概率论与数理统计结课论文
- 格式:doc
- 大小:272.67 KB
- 文档页数:14
概率论期末论文《概率论与数理统计》期末论文题目:关于《概率论与数理统计》学习的收获学院:专业:班级:姓名:学号:2012年12月【摘要】:通过对概率论与数理统计发展历程的概述与学习方法的探讨,总结数理统计思想在生活中的应用,体会开设这门课的意义。
【关键字】:概率论与数理统计发展历程学习方法思想经过了一学期概率论与数理统计的学习,我发现概率论与数理统计与其他学科相比,既有同为数学学科的相似性,也有其特殊性。
学好这门课有助于锻炼我的逻辑思维能力,也加强了我对抽象事物的理解能力。
一、概率论与数理统计的起源与发展说及概率论的起源,离不开随机现象的探讨。
我们都知道,人们在实践活动中所遇到的所有现象,一般来说可分为两类:一类是必然现象,或称为确定性现象;另一类就是随机现象,或称不确定性现象。
科学家经过实践证明,如果同类的随见现象大量重复出现,它的总体就会呈现出一定的规律性。
这种由随机现象呈现出来的规律性,会随着我们的观察次数而变得明显。
举个很常见的例子,扔硬币时,每一次投掷都不知道哪一面会朝上,但是如果多次重复地投掷,就会发现它们朝上的次数大致相同。
这种由大量同类随机现象所呈现出来的集体规律性,就叫做统计规律性。
概率论与数理统计就是研究大量同类随机现象的统计规律性的数学学科。
早在16世纪的时候,一个叫做卡丹的意大利数学家,由于他沉溺于赌博,用来的钱可以补贴收入。
他为此撰写了《论赌博》,提出系统的概率计算。
书中计算了掷两颗或者三科骰子时,在一切可能方法中有多少方法得到某总点数。
但到了17世纪,这本书才得以出版。
在17世纪中叶,法国数学家帕斯卡与荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中的“分赌注问题”与“赌徒输光问题”等,到了18,19世纪,又出现了对人口统计与误差理论等的探究。
之后,瑞士数学家伯努利建立了概率论中第一个极限定理,阐明了时间发生频率稳定与它的概率。
后来,棣莫弗和拉普拉斯提出了“棣莫弗-拉普拉斯定理”,为概率论中第二个基本极限定理定下雏形。
概率论与数理统计学习心得范文概率论与数理统计是一门理论基础课程,是大学数学系的重要组成部分。
通过学习概率论与数理统计,我收获了很多知识和经验。
首先,概率论与数理统计是一门关于随机事件和随机变量的学科。
在这门课中,我学习了诸如概率空间、样本空间、随机事件、概率、随机变量、概率分布等概念和理论。
通过学习这些基本概念,我对随机事件和随机变量有了更深入的理解。
我学会了如何用数学的方法描述和分析随机事件和随机变量的规律,掌握了概率论的基本原理和方法。
其次,概率论与数理统计还提供了一种全新的思维方式。
在学习过程中,我发现概率论与数理统计的方法论和思想方式与其他学科不同。
概率论与数理统计注重的是对随机现象的量化和分析,更加注重统计规律的描述和推断。
通过学习这门课程,我逐渐培养了用统计数据和模型进行科学推断的能力,提高了对事物变化的认识和把握,增强了分析问题和解决问题的能力。
再次,概率论与数理统计还提供了一种工具,用于解决实际问题。
概率论与数理统计是一门应用广泛的学科,在许多实际问题中都能找到应用。
通过学习概率论与数理统计,我了解了统计学的基本方法和思想,学会了如何通过样本数据对总体进行推断和估计。
这对我日后从事科学研究或实际工作将起到重要的指导和帮助作用。
最后,概率论与数理统计的学习也为我提供了一个重要的学术平台。
概率论与数理统计是一门基础课程,是后续学习和研究其他学科的先行课程。
通过学习概率论与数理统计,我开阔了眼界,扩大了知识面,为日后继续学习和探索打下了坚实的基础。
总之,概率论与数理统计是一门重要的学科,对于培养学生的定量思维能力和科学推理能力具有重要意义。
通过学习这门课程,我收获了丰富的知识和经验,提高了对随机现象的认识和把握,并培养了用统计数据和模型进行科学推断的能力。
这门课程不仅为我提供了学术支持和工具,还为我提供了一个重要的学术平台,为未来的发展打下了坚实的基础。
我相信,在日后的学习和工作中,概率论与数理统计的知识和方法将继续发挥重要的作用。
微积分在概率论与数理统计中的应用摘要: 大二概率论课程结课了,在这门课上我学到了一些关于概率论和数理统计的许多知识。
这些知识既可以对我的专业方面有很大的指导作用、强化了我相关的数理逻辑能力。
课后,在兴趣的激励下,我从课本、习题以及相关网络资源中找到了更多关于概率论与数理统计的知识。
现通过这篇论文对我学习过程中的体会,并结合以往的数学知识(重点在微积分部分)关键词:概率论与数理统计 其他数学知识 微积分概率论与数理统计是研究随机现象统计规律的一门数学学科,已在包括控制、通信、生物、物理、力学、金融、社会科学、以及其他工程技术科学等诸多领域中获得了广泛的应用。
学习和掌握概率论与数理统计的基本理论和基本方法并将应用于科学研究的和工程实际中,是社会发展对高素质人才培养提出的必然要求。
----概率论与数理统计(前言) 一般认为, 概率论源于赌博问题, 创立于 1654年7 月29 日 。
考古证实骰子古而有之, 那么为何直到17 世纪概率论才诞生? 历史表明概率论的诞生和发展需要先进的数学技术和理性的思考。
众所周知, 概率论的大厦是建筑在微积分的地基之上的, 如在函数关系的对应下, 随机事件先是被简化为集合, 继之被简化为实数, 随着样本空间被简化为数集, 概率相应地由集函数约化为实函数. 以函数的观点衡量分布函数F(x),F(x)的性质是十分良好的: 单调有界、 可积、 几乎处处连续、 几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、 概率密度与分布函数的关系、 连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础 ) ) ) 极限论的地方也非常多, 诸如分布函数的性质、大数定律、 中心极限定理等. 总之, 微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、 反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用作用巨大。
