人教版八年级数学上册课课练 期末复习基础巩固练一
- 格式:docx
- 大小:193.59 KB
- 文档页数:10
人教版八年级上册期末复习巩固练习题一.选择题1.下列说法:(1)一个等边三角形一定不是钝角三角形;(2)一个钝角三角形一定不是等腰三角形;(3)一个等腰三角形一定不是锐角三角形;(4)一个直角三角形一定不是等腰三角形.其中正确的有()个.A.1 B.2 C.3 D.42.某种秋冬流感病毒的直径约为0.000000203米,该直径用科学记数法表示为()米.A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣6 3.下列式子中正确的是()A.a2﹣a3=a5B.(﹣a)﹣1=a C.(﹣3a)2=3a2D.a3+2a3=3a34.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,A.①②B.①③④C.①②③④D.①③5.如图,在锐角三角形ABC中AB=2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N 分别是AD和AB上的动点,则BM+MN的最小值是()A.1 B.C.2 D.6.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA7.为抗击新型冠状肺炎,加强防疫措施,某口罩生产公司复工后每天的生产效率比原来提高了60%,结果提前15天完成了原计划200万只口罩的生产任务.设原计划x天完成任务,则下列方程正确的是()A.=15 B.=15C.D.8.下列各式中,能用平方差公式分解因式的是()A.﹣x2+2xy﹣y2B.(﹣y)2﹣(x+y)2C.(﹣y)2+(x﹣y)2D.﹣(y﹣2)2﹣(x+y)29.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70°B.80°C.90°D.100°10.如图,在△ABC中,AB=AC,∠A=90°,BD是△ABC的角平分线,DE⊥BC,垂足为点E,若CD=,则BC的长是()A.B.2C.+2 D.2+111.若关于x的分式方程﹣=3的解为正整数,且关于y的不等式组至多有六个整数解,则符合条件的所有整数m的取值之和为()A.1 B.0 C.5 D.612.如图:一把直尺压住射线OB,另一把完全一样的直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确二.填空题13.分式的值比分式的值大3,则x的值为.14.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.15.如图,等腰△ABC,CA=CB,△A′BC′≌△ABC,∠A′=75°,∠A′BA=β,则∠ACC′的度数为.(用含β的式子表示)16.一个凸多边形有五条对角线,则这个凸多边形的内角和为°.17.如图,△ABC和△A'B'C'关于直线MN对称,并且AB=6,BC=3,则A'C'的取值范围是.18.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工个包裹.三.解答题19.(1)计算:(x﹣y)2+y(2x﹣y)(2)化简:(1+)÷20.如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.21. A,B两地相距1200米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距240米.22.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N 为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q 为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.23.平价大药房准备购进KN95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN95口罩的数量的5倍.KN95口罩一次性医用口罩进价(元/个)m+1 0.2m售价(元/个)15 2.5(1)求m的值;(2)要使购进的KN95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案?24.先阅读材料:已知不论 x 取什么值,等式a (x ﹣2)﹣2x +5=1都成立,求a 的值.解:因为不论x 取什么值,等式a (x ﹣2)﹣2x +5=1都成立,所以不妨取x =0, 得 a (0﹣2)﹣2×0+5=1.所以a =2. 根据上述提供的方法,解决下列问题:(1)已知不论x 取什么值,等式(2x ﹣1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0都成立.求a 0+a 1+a 2+a 3+a 4+a 5的值:(2)已知不论x 取什么值(1、﹣2除外),等式=都成立,求A 、B 的值.25.如图,△ABC 为等腰直角三角形,∠ACB =90°,BE ∥AC ,且AC =4BE ,AD 为中线. (1)求证:AD ⊥DE ; (2)求证:AD 平分∠CAE .四.解答题26.如图,在直角坐标系xOy 中,直线AB 交x 轴于A (2,0),交y 轴负半轴于B (0,﹣10),C 为x 轴正半轴上一点,且OC =5OA .(1)求△ABC 的面积;(2)延长BA 到P (自己补全图形),使得PA =AB ,过点P 作PM ⊥OC 于M ,求P 点的坐标;(3)如图,D 是第三象限内一动点,直线BE ⊥CD 于E ,OF ⊥OD 交BE 延长线于F .当D点运动时,的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.参考答案一.选择题1.解:(1)一个等边三角形一定不是钝角三角形,原命题是真命题;(2)一个钝角三角形不一定不是等腰三角形,原命题是假命题;(3)一个等腰三角形不一定不是锐角三角形,原命题是假命题;(4)一个直角三角形不一定不是等腰三角形,原命题是假命题;故选:A.2.解:0.000000203=2.03×10﹣7.故选:B.3.解:a2和a3不是同类项,不能合并,因此选项A不正确;,因此选项B不正确;(﹣3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.4.解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠FAC,正确的是①③④,故选:B.5.解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,AE=AN,∠EAM=∠NAM,AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵AB=2,∠BAC=45°,此时△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.故选:B.6.解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.7.解:设原计划x天完成任务,依题意有×(1+60%)=.故选:D.8.解:﹣x2+2xy﹣y2=﹣(x﹣y)2,A不能用平方差公式分解因式,不符合题意;(﹣y)2﹣(x+y)2=y2﹣(x+y)2=(y+x+y)(y﹣x﹣y)=﹣x(2y+x),故B符合题意;(﹣y)2+(x﹣y)2=y2+(x﹣y)2,C不能用平方差公式分解因式,不符合题意;﹣(y﹣2)2﹣(x+y)2=﹣[(y﹣2)2+(x+y)2],D不能用平方差公式分解因式,不符合题意.故选:B.9.解:∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.10.解:∵AB=AC,∠A=90°,∴∠C=∠ABC=45°,在Rt△DEC中,∠C=45°,∴DE=CD=1,∵BD是△ABC的角平分线,DE⊥BC,∠A=90°,∴AD=DE=1,∴AC=CD+AD=+1,在Rt△ABC中,∠C=45°,∴BC=AC=2+,故选:C.11.解:化简不等式组为,解得:﹣2<y≤,∵不等式组至多有六个整数解,∴<5,∴m<5,将分式方程的两边同时乘以x﹣2,得x+m﹣1=3(x﹣2),解得:x=,∵分式方程的解为正整数,∴m+5是2的倍数,∵m<5,∴m=﹣3或m=﹣1或m=1或m=3,∵x≠2,∴≠2,∴m≠﹣1,∴m=﹣3或m=1或m=3,∴符合条件的所有整数m的取值之和为1,故选:A.12.解:如图所示:过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:B.二.填空13.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.14.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.15.解:∵△A ′BC ′≌△ABC ,∴∠A =∠A ′=75°,BC ′=BC ,∠A ′BC ′=∠ABC ,∴∠C ′BC =∠A ′BA =β,∵BC ′=BC ,∴∠BCC ′=,∵CA =CB ,∴∠ACB =180°﹣75°×2=30°,∴∠ACC ′=∠BCC ′﹣∠ACB =60°﹣β,故答案为:60°﹣β.16.解:设多边形有n 条边, 则, 解得n 1=5,n 2=﹣2(舍去),故这个多边形的边数为5,所以这个凸多边形的内角和为:(5﹣2)×180°=540°.故答案为:540.17.解:∵△ABC 和△A ′B ′C ′关于MN 对称,∴得出△ABC ≌△A ′B ′C ′,∴AC =A ′C ′,∵AB ﹣BC <AC <AB +BC ,∴6﹣3<AC <6+3∴A ′C ′的取值范围是:3<A ′C ′<9.故答案为:3<A ′C ′<9.18.解:设工人每小时加工y 个包裹,则改造前机器人每小时加工2y 个包裹,改造后机器人每小时加工(2y +x )个包裹,依题意,得:12(x +2)(2y +x )=6×8xy ,∴x 2+4y ﹣2xy +2x =0,∴y ===+=+=+3+,∵x是大于5的整数,y是整数,∴x=6,y=6,∴该仓库平时一天加工6×6×8+6×12×8=864(个),故答案为864.三.解答19.解:(1)原式=x2﹣2xy+y2+2xy﹣y2=x2;(2)原式=•=.20.证明:(1)∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,又∵DE=CE,∴△ADE≌△FCE(AAS),∴AE=EF;(2)∵AE=EF,BE⊥AF,∴AB=BF,∵△ADE≌△FCE,∴AD=CF,∴AB=BC+CF=BC+AD,∴BC=AB﹣AD.21.解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=40,经检验,x=40是原分式方程的解,且符合题意.答:甲每分钟走40米.(2)设两人出发y分钟后恰好相距240米,根据题意得:|1200﹣40y﹣80y|=240,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距240米.22.解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.(答案不唯一).23.解:(1)由题意得:=×5,解得:m=9,经检验,m=3是原方程的解,且符合题意,∴m=9;(2)∵m=9,∴m+1=10,0.2m=1.8,设购进的KN95口罩为x个,一次性医用口罩为(1000﹣x)个,由题意得:1560≤(15﹣10)x+(2.5﹣1.8)×(1000﹣x)≤1603,解得:200≤x≤210,即x的取值有11个,∴药店共有11种进货方案.24.解:(1)因为不论x取什么值,等式(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a都成立.所以不妨取x=1,代入原式得:(2×1﹣1)5=a5+a4+a3+a2+a1+a,∴a0+a1+a2+a3+a4+a5=1;(2)不妨取x=0和2,分别代入原式得:,解得:.25.证明:(1)过点E作EF⊥AC交AC于点F,如图1所示:设BE=m,则AC=BC=4m,∵BE∥AC,∴∠ACB=∠EBC,又∵∠ACB=90°,∴∠EBC=90°,又∵EF⊥AC,∴∠EFC=90°,∴四边形CBEF是矩形,∴BE=CF=m,BC=EF=4m,在Rt△AEF中,由勾股定理得:=,又∵AD为中线,∴CD=BD=2m,在Rt△ACD中,由勾股定理得:=,同理可得:DE=,又∵AE2=25m2,AD2=20m2,DE2=5m2,∴AE2=AD2+DE2,∴∠ADE=90°,∴AD⊥DE;(2)过点D作DH⊥AE交AE于点H,如图2所示:∵,∴=,又∵CD=2m,∴CD=DH,在△ACD和△AHD中,,∴△ACD≌△AHD(SAS),∴∠CAD=∠HAD,∴AD平分∠CAE.四.解答26.解:(1)∵OC=5AO,AO=2,∴OC=10,∴AC=OC﹣OA=8,=AC•OB=×8×10=40;∴S△ABC(2)作出图形,在△PAM和△BAO中,,∴△PAM≌△BAO(AAS),∴PM=OB=10,AM=OA=2,∴点P坐标为(4,10);(3)如图,∵∠OCD+∠OGE=90°,∠OFE+∠OBF=90°,∴∠OCD=∠OBF,∵∠FOG+∠DOG=90°,∠DOG+∠BOD=90°,∴∠BOD=∠FOG,∵∠BOC=∠BOG=90°,∴∠BOD+90°=∠FOG+90°,即∠COD=∠BOF,在△CDO和△BFO中,,∴△CDO≌△BFO(ASA),∴DO=FO,∴=1.。
