函数信号发生器实验报告
- 格式:doc
- 大小:122.00 KB
- 文档页数:9
【精品】电路实验报告函数信号发生器一、实验目的1.理解函数信号发生器的基本原理;2.掌握函数信号发生器的使用方法;二、实验仪器函数信号发生器、万用表、示波器、电阻箱等。
三、实验原理函数信号发生器是一种可以产生各种不同波形的电子仪器,它由信号源、调制放大器、波形出口、控制电路等几个部件组成。
在使用中可以通过调节控制电路中的各个参数来控制信号波形的频率、幅度、相位等参数。
四、实验内容1.使用函数信号发生器产生各种不同波形的信号,并记录下所产生的波形、频率、幅度等参数。
2.利用万用表对所产生的波形进行测量,并记录下相关参数。
3.使用示波器观察所产生的波形,并记录下所观察到的波形形态,判断所产生的波形是否符合要求。
4.使用电阻箱对信号幅度进行调整,调整后再次进行相应的测量、观察和记录。
五、实验步骤1.将函数信号发生器插入电源插座,并开启电源开关。
5.对信号幅度进行调整,如需调整信号幅度,可以使用电阻箱对信号幅度进行调整。
六、实验数据及处理下表列出了实验中所产生的部分波形及其相关参数。
| 波形形态 | 频率 | 幅度 ||----------------|---------|-----------|| 正弦波 | 1KHz | 1Vpp || 正弦波 | 5KHz | 500mVpp|| 方波 | 2KHz | 2Vpp || 三角波 | 1KHz | 1Vpp |七、实验结果分析根据实验数据分析,可以得出以下结论:2.在产生不同波形的信号时,需调节控制电路中的各个参数,如频率、幅度、相位等,才能产生相应的波形。
3.在调试波形时应注意信号幅度,如波形幅度过大或过小,都会影响到实验的结果。
八、实验注意事项1.实验中要注意安全,避免触电、短路等事故的发生。
3.在实验中应认真记录实验数据,为进一步分析和处理提供有力的数据支持。
电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
函数信号发生器实验报告.一、实验目的本实验的主要目的是学习如何使用函数信号发生器和使用示波器观察信号波形,了解不同的信号波形及其特性,并探究不同信号波形在电路中的应用。
二、实验原理函数信号发生器是一种可以产生各种不同频率、不同幅度、不同波形的信号的仪器。
在实验中,我们将使用 Agilent 33220A 函数信号发生器,它可以产生多种基本波形,如正弦波、方波、三角波、锯齿波等。
函数信号发生器具有很高的稳定性和精确性,可根据需要输出不同范围的信号。
示波器是一种常用的检测和观测电路中信号波形的仪器,被广泛应用于电子学、通信、计算机和电力等行业。
在实验中,我们将使用 Tektronix TDS2002C 示波器,它可以显示多通道、多频道、高频率的波形,并提供多种触发方式,可用于观测电路中的信号波形。
三、实验过程1. 准备工作(1)开启函数信号发生器和示波器,并进行必要的预热。
等待信号稳定后,将函数信号发生器和示波器的输出连接线分别连接到实验电路对应的输入端口上。
(2)将实验电路按照实验要求搭建、联接好。
(3)调节示波器的电压、触发和标尺等参数,以方便观测信号波形。
(4)在函数信号发生器上选择需要输出的信号波形,设置频率、幅度等参数,并调节输出电平,以符合实验要求。
2. 实验操作本实验中我们将根据实验要求进行多种不同信号波形的输出和观测,具体实验步骤如下:(1)正弦波信号发生器实验a) 在函数信号发生器上选择正弦波信号波形,并设置频率为 5kHz,幅度为 5V。
b) 将输出信号连接到电路输入端口上,并将示波器调节到 AC 界面,调节触发方式为边沿触发,并设置触发电压符合需要观测的信号波形。
c) 观测信号波形,并记录波形主要特征。
4. 结果分析通过观测示波器中显示的正弦波形,我们可以看出正弦波具有周期性好、连续性强、波形圆润等特点。
因此,正弦波信号被广泛应用于各种电子电路中,如音频放大、翻译、计算机图像显示、调制解调等方面。
信号发⽣器实验报告信号发⽣器F组组长:***组员:***、*** 2013年8⽉12⽇星期⼀1系统⽅案 (4)1.1系统⽅案论证与选择 (4)1.2⽅案描述 (4)2理论分析与计算 (5)3电路与程序设计 (6)3.1电路的设计 (6)3.1.1 ICL8038模块电路 (6)3.1.2 放⼤电路 (6)3.2程序的设计 (7)4测试⽅案与测试结果 (9)4.1测试仪器与结果 (9)4.2调试出现的问题及解决⽅案 (9)5 ⼩结 (10)本系统设计的是信号发⽣器,是以 ICL8038和 STC89C51为核⼼设计的数控及扫频函数信号发⽣器。
ICL8038作为函数信号源结合外围电路产⽣占空⽐和频率可调的正弦波、⽅波、三⾓波;该函数信号发⽣器的频率可调范围1~100kHz,波形稳定,⽆明显失真。
单⽚机控制LCD12864液晶显⽰频率、频段和波形名称。
关键字:信号发⽣器ICL8038、 STC89C51、波形、LCD12864信号发⽣器实验报告1系统⽅案1.1系统⽅案论证与选择⽅案⼀:由单⽚机内部产⽣波形,经DAC0832输出,然后再经过uA741放⼤信号后,最后经过CD4046和CD4518组成的锁相环放⼤频率输出波形,可是输出的波形频率太低,达不到设计要求。