概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
学习概率与数理统计总结范文学习总结1、概率与数理统计包括概率论和数理统计概率论的基本问题是:已知总体分布的信息,需要推断出局部的信息;数理统计的基本问题是:已知样本(局部)信息,需要推断出总体分布的信息、(1)参数估计:a)点估计,估计量检验,矩估计b)无偏估计;有偏估计:岭估计(2)假设检验预先知道服从分布,非参数假设检验(3)统计分析(包括多元统计分析)n方差分析n偏度分析n协方差分析n相关分析n主成分分析n聚类分析n回归分析,检验统计量(4)抽样理论(5)偏最小二乘回归分析(6)线*与非线*统计2、随机过程定义:3、统计信号处理假设检验和参数估计属于统计推断的两种形式、3、1信号检测3、2估计理论估计理论是统计的内容;估计理论包括静态参数估计和动态参数估计,动态参数估计也称状态估计或波形估计(信号有连续和离散之分)、似乎有的人将静态参数估计称作参数估计,将动态参数估计称作滤波!静态估计:n贝叶斯估计滤波是估计理论的研究内容、滤波可以分为空域、时域和频域的,数字图像处理常用的就是空域和频域的滤波如卷积运算,而无线信号处理则多为时域和频域,如维纳滤波、解决最优滤波问题有三种方法论:包括维纳滤波、卡尔曼滤波、现代时间序列分析、无线定位信号处理包括两部分内容,首先是消除奇异值,是消除错误的过程;其次是滤波,消除或减少信号在信道中传播的随机噪声影响、3、3时间序列分析时间序列包括估计理论包含滤波,总之估计理论和时间序列分析都属于统计的范畴、注意滑动平均这类滤波方法,在时间序列分析中经常被使用!4、变换理论4、1傅里叶变换五种信号分类分类名称对应变换英文命名对应算法应用连续周期信号连续傅里叶级数变换csft连续信号连续傅里叶变换cft离散周期信号离散傅里叶级数变换dfs离散信号序列傅里叶变换sft离散有限序列信号离散傅里叶变换dftfft图像处理信号处理4、2小波变换小波分析是在傅里叶分析的基础上发展起来的,小波变换和fourier变换、加窗fourier变换相比,是一个自适应的时间和频率的局部变换,具有良好的时_频定位特*和多分辨能力、它能有效地从信号中提取信息,通过伸缩核平移等运算对信号进行多尺度细化分析,被誉为“数学显微镜”、小波的时频窗在低频自动变宽,在高频时自动变窄、5、理论基础5、1贝叶斯方法贝叶斯体系的基本思路:依据过程概率分布的先验知识,将包含在信号中的事实进行组合、粗略来讲,在统计推断中使用先验分布的方法进行统计基本上都是贝叶斯统计、贝叶斯估计:最大后验估计、最大似然估计、最小均方估计、最小平均绝对误差估计贝叶斯推断:是根据带随机*的观测数据(样本)以及问题的条件和假定(模型),对未知事物做出的,以概率形式表达的推测、贝叶斯预测:贝叶斯预测的精度取决于贝叶斯参数估计的*能,贝叶斯预测包括许多传统的预测方法,如线*回归、指数平滑、线*时间序列都是贝叶斯预测模型的特殊情况、贝叶斯决策:先验信息和抽样信息都用的决策问题称为贝叶斯决策问题、贝叶斯分类:最大似然分类贝叶斯网络:5、2蒙特卡罗方法6、最优化理论6、1经典最优化6、2现代最优化理论np难问题全局最优:(1)模拟退火算法(2)人工神经网络算法(3)禁忌搜索算法(4)免疫算法(5)遗传算法(6)蚁群算法(7)支持向量机7、矿井wifi无线定位信号处理方法无线定位信号处理包括两部分内容,首先是消除奇异值,是消除错误的过程;其次是滤波,消除或减少信号在信道中传播的随机噪声影响、这种滤波包括卡尔曼滤波和时域滤波的方法、利用wifi无线定位基站探测井下各类人员所携带的电子标签(电子标签会定时发送无线信号),基站接收人员位置信息并上传至服务器,根据基站的地理坐标和探测到的电子标签信息(主要是rssi信号强弱),采用处理算法消除信号中存在的奇异值,滤波减小随机信号的干扰,采用无线定位算法实时解算人员的位置,这些处理过程都有服务器端负责处理、静态信号处理,首先在巷道布设采样点,没间隔1m布设一个采样点,对获得的数据进行方差分析,偏度分析,确定信号在煤矿巷道中某一点的总体概率分布,以此总体概率密度消除奇异值;利用消除奇异值的信号建立无线信号距离衰减模型;动态信号处理,包括信号奇异值消除和滤波过程、信号奇异值消除根据当前信号之前的某几个时间点数据建立滑动平均模型,将消除奇异值后的信号强弱值分别代入kalmn滤波器和加权滤波,比较滤波效果;接下来根据定位点的到基站的距离解算人员的位置、8、正演过程与反演过程简单地说,正演是由因到果、而反演正相反,是由果到因、而结果应该是可以观测到的结果,称之为观测资料、一般由果推因可分为两种情况:一是用于建立理论模型,另一种情况是假定已经建立了一定的理论模型框架,则可以由观测资料来推测理论模型中的若干个参数、其中建立理论模型的方法跟各个具体学科有密切关系、遥感的正演过程与反演过程辐*传方程研究的是太阳的电磁辐*通过地球大气,到达地面、经过大气的散*、吸收和折*,地面的吸收和反*,再通过大气层,传输啊传感器产生辐亮度的过程、建立起辐*光谱和辐亮度之间的关系、相关的概念包括反*率,吸收率,二向*反*等;反演则是建立辐亮元与地表参数如地表植被的lai,地物温度,地表的植被高度,n含量等、遥感还包括很多环境的监测如so2,、co 等、反演一般为病态过程,存在很多的不确定的因素、因果之间的确定*模型应该属于定理的范畴了!重视建模的过程,正演可以对理论模型进行验*,是实践检验的重要方法、。
《概率论与数理统计》期末论文题目:关于《概率论与数理统计》学习的收获学院:专业:班级:姓名:学号:2012年12月【摘要】:通过对概率论与数理统计发展历程的概述与学习方法的探讨,总结数理统计思想在生活中的应用,体会开设这门课的意义。
【关键字】:概率论与数理统计发展历程学习方法思想经过了一学期概率论与数理统计的学习,我发现概率论与数理统计与其他学科相比,既有同为数学学科的相似性,也有其特殊性。
学好这门课有助于锻炼我的逻辑思维能力,也加强了我对抽象事物的理解能力。
一、概率论与数理统计的起源与发展说及概率论的起源,离不开随机现象的探讨。
我们都知道,人们在实践活动中所遇到的所有现象,一般来说可分为两类:一类是必然现象,或称为确定性现象;另一类就是随机现象,或称不确定性现象。