班级: 姓名: 期末复习基础巩固练(一)一、选择题(每小题只有一个正确选项)1.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是( )2.有两根长分别为6 cm,11 cm的木棒,要想以这两根木棒为其中两边做一个三角形,可以选用第三根木棒的长为( )A.3 cmB.16 cmC.20 cmD.24 cm3.下列四个图形中,线段BE是△ABC的高的是( )4.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC 于点E.若∠A =54°,∠B=48° ,则∠CDE的大小为( )A.44°B.40°C.39°D.38°(第4题图)5.如图,点D在△ABC边AB的延长线上,DE//BC.若∠A=35°,∠C=24°,则∠D 的度数是( ) .A.24°B.59°C.60°D.69(第5题图)6.有下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的周长、面积分别相等;④面积相等的两个三角形全等其中正确的说法为( )A.①③④B.②③④C.①②③D.①②③④7.如图, 一张等边三角形纸片,剪去一个角后得到一个四边形,则图中∠a+∠β的度数是( )A.180°B.220°C.240°D.300°(第7题圈)8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD= 20° ,则∠ACE的度数是( )A.20°B.35°C.40°D.70°(第8题图)9.如图, △A0B∠△ADC,点B和点C是对应顶点,∠0=∠D =90° ,记∠OAD=a,∠AB0=β,当BC//0A时,a与β之间的数量关系是( )A.a=βB. a=2βC.a +β = 90°D.a+2β=180°(第9题图)10.如图,在OABC中,∠BAC=115° ,DE,FG分别为AB,AC的垂直平分线,则∠EAG的度数为( )A.50°B.40°C.30°D.25°(第10题图)二、填空题11.已知点A(a+b,2),点B( -b,a-b)关于y轴对称,则6a= .12.如图,若正五边形和正六边形有一边重合,则∠BAC=(第12题圈)13.如图, △ABC的三条角平分线交于点D,AB=4,BC=6,AC=8,则S△ABD:S△BCD:S△ACD=(第13题图)14.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为P,若∠BAC=84°,则∠BDC = 。
2023-2024学年人教版八年级数学上册期末阶段综合复习训练题一、选择题(每小题2分,共12分)1.下列图形中,轴对称图形的个数为()A.1个B.2个C.3个D.4个2.已知一粒米的重量约0.000021千克,将数据0.000021用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.若一个长方体的长、宽、高分别为2x,x,3x﹣4,则长方体的体积为()A.3x3﹣4x2B.6x2﹣8x C.6x3﹣8x2D.6x3﹣8x4.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得P A=16m,PB=12m,那么AB间的距离不可能是()A.5m B.15m C.20m D.28m5.如图,△ABC中,点D、E分别是BC、AD的中点且△ABC的面积为8,则阴影部分的面积是()A.2B.3C.4D.56.如果关于x的分式方程的解是负数,那么实数m的取值范围是()A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m<﹣1且m≠﹣2二、填空题(每小题3分,共24分)7.计算:(a2b)3=.8.使代数式(x﹣4)﹣1有意义的x的取值范围是.9.已知a+b=4,ab=2,则a2b+ab2的值为.10.已知点A(a,b)关于x轴对称点的坐标是(a,﹣12),关于y轴对称点的坐标是(5,b),则A点的坐标是.11.如图,若∠A=70°,∠ABD=120°,则∠ACE=.12.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.13.如图,有一块长方形区域,AD=2AB,现在其中修建两条长方形小路,每条小路的宽度均为1米,设AB 边的长为x米,则图中空白区域的面积为.14.某市处理污水,需要铺设一条长为1000M的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm,则可得方程.三、解答题(每小题5分,共20分)15.因式分解:x2(x﹣2)+(2﹣x).16.化简17.解方程:.18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.四、解答题(每小题7分,共28分)19.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3cm,求BC的长.20.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形.在下面每个网格中画出一种符合要求的图形(画出三种即可).21.先化简,后求值:,其中.22.如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.五、解答题(每小题8分,共16分)23.如图,AD为△ABC的中线,BE为三角形ABD中线.(1)在△BED中作BD边上的高EF;(2)若△ABC的面积为40,BD=5,求EF的长.24.某公司购买了一批A、B两种型号的产品,其中A型产品的单价比B型产品的单价多6元,已知该公司用1400元购买A型产品的件数与用1160元购买B型产品的件数相等.(1)求该公司购买的A、B两种型号产品的单价各是多少元?(2)若两种型号的产品共购买了100件,且购买的总费用为3260元,求购买了多少件A型产品?六、解答题(每小题10分,共20分)25.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:方法2:(2)从中你能发现什么结论?请用等式表示出来:(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=7,求阴影部分的面积.26.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).参考答案一、选择题(每小题2分,共12分)1.解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形;第五个图形不是轴对称图形;故选:B.2.解:0.000021=2.1×10﹣5,故选:C.3.解:由题意知,V长方体=(3x﹣4)•2x•x=6x3﹣8x2.故选:C.4.解:∵P A、PB、AB能构成三角形,∴P A﹣PB<AB<P A+PB,即4m<AB<28m.故选:D.5.解:∵D、E分别是BC,AD的中点,∴S△AEC S△ACD,S△ACD S△ABC,∴S△AEC S△ABC8=2.故选:A.6.解:将分式方程两边同乘(x+1),去分母可得:2x﹣m=x+1,移项,合并同类项得:x=m+1,∵原分式方程的解是负数,∴m+1<0,且m+1+1≠0,解得:m<﹣1且m≠﹣2,故选:D.二、填空题(每小题3分,共24分)7.解:(a2b)3=(a2)3b3=a6b3.故答案为:a6b3.8.解:代数式(x﹣4)﹣1有意义的x的取值范围是:x﹣4≠0,解得:x≠4.故答案为:x≠4.9.解:∵a+b=4,ab=2,∴a2b+ab2=ab(a+b)=4×2=8.故答案为:8.10.解:∵已知点A(a,b)关于x轴对称点的坐标是(a,﹣12),∴b=12,∵关于y轴对称点的坐标是(5,b),∴a=﹣5,∴则A点的坐标是(﹣5,12).故答案为:(﹣5,12).11.解:∵∠ABD=120°,∴∠ABC=180°﹣∠ABD=180°﹣120°=60°,∴∠ACE=∠ABC+∠A=60°+70°=130°.故答案为:130°.12.解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34.13.解:AD=2AB,设AB边的长为x米,则AD=2x米,空白区域的面积为:(x﹣1)(2x﹣1)=2x2﹣3x+1,故答案为:2x2﹣3x+1,14.解:原计划用的时间为:,实际用的时间为:.所列方程为:.三、解答题(每小题5分,共20分)15.解:x2(x﹣2)+(2﹣x)=x2(x﹣2)﹣(x﹣2)=(x﹣2)(x2﹣1)=(x﹣2)(x+1)(x﹣1).16.解:原式=2x﹣y﹣4.17.解:去分母得:3﹣x+2=x﹣1,解得:x=3,检验:把x=3代入得:x﹣1≠0,∴分式方程的解为x=3.18.解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.四、解答题(每小题7分,共28分)19.解:∵AB=AC,∴∠B=∠C.∵∠BAC=120°,∠BAC+∠B+∠C=180°,∴∠B=∠C=30°.∵AD⊥AC,∴∠DAC=90°.∴DC=2AD,∠BAD=∠BAC﹣∠DAC=30°.∴∠BAD=∠B.∴BD=AD=3cm.∴BC=BD+DC=3BD=9cm.20.解:如图所示..21.解:原式•(a﹣3)•(a﹣3)=1;当a时,原式=﹣4.22.证明:∵BF=EC∴BC=EF∵AB⊥BE,DE⊥BE∴∠B=∠E=90°在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)∴AB=DE五、解答题(每小题8分,共16分)23.解;(1)如图所示:(2)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△ABD S△ABC,S△BDE S△ABD,∴S△BDE S△ABC,∵△ABC的面积为40,BD=5,∴5×EF=10,∴EF=4.24.解:(1)设该公司购买的B型产品的单价是x元/件,则A型产品的单价是(x+6)元/件,依题意,得:,解得:x=29,经检验,x=29是原方程的解,且符合题意,∴x+6=35.答:该公司购买的A型产品的单价是35元/件,B型产品的单价是29元/件.(2)设购买了m件A型产品,则购买了(100﹣m)件B型产品,依题意,得:35m+29(100﹣m)=3260,解得:m=60.答:购买了60件A型产品.六、解答题(每小题10分,共20分)25.解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2﹣2ab故答案为:a2+b2,(a+b)2﹣2ab(2)a2+b2=(a+b)2﹣2ab故答案为:a2+b2=(a+b)2﹣2ab(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE﹣S△ABD﹣S△BGF=a2+b2a2(a+b)b∴阴影部分的面积a2b2ab[(a+b)2﹣2ab]ab=1426.解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵∠ACD=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)①当∠B=34°时,∵∠ACD=∠B,∴∠ACD=34°,由(1)知,∠BCD+∠B=90°,∴∠BCD=56°,由折叠知,∠A'CD=∠ACD=34°,∴∠A'CB=∠BCD﹣∠A'CD=56°﹣34°=22°;②当∠B=n°时,当n≤45时,同①的方法得,∠A'CD=n°,∠BCD=90°﹣n°,∴∠A'CB=∠BCD﹣∠A'CD=90°﹣n°﹣n°=90°﹣2n°;当n>45时,同①的方法得,∠A'CD=n°,∠BCD=90°﹣n°,∴∠A'CB=∠A'CD﹣∠BCD=n°﹣(90°﹣n°)=2n°﹣90°.。