⽅案⼆:采⽤单⽚机对信号发⽣器MAX038芯⽚进⾏程序控制的函数发⽣器,该发⽣器有正弦波、三⾓波和⽅波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。
MAX038为核⼼构成硬件电路能⾃动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯⽚价格太⾼,过于昂贵。
⽅案三:利⽤芯⽚ICL8038产⽣正弦波、⽅波和三⾓波三种波形,根据电阻和电容的不同可以调节波形的频率和占空⽐,产⽣的波形频率⾜够⼤,能达到设计要求,⽽且ICL8038价格⽐较便宜,设计起来成本较低。
综上所述,所以选择第三个⽅案来设计信号发⽣器。
1.2⽅案描述本次设计⽅案是由ICL8038芯⽚和外围电路产⽣三种波形,由公式:,改变电阻和电容的⼤⼩可以改变波形的频率,有开关控制频段和波形并给单⽚机⼀个信号,由单⽚机识别并在LCD液晶屏上显⽰,电路的系统法案框图为下图1所⽰:图1 总系统框图2理论分析与计算如图2,占空⽐和频率调节电路:图2 占空⽐和频率调节电路所有波形的对称性都可以通过调节外部定时电阻来调节。
实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。
2. 学习调节函数信号发生器产生波形及正确设置参数的方法。
3. 学习用示波器观察测量信号波形的电压参数和时间参数。
4. 通过李萨如图形学习用示波器观察两个信号之间的关系。
【实验仪器】1. 示波器DS5042型,1台。
2. 函数信号发生器DG1022型,1台。
3. 电缆线(BNC型插头),2条。
【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。
图1-1 函数信号发生器生成的正、余弦信号的波形(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。
图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形(3)实验指导教师检查并签字。
指导教师签字:3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。
(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。
北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2012211112姓名:卢跃凯班内序号:13学号:2012210344指导教师:廖老师课题名称:函数信号发生器的设计与调试摘要实验电路主要由两部分组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波由运算放大器加稳压管产生,后经积分电路形成三角波,最后通过差分放大电路,利用其传输特性曲线的非线性实现三角波——正弦波的转换。
实验电路的频率,幅度可通过电位器调节,增加两个二极管,可以改变方波占空比,完成提高要求。
关键词方波三角波正弦波幅频可调设计任务要求1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。
1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us;三角波Uopp=8V;3)正弦波Uopp>1V。
b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。
b)要求方波占空比在30%——70%连续可调。
设计思路,总体结构框图1、设计思路:用运算放大器加反馈构成电压比较器来产生方波;方波经积分电路形成三角波;三角波输入到差分放大电路,利用其传输特性曲线的非线性输出正弦波,完成要求。
2、原理框图:3、系统的组成框图:分块电路和总体电路的设计:(1)方波-三角波产生电路:方波输出幅度由稳压管的稳压值决定,限制在±(UZ+UD)之间。
考虑到基本要求中的,方波的峰峰值为12V,故选用稳压值为6V的稳压管2DW232。
方波经积分得到三角波,幅度为,幅值由R1和Rf的比值及稳压管的稳压值决定,因为基本要求中三角波的峰峰值为8V,因此,R1与Rf的比值为2:3。
在实际电路中,我采用的R1为20kΩ,Rf为30kΩ。
北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。
随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。
本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。
本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。
关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
函数信号发生器及常用电信号的观察与测量实验报告09光信2班1、实验目的1)掌握常见点新高的观察与测量方法。
2)了解单片集成函数信号发生器的功能特点。
3)熟悉信号与系统试验箱信号的产生方法。
1、实验仪器1)信号与系统实验箱一台。