科学家经过实践证明,如果同类的随见现象大量重复出现,它的总体就会呈现出一定的规律性。
这种由随机现象呈现出来的规律性,会随着我们的观察次数而变得明显。
举个很常见的例子,扔硬币时,每一次投掷都不知道哪一面会朝上,但是如果多次重复地投掷,就会发现它们朝上的次数大致相同。
这种由大量同类随机现象所呈现出来的集体规律性,就叫做统计规律性。
概率论与数理统计就是研究大量同类随机现象的统计规律性的数学学科。
早在16世纪的时候,一个叫做卡丹的意大利数学家,由于他沉溺于赌博,用来的钱可以补贴收入。
他为此撰写了《论赌博》,提出系统的概率计算。
书中计算了掷两颗或者三科骰子时,在一切可能方法中有多少方法得到某总点数。
但到了17世纪,这本书才得以出版。
在17世纪中叶,法国数学家帕斯卡与荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中的“分赌注问题”与“赌徒输光问题”等,到了18,19世纪,又出现了对人口统计与误差理论等的探究。
之后,瑞士数学家伯努利建立了概率论中第一个极限定理,阐明了时间发生频率稳定与它的概率。
后来,棣莫弗和拉普拉斯提出了“棣莫弗-拉普拉斯定理”,为概率论中第二个基本极限定理定下雏形。
概率论与数理统计论文(优秀3篇)【摘要】针对近年来医学院校招生规模不断扩大,学生基础知识和学习能力参差不齐的实际状况,探讨了概率论与数理统计分层次教学的必要性,提出了医学院校概率论与数理统计课程分层教学模式,总结了在概率与统计教学中利用现代化信息技术进行分层次教学的实践经验。
【关键词】因材施教;素质教育;概率论与数理统计;分层次教学早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。
而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。
既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。
近年来,随着教育的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。
而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。
在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。
1概率论与数理统计分层次教学研究的背景自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。
而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。
这也是我们在进行大学数学分层次教学研究时的一个基本出发点。
我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。
概率论与数理统计概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。
更深层次上的规律性。
概率是随机事件发生的可能性的数量指标。
在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。
就可以认为这个事件发生的概率为这个常数。
对于任何事件的概率值一定介于 0和 1之间。
间。
有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。
具有这两个特点的随机现象叫做“古典概型”。
在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。
如果用变量来描述随机现象的各个结果,就叫做随机变量。
随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。
一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。
机变量就叫做非离散型随机变量。
在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。
如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。
正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。
平均值也叫数学期望,差异度也就是标准方差。
是标准方差。
数理统计包括抽样、适线问题、假设检验、方差分析、相关分析等内容。
抽样检验是要通过对子样的调查,来推断总体的情况。
究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。
的理论。
适线问题也叫曲线拟和。
有些问题需要根据积累的经验数据来求出理论分布曲线,从而使整个问题得到了解。
但根据什么原则求理论曲线?如何比较同一问题中求出的几种不同曲线?选配好曲线,有如何判断它们的误差?……就属于数理统计中的适线问题的讨论范围。
概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。
纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。
所以在课程设计中,我想讨论一下正态分布的有关问题。
一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。
正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。
在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。
20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。
因此,把这一方面的定理统称为中心极限定理。
较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。
这就揭示了正太分布的重要性。
因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。