2022-2023学年人教版八年级数学期末复习基础题训练一、单选题1.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm3.如图,直线m n ∥,1100∠=︒,230∠=︒,则3∠=( )A .70︒B .110︒C .130︒D .150︒4.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,这两个三角形完全一样的依据是( )A .SASB .ASAC .AASD .SSS6.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90B .120C .135D .1807.如图,在△ABD 中,AD =AB ,△DAB =90°,在△ACE 中,AC =AE ,△EAC =90°,CD ,BE 相交于A .4个B .3个C .2个D .1个8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .79.如图,将一个长方形纸条折成如图的形状,若已知△1=110°,则△2为( )A .105°B .110°C .55°D .130°10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD BE ∥,150∠=︒,则2∠的度数是( )A .40︒B .80︒C .90︒D .100︒11.下列运算正确的是( )A .23a a a +=B .()3322a a =C .32a a a ÷=D .23·a a a12.如图所示,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b -=- 13.若多项式21x ax --可分解为()()2x x b -+,则a b +的值为( )A .—2B .—1C .1D .214.化简22222a b a ab b --+的结果是:( ) A .2a b ab- B .a b a b +- C .a b a b -+ D .2a b ab+ 15.把分式+x x y 中的x ,y 都扩大2倍,则分式的值( ) A .扩大2倍 B .扩大4倍 C .缩小一半 D .不变16.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶12千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .304012x x =+B .304012x x =+C .304012x x =-D .304012x x =- 二、填空题17.等腰三角形一边长为5,另一边长为7,则周长为__________.18.如图,△ABC 中,△A =40°,△B =72°,CE 平分△ACB ,CD △AB 于D ,DF △CE ,则△CDF =_________度.19.如图是两个全等的三角形,图中字母表示三角形的边长,则1∠的度数为 __.20.如图,四边形ABCD ,连接BD ,AB △AD ,CE △BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.21.等腰三角形有一个内角为50︒,那么它的顶角的度数为 _____.22.如图,在ABC ∆中,,AB AC 的垂直平分线分别交BC 于点E 、F . 若130BAC ∠=︒则EAF ∠=___________.23.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为_____.24.分解因式:x 2﹣5x ﹣6=_____.25.若分式242a a -+的值为0,则a 的值为______. 26.若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 三、解答题27.一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数.28.解下列方程: (1)122x x =-; (2)127133x x x--=--29.先化简,再求值:2()(2)(2)x y y x y x --+-,其中=1x -,8y =.30.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(1)若△ABC =30°,△ACB =60°,求△DAE 的度数;(2)写出△DAE 与△C ﹣△B 的数量关系 ,并证明你的结论.31.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接,BE BE 平分,ABC AC ∠平分BCF ∠,求A ∠的度数.32.如图,在ABC 中,AB AC =,36A ∠=︒,CD 平分ACB ∠,交AB 于点D ,E 为AC 中点.(1)求证:ACD是等腰三角形;(2)求EDC的度数.参考答案1.B解:设多边形的边数为n .根据题意得:(n −2)×180°=360°,解得:n =4.故选:B .2.C设第三边的长为x ,△ 角形的两边长分别为5cm 和8cm ,△3cm <x <13cm,故选C .3.C设△1的同位角为为△4,△2的对顶角为△5,如图,△m n ∥,△1=100°,△△1=△4=100°,△△2=30°,△2与△5互为对顶角,△△5=△2=30°,△△3=△4+△5=100°+30°=130°,故选:C .4.A以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km , 故选:A .5.B解:由题意得,有两角以及两角的夹边是已知, 因此可以利用ASA 画出一个全等的三角形, 故选:B .6.D解:如图所示:△图中是三个全等三角形,△48,67∠=∠∠=∠,又△三角形ABC 的外角和123456360︒=∠+∠+∠+∠+∠+∠=, 又578180︒∠+∠+∠=,即564180∠+∠+∠=︒, △123360180018︒︒∠+∠+=∠=-︒,故选:D .7.B△90DAB EAC ∠=∠=︒△DAB BAC EAC BAC ∠+∠=∠+∠△在DAC △和BAE 中===AD AB DAC BAE AE AC ∠∠⎧⎪⎨⎪⎩△DAC BAE ≅△DC BE =,①正确ADF ABE ∠=∠△AB ,AE 不确定相等△ABE ∠和AEB ∠不确定相等 △ABD △和ACE △是等腰直角三角形 △45ADB AEC ∠=∠=︒△45BDC ADC ∠=︒-∠,45BEC AEB ∠=︒-∠ △BDC ∠和BEC ∠不确定相等,②错误 △ADF ABE ∠=∠,AOD BOF ∠=∠,90DAB ∠=︒ △90ADF AOD ∠+∠=︒△90ABE BOF ∠+∠=︒△DC BE ⊥,③正确过点AM DC ⊥于点M ,AN BE ⊥于点N △DAC BAE ≅△=AM AN△AF 平分DFE ∠,④正确△①③④正确故选:B .8.D解:△A (-2,5),AD △x 轴, △AD =5,OD =2,△△ABO 为等腰直角三角形, △OA =BO ,△AOB =90°,△△AOD +△DAO =△AOD +△BOE =90°, △△DAO =△BOE ,在△ADO 和△OEB 中,DAO BOE ADO OEB OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADO △△OEB (AAS ),△AD =OE =5,OD =BE =2,△DE =OD +OE =5+2=7.故选:D .9.C解:如图,△纸条的两边互相平行,△△1+△3=180°,△△1=110°,△△3=180°−△1=180°−110°=70°, 根据翻折的性质得,2△2+△3=180°,△△2=()118070552⨯︒-︒=︒, 故选:C .10.B解:延长BC 至G ,如下图所示,由题意得,AF △BE ,AD △BC , △AF∥BE ,△△1=△3.△AD∥BC ,△△3=△4,△△4=△1=50°.△CD∥BE ,△△6=△4=50°.△这条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,△△5=△6=50°,△△2=180°-△5-△6=180°-50°-50°=80°.故选:B .11.C解:A 、a 和2a 不是同类项,无法合并,故本选项错误,不符合题意; B 、()3328a a =,故本选项错误,不符合题意;C 、32a a a ÷=,故本选项正确,符合题意;D 、23a a a -=-,故本选项错误,不符合题意;故选:C12.A解:左边图形的阴影部分的面积=a 2-b 2 右边的图形的面积1222b a a b=(a +b )(a -b ).△()()22a b a b a b -=+-, 故选:A .13.D解:△(x -2)(x +b )=x 2+bx -2x -2b =x 2+(b -2)x -2b =x 2-ax -1,△b -2=-a ,-2b =-1,△b =0.5,a =1.5,△a +b =2.故选:D .14.B解:22222a b a ab b--+()()()2a b a b a b -+=- a b a b +=- 故选:B15.D 解:()22222x x x x x y x y x y x y===++++, 故选:D .16.A解:设甲车的速度为x 千米/小时,则乙车的速度为()12x +千米/小时,由题意得: 304012x x =+ 故选:A .17.17或19△7-5<第三边<7+5,△2<第三边<12,△该三角形是等腰三角形,△第三边为5或7,△周长为5+5+7=17或5+7+7=19,故答案为:17或19.18.74解:△△A =40°,△B =72°,△△ACB =180°-40°-72°=68°,△CE 平分△ACB ,△△BCE =12△ACB =12×68°=34°,△CD △AB 于D ,△△BCD +△B =90°,△△BCD =90°-△B =90°-72°=18°,△△DCE =△BCE -△BCD =34°-18°=16°,△DF △CE ,△△CFD =90°,△△DCF +△CDF =90°,△△CDF =90°-△DCF =90°-16°=74°,故答案为:74.19.70︒或60︒解:如图所示,由三角形内角和定理得,2=1805060=70∠--︒︒︒︒,两个三角形全等,1=2=70∴∠∠︒,或160∠=︒,故答案为:70︒或60︒.20.2 解: AB △AD ,CE △BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD =⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:221.50︒或80︒解:当50︒角为顶角,顶角度数即为50︒;当50︒为底角时,顶角18025080=︒-⨯︒=︒.故答案为:50︒或80︒.22.80︒解:△在ABC ∆中,,AB AC 的垂直平分线分别交BC 于E 、F , △,AE BE AF CF ==,△B BAE ∠=∠,C CAF ∠=∠,△130BAC ∠=︒,△18050B C BAC ︒︒∠+∠=-∠=,△50BAE CAF ︒∠+∠=,△()EAF BAC BAE CAF ∠=∠-∠+∠1305080︒︒︒=-=.