2) 20MHz双踪示波器一台。
3、实验原理ICL8038是单片机集成函数信号发生器,其内部框图如图1」所示。
它由恒流源人和厶、电压比较器A和B、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容-V EE图1.1 ICL8038原理方框图外接屯容C由两个恒流源充电和放电,电压比较器A、B的阀值分别为电源电压(指人的2/3和1/3。
恒流源人和厶的人小可通过外接屯阻调节,但必须/2 >/,o当触发器的输出为低电平时,恒流源厶断开,恒流源人给C 充电,它的两端电压UC随时间线性上升,当UC达到电源电压的2/3时,电压比较器A的输出电压发生跳变,使触发器输岀由低电平变为高电平,恒流源C接通, 由于/2 > /.(设人=2人),恒流源厶将电流2人加到C上反充电,相当于C由一个净电流I 放电,C两端的电压UC 乂转为直线下降。
当它下降到电源电圧的1/3 时,电压比较器B的输出电压发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源人断开,人再给C充电,…如此周而复始,产生振荡。
若调整电路,使/2 = 2/,,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。
C 上的电压"c上升与下降时间相等时为三角波,经屯压跟随器从管脚③输出三角波信号。
将三角波变成正弦波是经过一个非线性的变换网络(正弦波变换器)而得以实现,在这个非线性网络屮,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从管脚②输出。
TCL8038管脚功能如图1. 2所示。
图1. 2 1CL8038管脚图电源电压为单屯源10〜30U或双电源土5U〜土实验电路如图1.3所示。
函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。
本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。
一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。
二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。
常见的信号形式包括正弦波、方波、三角波等。
三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。
2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。
3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。
4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。
四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。
通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。
在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。
观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。
五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。
我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。
在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。
此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。
通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。
北京邮电大学电子电路综合设计实验实验报告实验题目:函数信号发生器院系:信息与通信工程学院班级:姓名:学号:班内序号:一、课题名称:函数信号发生器的设计二、摘要:方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。
该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。
关键词:方波三角波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。
1)输出频率能在1-10KHZ范围内连续可调;2)方波输出电压Uopp=12V(误差<20%),上升、下降沿小于10us;3)三角波输出信号电压Uopp=8V(误差<20%);4)正弦波信号输出电压Uopp≥1V,无明显失真。
2.提高要求:1)正弦波、三角波和方波的输出信号的峰峰值Uopp均在1~10V范围内连续可调;2)将输出方波改为占空比可调的矩形波,占空比可调范围30%--70%四、设计思路1. 结构框图实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
