的形象思维(2)数学中的直觉思维(3)数学中的灵感思维(4)数学中的想象3.数学中的创造性思维(1)数学与创造性思维(2)数学中的创造性思维(3)数学创造性思维的培养4.专题讨论:数学中逻辑思维与非逻辑思维的关系教学要求:掌握逻辑思维的基本规律以及非逻辑思维的主要形式,理解创造思维在推动数学发展中的重要作用。