故答案为:80︒.23.70解:△长宽分别为a ,b 的长方形的周长为14,面积为10, △a +b =7,ab =10,△()2210770a b ab ab a b +=+=⨯=.故答案为70.24.()()61x x -+解:x 2﹣5x ﹣6()()61x x =-+故答案为:()()61x x -+25.2解;△分式242a a -+的值为0, △24020a a ⎧-=⎨+≠⎩, △2a =,故答案为;2.26.2m >且3m ≠-解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.27.解:设这个多边形的边数是n ,依题意得(2)1803360180n ︒︒︒-⨯=⨯-,261n -=-,7n =.△这个多边形的边数是7.28.(1)解;122x x=- 两边同时乘以()2x x -得:()22x x =-,去括号得:24x x =-,移项得:24x x -=-,合并同类项得:4x -=-,系数化为1得;4x =,经检验,4x =是原方程的解,△原方程的解为4x =;(2)解;127133x x x--=-- 两边同时乘以3x -得:()()1327x x --=--,去括号得:1327x x -+=-+,移项得:2713x x -+=--,合并同类项得:3x =,经检验,3x =不是原方程的解,△原方程无解.29.解:2()(2)(2)x y y x y x --+-,2222(2)(4)x xy y y x =-+--252x xy =-,1x =-,8y =.∴原式5121821=⨯+⨯⨯=.30.解:(1)△△B +△C +△BAC =180°,△ABC =30°,△ACB =60°, △△BAC =180°﹣30°﹣60°=90°.△AE 是△ABC 的角平分线,△△BAE =12 △BAC =45°.△△AEC 为△ABE 的外角,△△AEC =△B +△BAE =30°+45°=75°.△AD 是△ABC 的高,△△ADE =90°.△△DAE =90°﹣△AEC =90°﹣75°=15°.(2)由(1)知,△DAE =90°﹣△AEC =90°﹣(12B BAC∠+∠ )又△△BAC =180°﹣△B ﹣△C .△△DAE =90°﹣△B ﹣12(180°﹣△B ﹣△C ),=12(△C ﹣△B ).31.(1)证明:△E 为AC 中点,△AE CE =,在ADE 和CFE 中,AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩,△ADE CFE ≌,△A ECF ∠=∠,△CF AB ∥;(2)解:由(1)得:A ECF ∠=∠,△AC 平分BCF ∠,△ACB ECF ∠=∠,△ACB A ∠=∠,△50ABC ∠=︒,△()1180652A ABC ∠=︒-∠=︒ 32.(1)△36AB AC A ∠==︒,, △72ACB B ∠∠==︒. △CD 平分ACB ∠, △36ACD DCB ∠∠==︒,36A ∠=︒, △CD AD =,即ACD 是等腰三角形; (2)△点E 是AC 的中点, △AE EC =,△90DEC ∠=︒,△90903654BDE ACD ∠∠=︒-=︒-︒=︒.。
人教版八年级数学上册期末综合复习一一、选择题1. 解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)2. 计算552-152的结果是()A.40 B.1600 C.2400 D.28003. [2018·襄阳] 如图,在△ABC中,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,与BC,AC分别交于点D,E.若AE=3 cm,△ABD的周长为13 cm,则△ABC的周长为()A.16 cmB.19 cmC.22 cmD.25 cm4.如如如如如ABC如如AC如BC如如A如40°如如如如如如如如如如如如如如如如BCG如如如如( )A如40° B如45°C如50° D如60°5. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=16.如如如如如ABC如如AB如6如BC如7如AC如4如如如m如如ABC如BC如如如如如如如如P如如如m如如如如如如如如APC如如如如如如如如()A如10 B如11 C如11.5 D如137.如如如如ABC如如如如如如如AD如BC如如D如如E如AC如如如AE如AD如如如DEC如如如如( )A如105° B如95° C如85° D如75°8. 如图有三种规格的卡片共9张其中边长为a的正方形卡片有4张边长为b的正方形卡片有1张长、宽分别为ab的长方形卡片有4张.现使用这9张卡片无重叠、无缝隙地拼成一个大的正方形则这个大正方形的边长为()A.2a+b B.4a+bC.a+2b D.a+3b9.如如3如如1如12如1如3如如如如如如如如如如如如如如如如a.如如a如如如x如如如如如⎩⎪⎨⎪⎧13如2x 如7如≥3x 如a 如0如如如如如如如x 如如如如如x x 如3如a 如23如x如如1如如如如如如如如5如如如如如如如如如如a 如如如如如( )A. 如3B. 如2C. 如32D. 1210. 2019·毕节织金期末某同学粗心大意,分解因式时,把等式x 4-■=(x 2+4)(x+2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字是( ) A .8,1 B .16,2 C .24,3 D .64,811. 如图所示,已知△ABC ≌△ADE ,BC的延长线交DE 于点F ,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB 的度数为 ( )A .40°B .50°C .55°D .60°12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m 和5 m 的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为( )A .10元B .15元C .20元D .25元13. 如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径画弧,与AB ,AC 分别交于点E ,F ,再分别以点E ,F 为圆心,大于EF 的长为半径画弧,两弧在∠CAB 的内部交于点G ,作射线AG 交CD 于点H.若∠C=140°,则∠AHC 的大小是 ( )A .20°B .25°C .30°D .40°14. 下列各项中,所求的最简公分母错误的是()A.与的最简公分母是6x2B.与的最简公分母是3a2b3cC.与的最简公分母是m2-n2D.与的最简公分母是ab(x-y)(y-x)15. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.二、填空题16. 如如如如如如如如如如如如如如如如如如如如如如________如如17. 如如如如如如如如如如如如如如如如如如如如ABF如________°.18. 如如如xx如1如1x如1如________如19. 填空:()22121453259x y x y ⎛⎫-=-⎪⎝⎭20. 如如如9982如________如21. (2020·昆明)分解因式:n n m42-= .22. (2019•江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.23.如如如如如如如如如A 如B 如如如如如如如如AB 如如如如如BF 如如如BF 如如如如C 如D 如如CD 如CB 如如如如D 如BF 如如如如DE 如如如A 如C 如E 如如如如如如如如如如如如DE 如20如如如AB 如如如________如如24. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A处行走的路程是 .25.如如如如如如如如如如如如如如如如如如6如如如如如如如如如如如如如如n如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如3如如如如如如n如如如如如________.三、解答题26. 如如如如B如如D如如如如如如如如(如如如如如如如)如如如如ABC如如ADC如如如如如27. (2020·乐山)已知:y=2x,且x≠y,求(1x-y+1x+y)÷x2yx2-y2.28. 通分:(1)34x2y3z与56xy4;(2)x-y与x-yx+y;(3)x-1x2+2x+1与2x2-1;(4)1x2-9与x6-2x.29. 如图,E为线段AB上一点,AC⊥AB,DB⊥AB,△ACE≌△BED.(1)试猜想线段CE与DE的位置关系,并证明你的结论;(2)求证:AB=AC+BD.30. 已知x+y=4,x-y=6,求xy(y2+y)-y2(xy+2x)-3xy的值.31. 已知2+=22×,3+=32×,4+=42×,…,且10+=102×(a,b均为正整数).(1)探究a,b的值;(2)求分式的值.人教版八年级数学上册期末综合复习一-答案一、选择题1. 【答案】D[解析] 因为x-1和1-x互为相反数,所以原方程可变形为-=3.方程两边乘(x-1),得2-(x+2)=3(x-1).2. 【答案】D[解析] 552-152=(55+15)×(55-15)=70×40=2800.3. 【答案】B[解析] 由作图可知,DE垂直平分线段AC,∴AD=CD,AE=EC=3 cm.∴AC=6 cm.∵AB+AD+BD=13 cm,∴AB+BD+CD=13 cm.∴△ABC的周长=AB+BD+CD+AC=13+6=19(cm).4. 【答案】C [如如] 如如如如CG如AB.如AC如BC如如CG如如如ACB如如A如如B如40°. 如如ACB如180°如如A如如B如100°如如如BCG如12如ACB如50°.5. 【答案】B [解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得 +=.6.【答案】A [如如]如如如m如如如如AB如如B如C如如如如m如如如如如如m如AB如如D如如如如P如如D如如如如AP如CP如如如如如如如如如如AB如如如如如APC如如如如如如如如6如4如10.7.【答案】A [如如]如如ABC如如如如如如如如如BAC如60°.如AD如BC如如AD如如如BAC.如如DAC如30°.如AD如AE如如如ADE如如AED如180°如30°2如75°.如如DEC如105°.8. 【答案】A[解析] 由题可知9张卡片的总面积为4a 2+4ab +b 2.因为4a 2+4ab+b 2=(2a +b)2所以大正方形的边长为2a +b.9.【答案】B如如如如如如如如如如⎩⎪⎨⎪⎧x ≥1x <a如如如如如如如如如如如a ≤1如如a 如如如如如如如如如如3如如如如如如如x 如5如a 2如如如如如如如如如如如如如5如a 2如如如如如5如a 2≠3如如a 如如如如3如如1如12如1如如如3如1如如如如如如如如a 如如如如如如3如1如如2.10. 【答案】B[解析] 由(x 2+4)(x +2)(x -▲)得出▲=2,则(x 2+4)(x +2)(x -2)=(x 2+4)(x 2-4)=x 4-16,则■=16.11. 【答案】D[解析] 因为△ABC ≌△ADE ,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.13. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.14. 【答案】D15. 【答案】最小的等腰直角三角形的面积42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.二、填空题16. 【答案】5[如如] 如如如如如如如如如如如如5如如17. 【答案】15[如如] 如如如如如如F如30°如如EAD如45°.如如如EAD如如F如如ABF如如如如ABF如如EAD如如F如15°.18. 【答案】1如如如如如如如x如1x如1如1.19. 【答案】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 【解析】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭20. 