(完整版)matlab的一些画图技巧
- 格式:doc
- 大小:197.51 KB
- 文档页数:23
实验目的1.掌握MATLAB的基本绘图命令。
2.掌握运用MATLAB绘制一维、二维、三维图形的方法.3.给图形加以修饰。
一、预备知识1.基本绘图命令plotplot绘图命令一共有三种形式:⑴plot(y)是plot命令中最为简单的形式,当y为向量时,以y的元素为纵坐标,元素相应的序列号为横坐标,绘制出连线;若y为实矩阵,则按照列绘出每列元素和其序列号的对应关系,曲线数等于矩阵的列数;当y为复矩阵时,则按列以每列元素的实部为横坐标,以虚部为纵坐标,绘出曲线,曲线数等于列数。
⑵ plot(x,y,[linspec])其中linspec是可选的,用它来说明线型。
当x和y为同维向量时,以x为横坐标,y为纵坐标绘制曲线;当x是向量,y是每行元素数目和x维数相同的矩阵时,将绘出以x为横坐标,以y中每行元素为纵坐标的多条曲线,曲线数等于矩阵行数;当x为矩阵,y为相应向量时,使用该命令也能绘出相应图形。
⑶ plot(x1,y1,x2,y2,x3,y3……)能够绘制多条曲线,每条曲线分别以x和y为横纵坐标,各条曲线互不影响。
线型和颜色MATLAB可以对线型和颜色进行设定,线型和颜色种类如下:线:—实线:点线 -.虚点线——折线点:.圆点 +加号 *星号 x x型 o 空心小圆颜色:y 黄 r 红 g 绿 b 蓝 w 白 k 黑 m 紫 c 青特殊的二维图形函数表5 特殊2维绘图函数[1] 直方图在实际中,常会遇到离散数据,当需要比较数据、分析数据在总量中的比例时,直方图就是一种理想的选择,但要注意该方法适用于数据较少的情况。
直方图的绘图函数有以下两种基本形式。
·bar(x,y) 绘制m*n 矩阵的直方图.其中y 为m *n 矩阵或向量,x 必须单向递增。
·bar(y) 绘制y 向量的直方图,x 向量默认为x=1:m close all; %关闭所有的图形视窗。
x=1:10;y=rand (size(x )); bar(x,y ); %绘制直方图.123456789100.51Bar()函数还有barh ()和errorbar ()两种形式,barh()用来绘制水平方向的直方图,其参数与bar()相同,当知道资料的误差值时,可用errorbar ()绘制出误差范围,其一般语法形式为:errorbar (x,y,l,u)其中x,y 是其绘制曲线的坐标,l ,u 是曲线误差的最小值和最大值,制图时,l 向量在曲线下方,u 向量在曲线上方。
第七次课Matlab图形与可视化一、本次课学习要点1、Matlab曲线绘图命令(二维、三维)2、绘图程序的编写二、本次课教学重点绘图程序的编写三、教学基本内容MATLAB具有很强的绘图功能,可以绘制多种二维、三维图形,也可以进行动画演示。
这一章将详细介绍各种图形的绘制命令。
1、二维绘图的plot命令MATLAB最常用的二维绘图命令是plot命令。
该命令将各个数据点用直线连接来绘制图形。
MATLAB的其它二维绘图命令中的绝大多数是以plot为基础构造的。
x=0:0.01:2; % 图形的横坐标数据准备y=sin(2*pi*x); % 图形的纵坐标数据准备plot(x,y); % 绘制图形grid %带栅格%plot(x,y,'k:o') %'k'表示黑色,':' 表示点连线,'o '表示圆圈显示为:plot 指令的调用格式:plot(x1.y1,'参数1’,x2,y2,‘参数2’....)plot可以用同一命令在同一坐标系中画多幅图形,x1,yl为第一条曲线 x,y个轴的坐标值,参数1为第一条曲线的选项参数,x2,y2为第二条曲线x,y轴的坐标值,参数2为第二条曲线的参数。
参数选项为一个字符串,它决定了二维图形的颜色、线型及数据点的图标。
B(蓝色) C(青色) G(绿色) k(黑色) r(红色) w(白色) y(黄色)2、图形修饰与控制(1)坐标轴的调整MATALB用axis命令对绘制的图形的坐标轴进行调整。
axis命令的功能非常丰富,可用它来控制轴的比例和特性。
axis([xmin xmax ymin ymax)将图形的 x轴范围限定在[xmin,xmax]之间,y轴的范围限定在[ymin,ymax]之间。
MATLAB绘制图形时,按照给定的数据值确定坐标轴参数范围。
对坐标轴范围参数的修改,也就相当于对原图形进行放大或缩小处理。
matlab画图常用命令clc 清理命令窗口历史内容clear 清除所有内存存储的变量值clf 清除图形whos 显示各变量信息sqrt 开方edit 开编辑窗口linspace(a,b,N) 定义等差数列,a初值,b末值,N步数(即数据个数)logspace(a,b,N) 定义等比数列,初值10^a,末值10^b,N步数(即数据个数)A.*B 矩阵点乘,对应项相乘A./B 矩阵点除A.