数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。
二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。
服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。
数学系概率论数理统计毕业论文概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程。
下文是店铺为大家整理的关于数学系概率论数理统计毕业论文的范文,欢迎大家阅读参考!数学系概率论数理统计毕业论文篇1概率论与数理统计教学浅谈摘要:随着本科院校近年来不断扩大招生规模,在一定程度上影响了生源质量。
与此同时,普通高等院校在精简课程方面也做了较大调整。
在此新形势下,作为一名的教师,针对普通高等院校概率论与数理统计课程的教学改革提出相关见解,认为目前普通高等院校,尤其是一些偏应用型的工科院校,在概率论与数理统计课程的教学中,不应该死守教师满堂讲解的教学模式,而是应该提供给学生应用的机会,设立教学实验课;教学中应突出实际应用,与数学建模相揉合,以达到更好的教学以及学习效果。
关键词:概率论与数理统计教学实验SAS软件揉合数学建模概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。
如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。
大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。
教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。
通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。
1 建立良好开端概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。
在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。
很显然,这并不是一个好预兆。
我们都知道,兴趣是最好的老师。
一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。
如果愿意去做,有兴趣,那么难题会变得简单。
同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。
概率论的发展与应用摘要:概率论与数理统计是一门研究随机现象及其规律性的数学学科。
通过实验来观察随机现象,揭示其规律性,或根据实际问题的具体情况找出随机现象的规律。
它起源于17世纪中叶,法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决赌博中提出的一些问题。
由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。
发展到今天,概率论与数理统计在自然科学,社会科学,工业生产,金融及日常生活实际等诸多领域中起着不可替代的作用。
关键词:概率论与数理统计;起源与发展;应用1.概率论的起源与发展1.1 概率论的起源概率论的起源与赌博有关,在17世纪中叶,一位名叫德·梅尔的赌徒向帕斯卡提出了“分赌注问题”即两个人决定赌若干局,事先约定谁先赢得s局便算赢家。
如果在一个人赢a(a<s) 局,另一人赢b(b<s) 局时因故终止赌博,应如何分赌本。
帕斯卡将这一问题和他的解法寄给费马,他们频频通信,互相交流,围绕赌博中的数学问题开始了深入的研究。
这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。
帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。
而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。
年,他将自己的研究成果写成了专着《论掷骰子游戏中的计算》。
这本书迄今为止被认为是概率论中最早的论着。
因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。
这一时期被称为组合概率时期,计算各种古典概率。
1.2 概率论的发展到了18,19世纪,随着科学的发展,人们注意到社会科学和自然科学中许多随机现象与机会游戏之间十分相似,如人口统计、误差理论、产品检验和质量控制等,从而由机会游戏起源的概率论被应用于这些领域中,同时也大大促进了概率论本身的发展,瑞士数学家伯努利作为使概率论成为数学的一个分枝的奠基人之一,建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。
概率论与数理统计论文[整理]
概率论和数理统计是研究统计和概率问题的重要分支。
它们主要用于解决一些复杂的问题,即把大量复杂的、不可见的数据分析,并对数据进行实际的推理等。
概率论可以简单的解释为,它是一门研究相关变量之间的概率关系的科学,它的研究方法依赖于多种分析工具,例如有限的概率空间、概率分配函数、随机变量及其统计量、随机过程以及非确定性概率模型等。
与其他科学一样,它也是一门研究推导和验证经验结论的科学。
例如假设有一副牌,如果使用概率论,我们可以确定翻出红心可能性多少,以及要翻出10个红心可能性有多大。
数理统计是用于收集、组织、分析和描述变量等因素之间的规律性现象的一门学科。
它是利用数量技术和统计方法,研究和分析少量或大量数据的定量分析和应用科学。
它是数学与计算机的融合,利用统计分析把概率、数量和抽样结果相结合,以获得更有效的结果。
典型的数理统计方法包括简单比较、回归分析、秩和检验、卡方检验、协方差分析、时间序列分析以及模拟和非参数分析等。
例如,统计学家可以使用数理统计方法来证明一种药物是否对病人的病情有明显的改善,可以使用数理统计的结果推断出某一特征的数值水平等。
概率论和数理统计在实际应用中发挥着重要作用,这两个学科相互补充,一起构成了定量分析和试验设计的完整体系,很多学科、领域都使用到它们,例如工程、经济学、计算机科学等。