【答案】996004[如如] 如如如(1000如2)2如1000000如4000如4如996004.21. 【答案】n (m +2)(m -2)【解析】本题考查了因式分解.解答过程如下:n n m 42-)4(2-=m n ,=n (m +2)(m -2).22. 【答案】20【解析】∵40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △, ∴404080ADC ∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, ∴1008020CDE ∠=︒-︒=︒,故答案为:20.23. 【答案】2024. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).25. 【答案】3[如如] 如如如如如n如如如如如3.三、解答题26. 【答案】如如如如如如如如如如如如如BAC如如DAC. 如如如如如ABC如如ADC如如⎩⎪⎨⎪⎧如B如如D如如BAC如如DAC如AC如AC如如如ABC如如ADC(AAS)如27. 【答案】解:原式= ==, ∵,∴ , ∴原式==.28. 【答案】[解析] (1)分母中的系数分别为4和6,其最小公倍数为12,各分母中的字母x ,y ,z 的最高指数分别为2,4,1,故最简公分母是12x2y4z ;(2)中x -y 为整式,其分母为1,故最简公分母为x +y ;(3)先把各分母分解因式,分别为(x +1)2,(x +1)·(x -1),故最简公分母为(x +1)2(x -1);(4)先把各分母分解因式,分别为(x -3)(x +3),2(3-x),故最简公分母为2(x -3)(x +3).解:(1)34x2y3z 与56xy4的最简公分母为12x2y4z ,所以34x2y3z =3·3y 4x2y3z·3y =9y 12x2y4z ,56xy4=5·2xz 6xy4·2xz =10xz 12x2y4z .(2)x -y 与x -y x +y的最简公分母为x +y , 所以x -y =(x -y )(x +y )x +y =x2-y2x +y, x -y x +y =x -y x +y. (3)x -1x2+2x +1与2x2-1的最简公分母为(x +1)2(x -1), 222))((2y x y x y x y x x -÷-+y x y x y x x 222222-⨯-xy 2xy 2=2=xy 221所以x -1x2+2x +1=(x -1)2(x +1)2(x -1), 2x2-1=2(x +1)(x +1)2(x -1). (4)1x2-9与x 6-2x 的最简公分母为2(x -3)(x +3),所以1x2-9=1(x -3)(x +3)=1×22(x -3)(x +3)=22x2-18, x 6-2x =-x 2(x -3)=-x·(x +3)2(x -3)(x +3)=-x2+3x 2x2-18.29. 【答案】解:(1)CE ⊥DE.证明:∵AC ⊥AB ,DB ⊥AB ,∴∠A=∠B=90°.∴∠C+∠CEA=90°.∵△ACE ≌△BED ,∴∠C=∠DEB.∴∠CEA+∠DEB=90°.∴∠CED=180°-90°=90°.∴CE ⊥DE.(2)证明:∵△ACE ≌△BED ,∴AC=BE ,AE=BD.∴AB=BE+AE=AC+BD.30. 【答案】解:原式=xy 3+xy 2-xy 3-2xy 2-3xy =-xy 2-3xy.解方程组⎩⎨⎧x +y =4,x -y =6,得⎩⎨⎧x =5,y =-1. 所以原式=-5×(-1)2-3×5×(-1)=-5+15=10.31. 【答案】解:(1)∵2+=22×,3+=32×,4+=42×,…,且10+=102×, ∴a=10,b=a 2-1=99.(2)原式==.将a=10,b=99代入,得原式==20.8.。
期末复习巩固练习题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1、2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布。
以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.2、下列运算正确的是( )A. ()33a -a = B. ()532a a = C. 122=÷-a a D. ()62342-a a =3、如果分式yx x +-21的值为零,那么x ,y 应满足的条件是( ) A.2,1≠=y x B.2-,1=≠y x C. 2-,1≠=y x D.2,1=≠y x 4、如图,在△ABC 中,∠B=90∘,若按图中虚线剪去∠B ,则∠1+∠2等于( )A. 90∘B. 135∘C. 270∘D. 315∘5、汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒。
将0.013用科学记数法表示应为( )A. 1.3×10−2B. 1.3×10−3C. 13×10−3D. 1.3×103 6、若x=-5,y=2,则yx y x x 4116222---的值等于( ) A.171 B.151 C.71 D.317、若a+b=10,ab=11,则代数式22b ab a +-的值是( ) A.89 B. -89 C. 67 D. -67 8、若22222n =+++n n n ,则n= ( )A 、-1B 、-2C 、0D 、419、如图所示,在△ABC 中,∠A=90∘,AB=AC,BD 平分∠ABC 交AC 于点D,DE ⊥BC 于点E,若△CDE 的周长为8cm,则斜边BC 的长为( )A. 6cmB. 8cmC. 10cmD. 16cm10、已知等腰三角形两边a,b,满足a 2+b 2−4a −10b+29=0,则此等腰三角形的周长为( ) A. 9 B. 10 C. 12 D. 9或12二、填空题。
2022年人教版初中数学8年级上册【巩固练习】一.选择题1.如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52.(2020春•平顶山期末)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC4.在下列结论中,正确的是()A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C.一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5.如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF 的条件共有()组.A.1组B.2组C.3组D.4组7.如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互补D.相等或互补8.△ABC 中,∠BAC=90°AD⊥BC,AE 平分∠BAC,∠B=2∠C,∠DAE 的度数是()A.45°B.20°C.、30°D.15°二.填空题9.已知'''ABC A B C △≌△,若△ABC 的面积为102cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10.△ABC 和△ADC 中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.(2015春•成都校级期末)如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,CD=2cm ,则BD 的长是.12.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13.如右图,在△ABC 中,∠C=90°,BD 平分∠CBA 交AC 于点D.若AB=a ,CD=b ,则△ADB 的面积为______________.14.如图,已知AB⊥BD,AB∥ED,AB=ED,要说明ΔABC≌ΔEDC,若以“SAS”为依据,还要添加的条件为______________;若添加条件AC=EC,则可以用_______公理(或定理)判定全等.15.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16.在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.三.解答题17.已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证:AC=AD19.已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.(2020•北京校级模拟)感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1.【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2.【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3.【答案】C;【解析】∠EAF=∠BAC,∠EAC=∠EAF-∠CAF=∠BAC-∠CAF=∠BAF.4.【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5.【答案】D;【解析】角平分线上的点到角两边的距离相等.6.【答案】C;【解析】(1)(2)(3)能使两个三角形全等.7.【答案】A;【解析】高线可以看成为直角三角形的一条直角边,进而用HL 定理判定全等.8.【答案】D;【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9.【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm;【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm ,又∵∠B=∠ABD=30°,∴AD=BD=4cm .故答案为:4cm.12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21;【解析】由角平分线的性质,D 点到AB 的距离等于CD=b ,所以△ADB 的面积为ab 21.14.【答案】BC=DC ,HL;15.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.16.【答案】20cm ;【解析】BC=AC=AE,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE=∠CAD,∴∠BAE -∠CAE =∠CAD -∠CAE,即∠BAC=∠EAD.在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=,∴△ABC≌△AED.(AAS)∴AC=AD.∴∠ACD=∠ADC.18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB+∠1=∠CAB+∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF(AAS)∴AC=AD.19.【解析】证明:∵AD 平分∠BAC,DE⊥AB 于E,DF⊥AC 于F,(已知)∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD∴△BDE≌△CDF(HL)∴BE=CF20.【解析】解:感受理解EF=FD .理由如下:∵△ABC 是等边三角形,∴∠BAC=∠BCA ,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠DAC=∠ECA ,∠BAD=∠BCE ,∴FA=FC .∴在△EFA 和△DFC 中,,∴△EFA ≌△DFC ,∴EF=FD ;学以致用:证明:如图1,在AC 上截取AG=AE ,连接FG.∵AD 是∠BAC 的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.