2.系统的组成框图五、分块电路与总体电路的设计1.方波—三角波产生电路如图所示为方波—三角波产生电路,由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
北京邮电大学电子电路综合设计实验实验报告实验名称:函数信号发生器的设计与调测The Design and Debugging of Function Signal Generator摘要:方波与三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。
方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成;三角波主要由积分电路产生。
两个电位器中一个调整方波频率,一个改变方波的占空比;三角波转换为正弦波,则是通过差分电路实现。
该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波;而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。
关键词:函数信号发生器,方波,三角波,正弦波设计任务要求:基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。
1)输出频率能在1-10KHz范围内连续可调,无明显失真;=12V,上升、下降沿小于10µs,占空比可调范2)方波输出电压Uopp围30%-70%;3)三角波U=8V;OPP≥1V。
4)正弦波Uoppb)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)提高要求:a)三种输出波形的峰峰值U均可在1V-10V范围内连续可调。
oppb)三种输出波形的输出阻抗小于100Ω。
c)用PROTEL软件绘制完整的印制电路板图(PCB)。
探究环节:a)能否提供使所设计函数信号发生器显示出当前输出信号的种类、大小和频率的实验演示或详细设计方案;(提示:三种波形从同一个端口输出,再用发光管之类的东西指示当前输出波形)b)能否提供其他函数信号发生器的设计方案?如果能提供,请通过仿真或实验结果加以证明。
设计思路:1、原理框图:实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
2、系统的组成框图分块电路与总体电路的设计:1、方波-三角波产生电路上图所示为方波-三角波基本产生电路。
由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。
该电路振荡频率和幅度便于调节,输出方波幅度的大小由稳压管的稳压值决定,即限制在±(UZ + UD)之间。
方波经积分得到三角波,幅度为Uo2m =±R1/Rf*(Uz + UD)改变R1与Rf的比值可调节Uo2m的大小方波和三角波的振荡频率相同,为f = 1/T =αRf/4R1R2C式中α为电位器的滑动比(即滑动头对地电阻与电位器总电阻之比)。
调节电位器可改变振荡频率。
电路元件的确定:(1)、根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率SR合适的运放。
(2)、根据所需输出方波幅度的要求,选择稳压值合适的稳压管型号和限流电阻Ro的大小。
(3)、根据输出三角波的幅度要求,确定R1与Rf的大小R1 = UO2M/(Uz + UD)Rf(4)、根据所要求的振荡频率确定R :C的值R2C = αRf/4fR1其原理如下图,由波形得:方波输出幅度由稳压管的稳压值决定,被限制在±(Uz+Ud 之间。
基本要求中方波的峰峰值为12V ,故选用稳压值为6V 的稳压管。
方波经积分得到三角波,幅度为Uo2= ±R1/R2(Uz+Ud ),由R1和Rf 的比值及稳压管的稳压值决定,基本要求中三角波的峰峰值为8V ,R1和Rf 的比值为2:3,鉴于增大谐振的可能,选择R1为20k ,Rf 为30k 。
R3为平衡电阻,根据电子电路的课本可计算出大概值为6.2k 。
根据所需振荡频率的高低和对方波前后都读的要求,选择电压转换速率SR 合适的运放。
在产生方波的时候选用转换速率较快的运放LM318,产生三角波的时候选择运放UA741.根据计算可设定R2=2k ,C=0.01uf 。
R4为直流平衡电阻,其作用是减小后消除静态时可能在运放输出端产生的附加差模输入电压,应与R2的电阻值一样,为2k 。
根据所需要输出方波的幅度选择合适的稳压管和限流电阻R0的大小。
选择限流电阻大小为680。
为了使电位器的a 的变化范围较大,信号的频率范围可达到要求,1-10k 范围可调,电位器Rw 选择为10k 范围可调。
2、三角波-正弦波产生电路实验采用差分放大电路,利用差分放大器传输特性曲线的非线性,以实现三角波转换为正弦波。
差动放大器具有很高的共模抑制比,被广泛地应用于集成电路中,常作为输入级或中间放大级;其特性使得可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:022/1id T C E U U aI I aI e==+ 式中 /1C E a I I =≈0I ——差分放大器的恒定电流; T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。