此外,它们也被广泛应用于实验室研究、诊所、学校和企业等,用于改善管理绩效或者寻找最优解决方案。
因此,概率论和数理统计是一种重要的科学方法,不仅在统计学本身,而且在其他许多学科都有广泛的应用。
概率论与数理统计论文•相关推荐概率论与数理统计论文(精选16篇)在学习、工作生活中,大家最不陌生的就是论文了吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。
那么,怎么去写论文呢?下面是小编为大家收集的概率论与数理统计论文,欢迎阅读,希望大家能够喜欢。
概率论与数理统计论文篇1摘要:在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。
而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。
概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。
关键词:概率论,概率论的发展与应用正文一、概率论的起源说起概率论起源的故事,就要提到法国的两个数学家。
一个叫做帕斯卡,一个叫做费马。
帕斯卡是17世纪有名的“神童”数学家。
费马是一位业余的大数学家,许多故事都与他有关。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。
这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。
赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。
于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。
讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
二、概率论的发展概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
概率论与数理统计与生活的紧密联系在大二上学期,我们接触到了《概率论与数理统计》这门课程。
可以说这门课程给人的第一感觉就是与生活息息相关,统计的思想可谓来源于生活,服务与生活。
而作为来自黑龙江的新课改考生,高中时我们就对概率初级有了一定的了解,因而在学科开始时感到熟悉又轻松,不觉地有些懈怠。
随着课程的推进,知识量的增多,深度的加深,蓦地发现其实“概率论”这东西并不是简单地算算概率、求求方差而已的数学计算,而是一门大学问——来源生活、高于生活的学问。
概率论与数理统计的发展对于其历史,高中时代便听说其来源不仅来自生活,而且很有意思,竟是与赌博有很深的渊源。
因此说概率论来源于生活这是一点都不假的。
据资料记载,概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m 局就算赢,全部赌本就归谁。
但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。
问:赌本应该如何分法才合理?三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
而后,瑞士数学家伯努利作为是概率论成为数学的一个分支的奠基人之一,建立了概率论中第一个极限定理——伯努利大数定律,阐明了事件发生的频率稳定于它的概率。
随后,棣莫弗和拉普拉斯又导出了第二个基本极限定理的原始形势,将概率论发展向一个新的高潮。
19世纪末,俄国数学家切比雪夫、马尔科夫、李雅普诺夫等人用分析法建立了大数定律及中心极限定理的一般形式,科学的解释了为什么在生活中遇到的许多随机变量都近似的服从于正态分布。
20世纪初,由于大量的实际问题需要,爱因斯坦、维纳和列为等对布朗在显微镜下观察到的划分微粒的无规则运动进行开创性的理论分析,提出了布朗运动数学模型;爱尔兰等人则在电话流中研究了泊松过程,成为排队论的首创者;至今,对于随机过程的研究以及与其他新兴学科的交叉而形成的边缘学科的研究仍在继续。
概率论与数理统计应用类比法在概率论中运用类比法,有助于加深我对一些基本概念的理解,能达到更好的学习效果.下面列举一些具体的例子阐述类比法在概率论与数理统计课程中的具体应用。
(1)类比法概述类比法也叫“比较类推法”,是指由一类事物所具有的某种属性,推测与其类似的事物也应具有这种属性的推理方法。
虽然类比法本身只是一种逻辑推理方法,但是该方法也可以用在一些学科特别是理工类学科的学习和教学当中。
以数学为例,初等代数中的许多概念和计算可以通过与算术中相应的概念和计算作类比来学习。
又如,在物理学中,库伦定律和万有引力定律都是平方反比定律,可以通过类比法联系起来加深理解。
类比法是对学习迁移的应用,学习迁移,是指一种学习中习得的经验对其他学习的影响,可按迁移的性质划分为正迁移和负迁移两种。
正迁移是指一种经验的获得对另一种学习起促进作用。
负迁移是指一种经验的获得对另一种学习起干扰或阻碍作用。
因此,在运用类比法比较新旧知识的时候,也要注意找出两者的不同点加以区别,避免思维定势和经验主义错误。
(2)概率论与数理统计的课程特点微积分是概率统计的一门预备课程,在概率统计中要用到大量的微积分作为计算工具,而部分学生的微积分基础不是太扎实,直接影响了该门课的学习。
这使得概率统计具备一定难度,许多同学认为该门课比微积分、线性代数等课程难学。
如果我们适当地在概率统计的学习中使用类比法,先回顾我们学过的数学知识,并由此联系该门课中的概念与性质,再通过比较新旧知识的共同点与不同点加深对概率论的印象。
这样就能促进我们对新知识的理解。
1类比法在概率论与数理统计中的应用举例1.1事件和集合的类比事件是概率论的一个基本概念,事件的关系与运算可以和集合的关系与运算作类比学习。
的相等和集合的相等有不一样的性质,即由两个集合相等可以得出它们含有完全相同的元素,而两个事件相等则并不意味着它们是同一个事件。
这种不同点要加以区分,以免混淆。
此外,事件运算的性质和集合运算的性质,如:交换律,结合律,分配律,对偶律等,也可以类比学习。