全等三角形全章复习与巩固(基础)【学习目标】1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【知识网络】【要点梳理】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2020•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF 是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、如图:在四边形ABCD 中,AD∥CB,AB∥CD.求证:∠B=∠D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC,∵AD∥CB,AB∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC≌△CDA(ASA)∴∠B=∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A=∠C,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB=AC.求证:∠B=∠C【答案】证明:过点A 作AD⊥BC在Rt△ABD 与Rt△ACD 中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:3、己知:在ΔABC 中,AD 为中线.求证:AD<()12AB AC +【答案与解析】证明:延长AD 至E,使DE=AD,∵AD 为中线,∴BD=CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS)∴AC=BE在△ABE 中,AB+BE>AE,即AB+AC>2AD∴AD<()12AB AC +.【总结升华】用倍长中线法可将线段AC,2AD,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7,则第三边的中线长x 的取值范围是()A.1<x <6B.5<x <7C.2<x <12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、在ΔABC 中,AB>AC.求证:∠B<∠C 【答案与解析】证明:作∠A 的平分线,交BC 于D,把△ADC 沿着AD 折叠,使C 点与E 点重合.在△ADC 与△ADE 中A C AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△ADE(SAS)∴∠AED=∠C∵∠AED 是△BED 的外角,∴∠AED>∠B,即∠B<∠C.【总结升华】作以角平分线为对称轴的翻折变换构造全等三角形.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.【答案】解:(1)如图1,过点D作DH⊥BC于H,∵AB=AC,∠BAC=90°,∴∠BCA=45°,∴DH=CH,∵BD是∠ABC的平分线,∴DH=AD=1,∴CD=;(2)如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC 中AB>AC,AD 是∠BAC 的平分线,M 是AD 上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB>AC,所以可在AB 上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME 中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.【答案与解析】证明:∵AB>AC,则在AB 上截取AE=AC,连接ME.在△MBE 中,MB-ME<BE(三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB⊥BD 于点B,ED⊥BD 于点D,点C 是BD 上一点.且BC=DE,CD=AB.(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC⊥CE.理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABC≌△CDE(SAS).∴∠ACB=∠E.又∵∠E+∠ECD=90°,∴∠ACB+∠ECD=90°.∴AC⊥CE.(2)∵△ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC=DE,∠ABC=∠EDC=90°,∴也一直有△ABC≌△C DE '(SAS).∴∠ACB=∠E.而∠E+∠EC D '=90°,∴∠ACB+∠EC D '=90°.故有AC⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC=AC,△CDE 中,CE=CD,现把两个三角形的C 点重合,且使∠BCA=∠ECD,连接BE,AD.求证:BE=AD.若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD还相等吗?为什么?【答案】证明:∵∠BCA=∠ECD,∴∠BCA-∠ECA=∠ECD-∠ECA,即∠BCE=∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC≌△BEC(SAS)∴BE=AD.若将△DEC绕点C旋转至图(2),(3)所示的情况时,其余条件不变,BE与AD还相等,因为还是可以通过SAS证明△ADC≌△BEC.【巩固练习】一.选择题1.(2020春•龙岗区期末)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(2)(3)(4)D.(4)(6)(1)2.如图,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P.则下列结论正确的是()①△AOD≌△BOC;②△APC≌△BPD;③点P在∠AOB的平分线上A.只有①B.只有②C.只有①②D.①②③3.如图,AB∥CD,AC∥BD,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有()A.5对B.6对C.7对D.8对4.如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则().A.∠1=∠EFD B.FD∥BC C.BF=DF=CD D.BE=EC5.如图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A.20°B.30°C.40°D.150°6.根据下列条件能画出唯一确定的△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=AC=67.如图,已知AB=AC,PB=PC,且点A、P、D、E在同一条直线上.下面的结论:①EB=EC;②AD⊥BC;③EA平分∠BEC;④∠PBC=∠PCB.其中正确的有()A.1个B.2个C.3个D.4个8.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.68二.填空题9.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.10.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.12.如图,△ABC中,∠C=90°,ED∥AB,∠1=∠2,若CD=1.3cm,则点D到AB边的距离是_______.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.如图,BA⊥AC,CD∥AB,BC=DE,且BC⊥DE.若AB=2,CD=6,则AE=_______.15.(2020•黄冈中学自主招生)如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是.16.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,AE⊥CE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=_______.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.在四边形ABCP中,BP平分∠ABC,PD⊥BC于D,且AB+BC=2BD.求证:∠BAP+∠BCP=180°.19.如图:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.20.(2020•于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案与解析】一.选择题1.【答案】C;【解析】解:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.故选C.2.【答案】D;【解析】可由SAS证①,由①和AAS证②,SSS证③.3.【答案】C;4.【答案】B;【解析】证△ADF≌△ABF,则∠ABF=∠ADF=∠ACB,所以FD∥BC.5.【答案】B;【解析】∠C=∠E,∠B=∠FDE=180°-110°-40°=30°.6.【答案】C;【解析】A项构不成三角形,B项是SSA,D项斜边和直角边一样长,是不可能的.7.【答案】D;8.【答案】A;【解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9.【答案】(1,5)或(1,-1)或(5,-1);10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】20cm ;【解析】BC=AC=AE,△DBE 的周长等于AB.12.【答案】1.3cm ;【解析】AD 是∠BAC 的平分线,点D 到AB 的距离等于DC.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14.【答案】4;【解析】证△ABC≌△CED.15.【答案】3+4;【解析】解:如图,过点B 作BE⊥BP,且BE=PB,连接AE、PE、PC,则PE=PB=4,∵∠ABE=∠ABP+90°,∠CBP=∠ABP+90°,∴∠ABE=∠CBP,在△ABE 和△CBP 中,,∴△ABE≌△CBP(SAS),∴AE=PC,由两点之间线段最短可知,点A、P、E 三点共线时AE 最大,此时AE=AP+PE=3+4,所以,PC 的最大值是3+4.故答案为:3+4.16.【答案】6cm ;【解析】∠CAE=∠ABD,△ABD≌△CAE.三.解答题17.【解析】证明:如图所示,在AC 上取点F,使AF=AE,连接OF,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴△AEO≌△AFO(SAS).∴∠EOA=∠FOA.∵∠B=60°,∴∠AOC=180°-(∠OAC+∠OCA)=180°-12(∠BAC+∠BCA)=180°-12(180°-60°)=120°.∴∠AOE=∠AOF=∠COF=∠DOC=60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△COD≌△COF(ASA).∴CD=CF.∴AE+CD=AF+CF=AC.18.【解析】证明:过点P 作PE⊥AB,交BA 的延长线于E,∵BP 平分∠ABC,PD⊥BC ,PE⊥AB,∴PE=PD在Rt△PBE 与Rt△PBD 中,BP=BP,PE=PD∴Rt△PBE≌Rt△PBD(HL)∴BE=BD又∵AB+BC=2BD.∴AB+BD+DC=2BD,即AB+DC=BD∴AE=DC由(SAS)可证Rt△PEA≌Rt△PDC,∴∠PAE=∠PCD∵∠BAP+∠PAE=180°∴∠BAP+∠BCP=180°.19.【解析】证明:在DA 上截取DN=DB,连接NE,NF,则DN=DC,在△DBE 和△DNE中:∴△DBE≌△DNE (SAS)∴BE=NE(全等三角形对应边相等)同理可得:CF=NF在△EFN 中EN+FN>EF(三角形两边之和大于第三边)∴BE+CF>EF.20.