如果Uid 为三角波,设表达式为式中 Um ——三角波的幅度;T ——三角波的周期。
1)差动放大器设计:(1)确定静态工作点电流Ic1、Ic2和Ic3。
静态时,差动放大器不加入输入信号,对于电流镜Re3=Re4=ReIr=Ic4+Ib3+Ib4=Ic4+2Ib4= Ic4+2 Ic4/β≈Ic4= Ic3而Ir= Ic4= Ic3=(Ucc+Uee-Ube)/(R+Re4)上式表明恒定电流Ic3主要由电源电压Ucc、Uee和电阻R、Re4决定,与晶体管的参数无关。
由于差动放大器得静态工作点主要由恒流源决定,故一般先设定Ic3。
Ic3取值越小,恒流源越恒定,漂移越小,放大器的输入阻抗越高。
在实验中,取Ic3为1mA。
有Ic1= Ic3=1/2 Ic3=0.5mA。
由R+Re=(Ucc+Uee-Ube)/Ir,其中Ucc为12V,Uee也为12v,Ube的典型值为0.7V(在本次取值中可以忽略),Ir为1mA,故取R=20KΩ,Re4=2KΩ。
为使两管输入保持对称性,取Re3= Re4=2KΩ。
(2)差模特性差动放大器的输入和输出各含有单端和双端输入两种方式,因此,差动放大器的输入输出共有四种不同的连接方式。
不同的连接方式,电路的特性不同。
Rp的取值不能太大,否则反馈太强,实验中取100Ω的电位器,用来调整差动放大器的对称性。
如图所示为差分放大器传输特性曲线由上图可知:(1)、差分放大器传输特性曲线越对称,线性区越窄越好;(2)、三角波的幅度应正好使晶体管接近截止区。
图中RP1调节三角波的幅度,RP2调整电路的对称性,并联电阻RE用来减小差分放大器传输特性曲线的线性区。
电容C1,C2,C4为隔直流电容,C3为滤波电容,以滤除谐波分量,改善输出正弦波的波形。
在实验过程中,Re与电位器Rp2并联,取阻值为100Ω。
电解电容C1、C2、C4为隔直流电容,为达到良好的隔直流、通交流的目的,其容值应该取的相对较大,取C1=1uF,C2=3.3uF,C3=0.1uF。
Rp1调节三角波的幅度,为满足实验要求,其可调范围应该比较大,故取Rp1=20kΩ。
Rb1与Rb2为平衡电阻,取值为Rb1= Rb2=3.2KΩ。
流进T1,T2集电极电流为0.5mA,为满足其正弦波的幅度大于1V,取Rc1= Rc2=5.6kΩ,使得电流流经Rc2的电压降不至于很大。
C4为滤波电容,取C4=0.01uF。
至此,电路的设计基本完成。
3、总体电路由以上实验图可知,可利用实验产生的三角波输入以生成正弦波,从而实现三个波形的输出。
将以上两个电路图连接起来得到如下图实验电路图。
根据实验要求可知,所得方波占空比可调,因此在原有电路基础上,添加二极管和电位器,使得占空比可调得以实现。
实现功能说明:1、安装电路:按照电路仿真结果选择出参数合适的元器件,其中需要注意的是,两个稳压需要用一个三脚稳压管代替,所以要用模拟万用表区分管脚。
将面包板最上面一排连接成正电源,最下面两排座位负电源和接地线。
合理地把起见排布在电路板上。
2、接通电源和示波器的接入先用万用表调出电压大小均为+12V的两路电压,一路正向接近电路,一路反向作为-12V接入电路。
选择双踪示波器的两路分别接入U01和U02,调整好电压后按照地线,负电源,正电源的顺序接入电路。
3、电路的初步调试:调整好示波器的触发电平和时间电压分度,根据示波器的显示调节电路中的电位器。
最多采用的方法就是先检查运放是否功能完好(用实验室仪器测量得到),然后用万用表测试稳压二极管是否完好,接着测试电源是否接入电路,以及接地是否成功。
最后用数字万用表测量电路中各个点之间的电压值,一旦发现异常就在异常点附近仔细检查。
出现波形后,需要调节不同的电位器来调整波形的频率,幅度以及占空比。
整个电路可以分为两部分,先调节第一部分,此时断开与第二部分正弦波发生器的联系,然后再用函数信号发生器产生合适的三角波来代替方波三角波发生电路来测试第二部分,这样可以先排除两个电路之间的相互影响,最后两部分都成功后再接在一起进行测试。
4、差动放大器静态的调整和测量:4.1、先调节Rp使电路对称将电路的两个输入端接地,将万用表直流电压档接在差动的两个输出端,调节电位器使万用表指示为0。
并且逐渐减小量程,更为精确地保证差动的对称。
把万用表替换成双踪示波器,一路接在一个输出和地之间,另一路接在地和另一输出之间(相当于反向)。
再使两路信号叠加(按下ADD),观测两个输出端C和D之间电压差,调节电位器使之为0。
适当调节恒流源的偏置电压,使电路更完美。
4.2、测试并记录数据(每次测量结果之间都会存在一些误差,但均在要求范围内变化)方波输出电压:12V占空比10%—90%三角波输出电压:8.1V正弦波输出电压:1.8V故障及问题分析对于方波-三角波产生电路,遇到的第一个问题是波形无法显示。
检测后发现电路搭接混乱可能是断路导致无信号输出,重新布线搭接后发现电路中电流几乎为零,原因是电阻过大,电容有些小,使得电路无法有效起振。
因此在保证电路安全基础上减小电阻值同时保证电阻间的比值,换用较大的电容,在示波器上检查波形,得出方波波形。
然后观测三角波波形,发现有些失真,可知是由于电容造成的,更换变容,将其增大得到理想波形。