浅谈随机变量的数字特征摘要:我们知道,随机变量的分布函数完全刻画了随机变量的统计规律,它反应了随机变量的全貌,而随机变量的数字特征只是随机变量的统计规律的某一个方面的数量描述,不能完整地描述随机变量,但却反映随机变量取值的一些特征。
本文就从这点出发,主要讲述随机变量的数字特征的引出、相关知识点及重点和随机变量数字特征的应用。
关键字:数字特征 数学期望 方差 协方差 相关系数我们知道随机变量的分布函数能够全面地描述随机变量的统计特性。
但实际问题中,由于有时很难求出随机变量的分布函数或者不需要知道随机变量的一切统计特性,而只需要知道随机变量的某些特征。
例如在分析某校学生英语四级水平时,只要计算该校的平均成绩和计算该校每位学生的考试成绩与平时成绩的偏离大小,便可以对该校的学生英语四级水平做出比较客观的判断,这种能表示随机变量某些方面特征的数就是随机变量的数字特征。
另外我们还注意到许多的重要分布都会含1到3个参数,而这些参数都与数字特征重合或关系密切,因此只要知道分布的类型,通过数字特征就能完全确定分布函数。
由此可见,随机变量的数字特征的研究具有理论上和实际上的重要意义。
通过这章的学习,我理解了随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差;掌握了二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差;会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y ;理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。
下面是我总结出来的本章知识要点:1.数学期望设X 是离散型的随机变量,其概率函数为(),1,2,,i i P X a p i ===如果级数i iia p∑绝对收敛,则定义X 的数学期望为()i iiE X a p =∑;设X 为连续型随机变量,其概率密度为()f x ,如果广义积分()xf x dx+∞-∞⎰绝对可积,则定义X 的数学期望为()()E X xf x dx+∞-∞=⎰.2.随机变量函数的数学期望设X 为离散型随机变量,其概率函数(),1,2,,i i P X a p i ===如果级数()iiig a p∑绝对收敛,则X 的函数()g X 的数学期望为[()]()i iiE g X g a p =∑设(,)X Y 为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ij P X a Y b p i j ====如果级数(,)i j ijjig a b p ∑∑绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)i j ijjiE g X Y g a b p =∑∑;特别地();()i ij j iji i j i E X a p E Y b p ==∑∑∑∑.设X 为连续型随机变量,其概率密度为()f x ,如果广义积分()()g x f x dx+∞-∞⎰绝对收敛,则X 的函数()g X 的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰;特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰, ()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.3.数学期望的性质3.1 ()E c c = (其中c 为常数);3.2 ()()E kX b kE X b +=+ (,k b 为常数); 3.3 ()()()E X Y E X E Y +=+;3.4 如果X 与相互独立,则()()()E XY E X E Y =. 4.方差与标准差随机变量X 的方差定义为2()[()]D X E X E X =-.计算方差常用下列公式:22()()[()]D X E X E X =-’当X 为离散型随机变量,其概率函数为(),1,2,,i i P X a p i ===如果级数2(())i iia E X p -∑收敛,则X 的方差为2()(())i iiD X aE X p =-∑;当X 为连续型随机变量,其概率密度为()f x ,如果广义积分2(())()x E X f x dx+∞-∞-⎰收敛,则X 的方差为2()(())()D X x E x f x dx+∞-∞=-⎰.随机变量X 的标准差定义为方差()D X 5.方差的性质5.1 ()0D c = (c 是常数);5.22()()D kX k D X = (k 为常数); 5.3如果X 与Y 独立,则()()()D X Y D X D Y ±=+.6.协方差设(,)X Y 为二维随机变量,随机变量(,)X Y 的协方差定义为cov(,)[(())(())]X Y E X E X Y E Y =--.计算协方差常用下列公式:cov(,)()()()X Y E XY E X E Y =-.当X Y =时,cov(,)cov(,)()X Y X X D X ==. 协方差具有下列性质:6.1 cov(,)0X c = (c 是常数); 6.2 cov(,)cov(,)X Y Y X =;6.3 cov(,)cov(,)kX lY kl X Y = (,k l 是常数); 6.4 1212cov(,)cov(,)cov(,)X X Y X Y X Y +=+ 7.相关系数随机变量(,)X Y 的相关系数定义为XY ρ=相关系数XY ρ反映了随机变量X 与Y 之间线性关系的紧密程度,当||XY ρ越大,X 与Y 之间的线性相关程度越密切,当0XY ρ=时,称X 与Y 不相关.相关系数具有下列性质: 7.1 ||1XY ρ≤;7.2 ||1XY ρ=的充要条件是()1P Y aX b =+=,其中,a b 为常数; 7.3 若随机变量X 与Y 相互独立,则X 与Y 不相关,即0XY ρ=,但由0XY ρ=不能推断X 与Y 独立.7.4下列5个命题是等价的: . 7.4.1 0XY ρ=;7.4.2 cov(,)0X Y =;7.4.3 ()()()E XY E X E Y =;7.4.4 ()()()D X Y D X D Y +=+); 7.4.5 ()()()D X Y D X D Y -=+. 