【解析】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.全等三角形全章复习与巩固(提高)【学习目标】1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【知识网络】【要点梳理】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法:可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、巧引辅助线构造全等三角形(1).倍长中线法1、已知,如图,△ABC中,D是BC中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【思路点拨】因为D是BC的中点,按倍长中线法,倍长过中点的线段DF,使DG=DF,证明△EDG≌△EDF,△FDC≌△GDB,这样就把BE、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.【答案与解析】BE+CF>EF;证明:延长FD 到G,使DG=DF,连接BG、EG∵D 是BC 中点∴BD=CD又∵DE⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG≌△EDF(SAS)∴EG=EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC≌△GDB(SAS)∴CF=BG∵BG+BE>EG∴BE+CF>EF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:【变式】已知:如图所示,CE、CB 分别是△ABC 与△ADC 的中线,且∠ACB=∠ABC.求证:CD=2CE.【答案】证明:延长CE 至F 使EF=CE,连接BF.∵EC 为中线,∴AE=BE.在△AEC 与△BEF 中,,,,AE BE AEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BD FBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.【答案与解析】证明:在AB上截取AE=AC.在△AED与△ACD中,()12()() AE ACAD AD=⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴△AED≌△ACD(SAS).∴ED=CD.∴∠AED=∠C(全等三角形对应边、角相等).又∵∠C=2∠B∴∠AED=2∠B.由图可知:∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB.∴∠B=∠EDB.∴BE=ED.即BE=CD.∴AB=AE+BE=AC+CD(等量代换).【总结升华】本题图形简单,结论复杂,看似无从下手,结合图形发现AB>AC.故用截长补短法.在AB上截取AE=AC.这样AB就变成了AE+BE,而AE=AC.只需证BE=CD即可.从而把AB=AC+CD转化为证两线段相等的问题.举一反三:【变式】如图,AD是ABC∆的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.【答案】证明:(1)在AB 上取一点M,使得AM=AH,连接DM.∵∠CAD=∠BAD,AD=AD,∴△AHD≌△AMD.∴HD=MD,∠AHD=∠AMD.∵HD=DB,∴DB=MD.∴∠DMB=∠B.∵∠AMD+∠DMB =180︒,∴∠AHD+∠B=180︒.即∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180︒.∵∠B+2∠DGA =180︒,∴∠AHD=2∠DGA.∴∠AMD=2∠DGM.∵∠AMD=∠DGM+∠GDM.∴2∠DGM=∠DGM+∠GDM.∴∠DGM=∠GDM.∴MD=MG.∴HD=MG.∵AG=AM+MG,∴AG=AH+HD.(3).利用截长(或补短)法作构造全等三角形3、(2020•新宾县模拟)如图,△ABC 中,AB=AC ,点P 是三角形右外一点,且∠APB=∠ABC .(1)如图1,若∠BAC=60°,点P 恰巧在∠ABC 的平分线上,PA=2,求PB 的长;(2)如图2,若∠BAC=60°,探究PA ,PB ,PC 的数量关系,并证明;(3)如图3,若∠BAC=120°,请直接写出PA ,PB ,PC的数量关系.【思路点拨】(1)AB=AC ,∠BAC=60°,证得△ABC 是等边三角形,∠APB=∠ABC ,得到∠APB=60°,又点P 恰巧在∠ABC 的平分线上,得到∠ABP=30°,得到直角三角形,利用直角三角形的性质解出结果.(2)在BP 上截取PD ,使PD=PA ,连结AD ,得到△ADP 是等边三角形,再通过三角形全等证得结论.M G H D C BA。
人教版数学八年级上册期末复习专项巩固训练一.选择题1.以下是小明收集的四个轴对称图案,他收集错误的是()A.B.C.D.2.等腰三角形的两边长分别为4,10,则它的周长为()A.18B.24C.18或24D.不能确定3.如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②BE=DE;③AD⊥EF;④AB:AC=BD:CD.正确的有()个.A.1B.2C.3D.44.若一个长方体的长、宽、高分别为2x,x,3x﹣4,则长方体的体积为()A.3x3﹣4x2B.6x2﹣8x C.6x3﹣8x2D.6x3﹣8x5.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米6.若分式有意义,则x的取值范围是()A.x≠0B.x≠4C.x≠0且x≠﹣4D.x≠﹣47.解分式方程﹣=﹣2时,去分母变形正确的是()A.﹣1+x﹣1=﹣2(x﹣2)B.1﹣x+1=2(x﹣2)C.﹣1+x﹣1=2(2﹣x)D.1﹣x+1=﹣2(x﹣2)8.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°9.在△ABC中,AB=5,AC=3,AD为BC边的中线,则AD的长x的取值范围()A.5≤x≤8B.4≤x≤7C.1<x<4D.10.若a2+(m﹣3)a+4是一个完全平方式,则m的值应是()A.1或5B.1C.7或﹣1D.﹣1二.填空题11.在△ABC中,∠ABC=50°,AD是△ABC的高,∠CAD=20°,∠BAC的平分线交BC于点E,则∠DAE=°.12.已知△ABC≌△DEF,且△ABC的周长为15cm,若AB=5cm,EF=3cm,则AC=cm.13.已知等腰三角形的一边等于8cm,另一边等于6cm,则此三角形的周长为.14.已知a+b=1,ab=﹣2,则代数式(a+1)(b+1)的值是.15.若关于x的方程有增根,k的值是;若关于x的方程无解,k的值是.三.解答题16.计算:(1)(2a﹣b)(a+3b)﹣(a+2b)2;(2)().17.因式分解:(1)16x2﹣25y2;(2)6xy2﹣9x2y﹣y3.18.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同.(1)求甲、乙两个工厂每天分别生产该种口罩多少万只?(2)甲、乙两厂接到一笔订单,要求10日内生产200万只该种口罩,乙厂引进设备提升产能,为完成订单,乙厂至少每天要多生产多少万只该种口罩?19.(1)如图,长方形ABCD的周长为16,四个正方形的面积和为68,求矩形ABCD的面积.(2)若(x2+nx+3)(x2﹣3x+m)的展开式中不含x2项和x3项,求m,n的值.20.如图,△ABC中,AB=BC,BD⊥AC交AC于点D,延长AC至E,使AE=BC,过E作EF⊥AB交AB于点F.(1)若∠DBA=15°,求∠BCE的度数;(2)求证:AC=2AF.。
八年级上数学期末复习每日一练一一、选择题(每题3分,共24分)1. 下面图案中是轴对称图形的有( )A 1个 B. 2个 C. 3个 D. 4个 2. 在ABC ∆中,70,55AB ∠=︒∠=︒,则ABC ∆是( )A.钝角三角形;B.等腰三角形;C.等边三角形;D.等腰直角三角形 3. 在ABC ∆和A B C '''∆中,,AB A B AC A C ''''==,高AD A D ''=,则C ∠和C '∠的关系是( )A.相等;B.互补;C.相等或互补;D.以上都不对4. 如图,在ABC ∆中,,AB AC D =是BC 中点,下列结论中不正确的是( ) A. B C ∠=∠; B. AD BC ⊥; C. AD 平分BAC ∠; D. 2AB BD =5. 由下列条件不能判定ABC ∆为直角三角形的是( )A. A B C ∠+∠=∠B. ::1:3:2A B C ∠∠∠=C. 2()()b c b c a +-= D. 111,,345a b c === 6. 在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形 的面积是( )A .30 B. 40 C. 50 D. 60 7. 下列说法中正确的是( )A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等8. 已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别为81 cm 2和144 cm 2,则正方形③的边长为( )A. 225 cm ;B. 63 cm ;C. 50 cm ;D. 15 cm二、填空题(每题3分,共30分)9. 如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是 . 10. 直角三角形的两条直角边分别是9和12,则斜边是 .11. 如图,在Rt ABC ∆中,90,ACB D ∠=︒为斜边AB 的中点,AC =6 cm,BC =8 cm ,则CD 的长为 cm.12. 如图,在ABC ∆中,,AB AC D =为BC 中点,35BAD ∠=︒,则C ∠的度数 为 . 13. 已知等腰三角形的周长为15cm ,其中一边长为7 cm ,则底边长为 .14. 甲、乙两人同时从同一地点出发,甲往北偏东60°的方向走了12 km ,乙往南偏东30° 的向走了5 km ,这时甲、乙两人相距 km15. 如图,ABC ∆中,90,C A B ∠=︒的垂直平分线交BC 于点D ,如果20B ∠=︒,则C A D∠= . 16. 如图,Rt ABC ∆中,90,8,3C AC BC ∠=︒==, ,,AE AC P Q ⊥分别是,AC AE 上 动点,且PQ AB =,当AP = 时,才能使ABC ∆和PQA ∆全等.17. 如图,有一块直角三角形纸片,两直角边AC =6 cm, BC =8 cm ,现将直角边AC 沿着直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 cm.16题18. 如图,90MON ∠=︒,已知ABC ∆中,5,6AC BC AB ===,ABC ∆的顶点,A B 分别在边,OM ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为 .2019—2020学年第一学期八年级数学期末复习每日一练二一、选择题(本大题共10小题,每小题3分,共30分)1. 下列四个数中,最大的一个数是( )A.2D. 2- 2. 下列图形中,是轴对称图形的是( )A.①②B.②③C.①④D.③④ 3. 下列说法正确的是( )A.81-的平方根是9±B. 7C.127的立方根是13± D. 21-()的立方根是1-4. 一次函数32y x =-的图像与y 轴的交点坐标是( )A. 2(,0)3-B.2(,0)3C.(0,2)-D.(0,2)5. 若点(21,3)M m m -+在第二象限,则m 取值范围是( )A.12m >B.3m <-C.132m -<<D.12m <6. 一次函数y kx b =+的图象如图所示,则当0y ≥时,x 的取值范围是( ) A.2x ≥- B.2x ≤- C.1x ≥- D.1x ≤-7. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则ABC ∠的度数为( ) A. 90︒ B. 60︒ C.45︒ D. 30︒ 8. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定.....ABC ADC ≅V V 的是( )A.CB CD = ; B.BAC DAC ∠=∠;C.BAC DCA ∠=∠; D.90B D ∠=∠=︒9. 如图,在ABC V 中,90C ∠=︒,4AC =,3BC =,将ABC V 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )B.C.D.10. 如图,正方形ABCD 的边长为2cm ,动点P 从点A 出 发,在正方形的边上沿A B C →→的方向运动到点C 停止, 设点P 的运动路程为()x cm , 在下列图象中,能表示ADP V的面积2()y cm 关于()x cm 的函数关系的图象是( )线密班级 姓名 学号 试场号封二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11. = .12. 已知地球上海洋面积约为3610000002km ,则361000000用科学记数法可以表示为 .13. 在平面直角坐标系中点(2,3)P -关于x 轴的对称点是 .14. 在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围是 .15. 如图,在ABC V 中,点D 、E 分别是边AC 、BC 上的点,若ADB EDB EDC ≅≅V V V ,10AB cm =,则BC = cm .16. 如图,在ABC V 中,A B A C =,50A ∠=︒,CD AB ⊥于D ,则DCB ∠等于 .17. 如图,OP 平分AOB ∠,15AOP ∠=︒,//PC OA ,4PC =,点D 是射线OA 上的一个动点,则PD 的最小值为 .18. 如图,在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点(0,)C n 是y 轴上一点,将ABC V 沿直线AC 折叠,使得点B 恰好落在轴x 上,则点C 的坐标为( , ).2019—2020学年第一学期八年级数学期末复习每日一练三一.选择题. (本大题共10小题,每小题3分,共30分)1. 下列图形中,轴对称图形的个数为A .1个B .2 个C .3个D .4个2.x 的取值范围是A .4x >B .4x ≠C .4x ≤D .4x ≥ 3.下列给出的三条线段的长,能组成直角三角形的是A .1 、 2 、3B .2 、 3、 4C .5、 7 、 9D .5、 12、 134.A B .5C .D 5.下列等式中正确的是A.3=- B. 22=- C.2=- D.3=-6. 如图,数轴上点A 对应的数是1,点B 对应的数是2,BC ⊥AB ,垂足为B ,且BC=1,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为A .1.4BC 1+D .2.47.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是 A .(2,﹣3) B .(2,3)C .(3,2)D .(3,﹣2)8.如图,点E 、F 在AC 上,AD=BC ,AD//BC ,则添加下列哪一个条件后,仍无法判定△ADF ≌△CBE 的是A.DF=BEB.∠D=∠BC.AE=CFD.DF//BE9. 在同一直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为12,l l ,则下列图像中可能正确的是( )A B C D 10.已知点A (1,3)、B (3,1)-,点M 在x 轴上,当AM BM -最大时,点M 的坐标为 A .(2,0) B .(2.5,0) C .(4,0) D .(4.5,0)二.填空题. ( 本大题共8小题,每小题3分,共24分)11.圆周率 3.1415926π≈,用四舍五入法把π精确到千分位,得到的近似值是_______.12.已知点(,)P a b 在一次函数21y x =-的图像上,则21__________a b -+= 13.如图,已知△ABC ≌△DCB ,∠ABC=65°,∠ACB=30°,则∠ACD=______° 14.已知一个球体的体积为3288cm ,则该球体的半径为________cm.(注:球体体积公式V球体=343r π,r 为球体的半径.)第13题图 第16题图 第17题图 15.已知等边三角形的边长为2,则其面积等于__________.16.如图,已知一次函数y ax b =+的图像为直线l ,则关于x 的不等式0ax b +<的解集为__ 。
人教版数学八年级上册数学期末复习巩固训练一.选择题1.下列轴对称图形中,对称轴条数最多的是()A.B.C.D.2.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为()A.17cm B.5cm C.5cm或17cm D.无法确定3.如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,则下面结论中错误的是()A.AD+DE=AC B.DB平分∠EDC C.DE平分∠ADB D.DC+BE>BD4.一个长方体的长、宽、高分别是3m﹣4,2m和m,则它的体积是()A.3m3﹣4m2B.3m2﹣4m3C.6m3﹣8m2D.6m2﹣8m35.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米6.要使分式有意义,x的取值应满足()A.x≠1B.x≠﹣2C.x≠1或x≠﹣2D.x≠1且x≠﹣27.解分式方程=时,去分母化为一元一次方程,正确的是()A.x+1=2(x﹣1)B.x﹣1=2(x+1)C.x﹣1=2D.x+1=28.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.9.已知AD是△ABC中BC边上的中线,AB=4,AC=6,则AD的取值范围是()A.2<AD<10B.1<AD<5C.4<AD<6D.4≤AD≤610.若4x2﹣kxy+9y2是完全平方式,则k的值是()A.±6B.±12C.±36D.±72二.填空题11.已知,AD是△ABC的高,∠BAD=80°,∠CAD=20°,则∠BAC=.12.如图,△ABC≌△DEF,BC=7,EC=5,则CF的长为.13.△ABC中,AB=BC,△ABC的中线AM将这个三角形的周长分成15和12两部分,则AC的长为.14.若(4x﹣2m)(x+3)的乘积中不含x的一次项,则常数m=.15.若分式方程有增根,则m的值是.三.解答题16.计算:(1)(x﹣2y)2﹣(x+2y)(x﹣y)(2)17.分解因式(1)m3(x﹣2)+m(2﹣x)(2)4a(b﹣a)﹣b218.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?19.甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.(1)求a,b的值;(2)请计算这道题的正确结果20.如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE 交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.。
班级: 姓名: 期末复习基础巩固练(一)
一、选择题(每小题只有一个正确选项)
1.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是( )
2.有两根长分别为6 cm,11 cm的木棒,要想以这两根木棒为其中两边做一个三角形,可以选用第三根木棒的长为( )
A.3 cm
B.16 cm
C.20 cm
D.24 cm
3.下列四个图形中,线段BE是△ABC的高的是( )
4.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC 于点E.若∠A =54°,∠B=48° ,则∠CDE的大小为( )
A.44°
B.40°
C.39°
D.38°
(第4题图)
5.如图,点D在△ABC边AB的延长线上,DE//BC.若∠A=35°,∠C=24°,则∠D 的度数是( ) .
A.24°
B.59°
C.60°
D.69
(第5题图)
6.有下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的周长、面积分别相等;④面积相等的两个三角形全等其中正确的说法为( )
A.①③④
B.②③④
C.①②③
D.①②③④
7.如图, 一张等边三角形纸片,剪去一个角后得到一个四边形,则图中∠a+∠β的度数是( )
A.180°
B.220°
C.240°
D.300°
(第7题圈)
8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD= 20° ,
则∠ACE的度数是( )
A.20°
B.35°
C.40°
D.70°
(第8题图)
9.如图, △A0B∠△ADC,点B和点C是对应顶点,∠0=∠D =90° ,记∠OAD=a,∠AB0=β,当BC//0A时,a与β之间的数量关系是( )
A.a=β
B. a=2β
C.a +β = 90°
D.a+2β=180°
(第9题图)
10.如图,在OABC中,∠BAC=115° ,DE,FG分别为AB,AC的垂直平分线,则∠EAG的度数为( )
A.50°
B.40°
C.30°
D.25°
(第10题图)
二、填空题
11.已知点A(a+b,2),点B( -b,a-b)关于y轴对称,则6a= .
12.如图,若正五边形和正六边形有一边重合,则∠BAC=
(第12题圈)
13.如图, △ABC的三条角平分线交于点D,AB=4,BC=6,AC=8,则S△ABD:S△BCD:S△ACD=
(第13题图)
14.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为P,若∠BAC=84°,则∠BDC = 。
三、解答题
15.如图,在△ABC中,AB=AC=6, BC=4,∠A = 40°.
(1)用尺规作出边AB的垂直平分线,交AB于点D,交AC于点E(不写作法,保留作图痕迹,并在图中标注字母);
(2)连接BE,求△EBC的周长和∠EBC的度数.
16.探索与证明:
(1)如图1,直线I经过正三角形ABC的顶点A,在直线l上取两点M,N,使得∠AMB = 60°,∠ANC=60°. 通过观察或测量,猜想线段BM ,CN与MN之间满足的数量关系,并予以证明.
(2)将(1)中的△ABC绕着点A顺时针旋转一个角度到如图2所示的位置.并使∠AMB=120°,∠ANC=120°.通过观察或测量,猜想线段BM,CN与MN之间满足的数量关系,并予以证明.
图1
图2
答案:
1.B
2.B
3.D
4.C
5.B
6.C
7.C
8.B
9.B
10.A
11.1
12.132°
13.2:3:4
14. 96°
15.
解:(1)如图所示.
(2)∵ DE 垂直平分AB,
∴AE=BE.∵AC = 6,BC =4,∴ C △EBC =BE +CE + BC =AE+CE + BC=AC +BC=6+4 = 10.
∵AB =AC,∠A =40°,∴∠ABC =180°-40°2
=70°. ∴∠EBC=∠ABC -∠ABE =70°-40°=30°.
16.
解:(1)猜想:BM + CN = MN.
证明:∵∠AMB=60°,∠BAC=60°,
∴∠MAB +∠ABM= 180°-∠AMB= 120°,∠MAB+∠NAC=180° - ∠BAC=120°. ∴∠ABM=∠NAC.
∵∠AMB=∠CNA=60°,AB=CA ,
∴∠AMB∠△CNA.
∴BM=AN,AM =CN.
∴BM+ CN= AN+AM = MN.
(2)猜想:CN - BM = MN.
证明:∠ANC= 120°,∠AMB= 120°.
∴∠AMB=∠CNA,∠NAC+∠NCA=180°-∠ANC= 60°.∵∠BAM+∠NAC=∠BAC=60°.
∴∠BAM=∠ACN.
∵AB=CA,
∴∠ABM∠∠CAN.
∴AM=CN,BM=AN.
∵AM-AN= MN,即CN - BM = MN.。