利用协方差或相关系数可以计算()()()2cov(,)()()2D X Y D X D Y X Y D X D Y ρ±=+±=+±. 8.原点矩与中心矩随机变量X 的k 阶原点矩定义为()kE X ; 随机变量X 的k 阶中心矩定义为[(())]kE X E X -]; 随机变量(,)X Y 的(,)k l 阶混合原点矩定义为()k lE X Y ; 随机变量(,)X Y 的(,)k l 阶混合中心矩定义为[(())(())]k l E X E X Y E Y --.一阶原点矩是数学期望()E X ;二阶中心矩是方差D(X);(1,1)阶混合中心矩为协方差cov(,)X Y . 9.常用分布的数字特征9.1当X 服从二项分布(,)B n p 时,(),()(1)E X np D X np p ==-.9.2 当X 服从泊松分布()p λ时,(),()E X D X λλ==,9.3 当X 服从区间(,)a b 上均匀分布时,2()(),()212a b b a E X D X +-==9.4 当X 服从参数为λ的指数分布时,211(),()E X D X λλ==9.5 当X 服从正态分布2(,)N μσ时,2(),()E X D X μσ==.9.6 当(,)X Y 服从二维正态分布221212(,,,,)N μμσσρ时, 211(),()E X D X μσ==;222(),()E Y D Y μσ==;12cov(,),XY X Y ρσσρρ==上面讲了那么多的知识点,看起来很是繁琐,个人认为重点是期望、方差、协方差、相关系数的概念、计算和性质;常用分布的数字特征;利用性质计算随机变量函数的期望。
概率论论文概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。
纵观其发展史,在实际生活中具有很强的应用好处。
正是有了前人的努力,才有了现代的概率论体系。
本文将从概率论的研究好处、定义,以及发展历程进行叙述。
概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。
每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。
例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。
大数定律和中心极限定律就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。
例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。
随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用姓名:学号:专业:电子信息工程摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。
概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。
本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。
关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式基本知识§1.1 概率的重要性质1.1.1定义设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。
概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)1.1.2 概率的一些重要性质(i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§1.2 随机变量的数字特征1.2.1 数学期望设离散型随机变量X 的分布律为k k p x X P ==}{,k=1,2,…若级数∑∞=1k k kp x绝对收敛,则称级数∑∞=1k k kp x的和为随机变量X 的数学期望,记为)(X E ,即∑=ik k p x X E )(设连续型随机变量X 的概率密度为)(x f ,若积分⎰∞∞-dx x xf )(绝对收敛,则称积分⎰∞∞-dx x xf )(的值为随机变量X 的数学期望,记为)(X E ,即⎰+∞∞-=dx x xf X E )()(定理 设Y 是随机变量X 的函数Y=)(X g (g 是连续函数)(1)如果X 是离散型随机变量,它的分布律为k p X P ==}x {k ,k=1,2,…若k k kp x g ∑∞=1()绝对收敛则有=)Y (E =))((X g E kk kp x g ∑∞=1()(2)如果X 是连续型随机变量,它的分概率密度为)(x f ,若⎰∞∞-dx x f x g )()(绝对收敛则有=)Y (E =))((X g E ⎰∞∞-dx x f x g )()(数学期望的几个重要性质 (1)设C 是常数,则有C C E =)(;(2)设X 是随机变量,C 是常数,则有)()(X CE CX E =; (3)设X,Y 是两个随机变量,则有)()()(Y E X E Y X E +=+; (4)设X ,Y 是相互独立的随机变量,则有)()()(Y E X E XY E =.1.2.2 方差定义 设X 是一个随机变量,若[]})({2X E X E -存在,则称[]})({2X E X E -为X 的方差,记为D (x )即D (x )=[]})({2X E X E -,在应用上还引入量)(x D ,记为)(x σ,称为标准差或均方差。
222)()())(()(EX X E X E X E X D -=-=方差的几个重要性质(1)设C 是常数,则有 ,0)(=C D(2)设X 是随机变量,C 是常数,则有)(C )(2X D CX D =,D(X))(=+C X D ;(3)设X,Y 是两个随机变量,则有E(Y))}-E(X))(Y -2E{(X D(Y)D(X))(++=+Y X D 特别,若X,Y 相互独立,则有)()()(Y D X D Y X D +=+;(4)0)(=X D 的充要条件是X 以概率1取常数E(X),即1)}({==X E X P .切比雪夫不等式:设随机变量X 具有数学期望2)(σ=X E ,则对于任意正数ε,不等式22}-X P{εσεμ≤≥成立§1.3 点估计1.3.1 矩估计用矩法求估计很古老的估计方法,是建立在独立同分布情形下的大数定律(样本均值趋向总体平均),它由K .Pearson 在20世纪初提出,其中心思想就是用样本矩去估计总体矩。
总体X 分布函数的未知参数为12(,,,),Tm θθθθ=⋅⋅⋅如果总体的k 阶原点矩12()(,,,),1,2,,k k m E X k m αθθθ=⋅⋅⋅=⋅⋅⋅存在,我们设总体的k 阶原点矩与它的样本的k 阶原点矩相等11,1,2,,n kk i i A X k m n ===⋅⋅⋅∑即1211(,,,)(),1,2,,nkk k m i k i E X X A k m n αθθθ=⋅⋅⋅====⋅⋅⋅∑从上面式子可得到关于未知量θ的解12ˆˆ(,,,),1,2,,i n X X X i m θθ=⋅⋅⋅=⋅⋅⋅,取12ˆˆˆˆ(,,,)T m θθθθ=⋅⋅⋅作为12(,,,)T m θθθθ=⋅⋅⋅的估计,就称ˆθ为θ的矩估计。
关键要掌握两个式子(设总体的均值为μ,方差为2σ,12,,,n X X X ⋅⋅⋅是来自总体X 的一个样本):可得总体X 的一阶,二阶原点矩为122222=E(X)=,()()[()],E X D X E X αμασμ⎧⎨==+=+⎩ 而样本的一阶,二阶原点矩为2121111,n ni i i i A X X A X n n =====∑∑由此可得到22211,ni i X X n μσμ==+=∑,所以ˆX μ=,其中由于上面无偏性有提到方差并不等于样本方差2S ,而是221ˆn S nσ-=,矩估计为211()1n i i X X n =--∑。
当矩估计不唯一时,我们可以根据下面的两个基本原则来选择是否用矩估计:a 、涉及到矩的阶数尽量小, 对总体X 的要求也尽量少; 比较常用到的矩估计的阶数一般是一、二阶数;b 、用的估计最好是最小充分统计量的函数,因为在各种统计问题中充分性原则都应是适合的。
矩估计的两个基本特点是1、由于矩估计是基于经验分布函数,而经验分布函数逼近真实分布函数的前提条件是样本容量较大,所以理论上,矩估计是以大样本为应用对象的;2、矩估计没有用到总体分布的任何信息时,本质上是一种非参数方法,对已知的总体分布,它不一定是一个好的估计。
1.3.2 极大似然估计极大似然方法是统计中最重要、应用最广泛的方法之一。
该方法在1821年由德国数学家Gauss 提出的,但并没有得到重视,在1922年R.A.Fisher 再次提出,并探讨研究了它的性质。
它利用总体分布函数的相关信息,克服矩估计的一些不足。
总体X 的分布律或概率密度函数为(;),f x θθ∈Θ是未知参数,其中总体的样本是12,,,n X X X ⋅⋅⋅,则121(;)(;,,,)(;)nn ii L x L x x x f x θθθ==⋅⋅⋅=∏为θ的似然函数。
若统计量12ˆˆˆ()(,,,)nX X X X θθθ==⋅⋅⋅满足条件 ˆ(();)sup (;),L X X L x θθθ∈Θ= ˆˆ()()()()min Y X Y X Y X Y X βββββ''--=--则称ˆ()X θ为θ的极大似然估计。
极大似然法有许多优良的性质:相合性与渐进有效性、渐进正态性等等。
可以计算一些比较复杂的点估计。
尽管如此,极大似然也有它的局限性,比如说:极大似然法一定要知道总体分布形式,并且一般情况下,似然方程组的求解比较复杂,一般需要在计算机上通过跌代运算方能计算出其近似解,且并不是通过求导数都获得极大似然估计值的,以及任何统计推断都应该依赖损失函数,但是极大似然方法没有考虑到损失函数。
§1.4贝叶斯公式设n B B B ...,21是一系列互不相容的事件,且有Ω== ni iB1, ....2,1,0)(n i B P i =>则对任一事件A ,有 )()()()()(1jnj ji i i B A P B P B A P B P A B P ∑==, ....2,1n i =)(i B P 叫先验概率,也叫边缘概率,)(A B P i 叫后验概率(....2,1n i =)。
§1.5 中心极限定理1.5.1林德伯格定理设独立随机变量 n X X X ,,,21满足林德伯格条件,对于任意的正数ε,有∑⎰=-∞→=-ni s x i i nn ni dx x f x S 1220)()(1lim εμμ>。
其中)(x f i 是随机变量i X 的概率密度,则当∞→n 时,我们有dt ez Z P zt n n ⎰∞--∞→=≤2221)(lim π即dt ez s XP zt nni i in ⎰∑∞--=∞→=≤-21221))((lim πμ其中z 是任何实数。
1.5.2棣莫弗-拉普拉斯中心极限定理:设在独立试验序列中,事件A 在各次试验中发生的概率为)10(<<p p ,随机变量n Y 表示事件A 在n 次试验中发生的次数,则有dt e z p np np Y P z tn n ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--2221)1(lim π,其中z 是任何实数。
§1.6随机变量及其分布1.6.1随机变量设随机试验的样本空间为X(e)X {e}.S ==是定义在样本空间S 上的实值单值函数,称X(e)X =为随机变量1.6.2离散性随机变量及其分布律(1) 离散随机变量:有些随机变量,它全部可能取到的值是有限个或可列无限多个,这种随机变量称为离散型随机变量。
k k )(p x X P ==满足如下两个条件(1)0k ≥p ,(2)∑∞=1k k P =1三种重要的离散型随机变量设离散型随机变量的分布律为)1()1(}{K KP P K X P --==,其中K =0、1,P 为k =1时的概率(0<p <1),则称X 服从(0-1)分布 (2)伯努利实验、二项分布设实验E 只有两个可能结果:A 与—A ,则称E 为伯努利实验.设1)p 0p P(A)<<=(,此时p -1)A P(=—.将E 独立重复的进行n 次,则称这一串重复的独立实验为n 重伯努利实验。