^B 矩阵点方(指数相同也要用点方)A=[a:n:b] 定义以a为开始,步长为n的等差数列,最后一个数不超过b(n省略代表步长为1)A' 矩阵转置A=[B,C;D] 矩阵拼凑e *10^exp e^format long 后续数据显示小数点后15位format short 后续数据显示小数点后4位format bank 后续数据显示小数点后2位(不适用于复数)format long/short e 后续数据科学技术法显示,并且小数点后15位/4位format long/short eng 后续数据类似科学技术法显示,但指数保持为3的整数倍,并且有效位数(15位+1/4位+1)format + 矩阵中各元素只显示正负,零为空格format rat 以分数形式显示有理数format long/short g Matlab自定最优显示load/save +文件名载入/储存工作区数据rem(a,b) a/b的余数size(A) A矩阵的大小[行数列数]ylim([0,1])help 打开帮助界面help+帮助界面中对应标题查看对应函数的使用nthroot(x,n) x的n次实数根sign(x) x大于零输出1;x等于零输出0;x小于零输出-1log10(x) lg(x)log(x) ln(x)【注:logb(a)=ln(a)/ln(b)】fix(x) 取整round(x) 对x四舍五入floor(x) 对x向负取整ceil(x) 对x向正取整factor(x) 对x因式分解gcd(a,b) 求a,b最大公约数lcm(a,b) 求a,b最小公倍数rats(x) 用分数表示xfactorial(x) x!nchoosek(n,k) 组合数n选kprimes(x) 找出小于x的素数isprime(x) x是素数,返回1sin(),cos(),tan()... 自变量为弧度asin(),acos(),atan()... 结果为弧度max(x),min(x) x适量中的最大、最小值[a,b]=max(A) A为一行时,a为最大值,b为最大值单行位置A为m行n列时,a为m行向量,对应各列最大值,b为m行向量,对应各列最大值在该列位置多个最大值时,位置默认第一个max(A,B) A、B同大,结果为A,B中对应位置最大值的汇总矩阵mean()/median()/mode() 求平均值/中位数/众数(众数选最小值)cumsum/cumprod(A) 求A的累加/累乘结果,生成与A同大小矩阵,(列运算)单矩阵运算sum/prod(A) A矩阵列求和/求积或求行向量和/积sort(A)/sort(A,'descend') 将A升序/降序排列(行向量自身升序/降序,矩阵列升序/降序)sortrows(A,n) 按第n列排列各行,n正升序,n负降序,n省略第一列升序size(x)/[a,b]=size(x) 返回[行数,列数]/给a、b赋值length(A) 矩阵A的最大长度(行数和列数的最大值)std(A) 求A的标准差(行向量自身求解,矩阵列求解)var(A) 求A的方差(行向量自身求解,矩阵列求解)rand/randn(m,n) 生成(0,1)m×n随机数矩阵/生成均值为0,标准差为1的高斯随机数矩阵(正态分布)【通过randn(m,n)*std+mean可得到均值为mean,标准差为std的正态分布随机数矩阵】A+B*i(complex(A,B)) 生成复数或复数矩阵real(A)/imag(A) 求实部/虚部isreal(A) 实数返回1coni(A) 求共轭【或用A'也可,但会发生行列互换】x为复数时abs(x)/angle(x) 求复数的模,与水平方向的夹角realmax/realmin 返回MATLAB能够使用的最大/最小浮点数intmax/intmin 返回MATLAB能够使用的最大/最小整数pi/i/j 圆周率/虚数/虚数clock 当前时间(一般使用fix(clock)增加可读性)date 返回日期,以字符串形式eps 返回MATLAB最小间隔矩阵A(n,:)/(:,m)【A(n,end)/(end,m)】A矩阵的第n行【最后一列】/第m列【最后一行】[A,B]=meshgrid(a,b),A.*B a,b为行向量,运行结果得a*b的m*n 维矩阵【meshgrid(x)等价于meshgrid(x,x)】zeros(m)/(m,n) m*m/m*n全零矩阵ones(m)/(m,n) m*m/m*n全一矩阵diag(A) 取对角元素为列向量diag(x) 若x为行向量或列向量,结果为对角阵其他元素为零diag(A,n/-n) 对角线右上/左下第n斜线上的元素fliplr(A)/flipud(A) A矩阵列/行进行对称翻转magic(m) 创建m*m维魔方矩阵作图xlabel/ylabel('') 添加x/y轴坐标title('') 添加表头grid 使图像出现网格figure(x) 创建或打开figure x窗口,之后作图均在该窗口进行hold on 保持图像窗口中之前的图像,进而在此作图不会清除之前图像(hold off取消)plot(x1,y1,x2,y2) 同时做两个图像plot(x) x为行向量,则以点数1至n为横轴,x为纵轴作图,按顺序依次连线plot(A) A为m*n矩阵,则图像为那条曲线,每条曲线横轴均为1至m,纵轴为相应列对应值plot(x,A) 以x为横轴,A的每一列为纵轴作图(x与A同维)plot(A,B) A与B需同维,对应列分别作为横轴和纵轴作图plot('标识符') 线型:-实线:点-.点画线--虚线点型:.点o圆圈xx形状+加号*星号s方形d菱形v下三角^上三角<左三角>右三角p五角星h六角星颜色:b蓝色g绿色r红色c青色m洋红色y黄色k黑色w白色【注】,多重输出可多重设定axis([a,b,c,d]) 限制图像x轴在[a,b],y轴在[c,d]legend('string1','string2',etc) 按照作图顺序添加图注text(x,y,'string') 在(x,y)处添加文本‘string’gtext('string') 添加文本‘string’,位置由鼠标点击确定【注】(适用于string形式)输入希腊字母需要'\'+希腊字母读法;^ 可出现上标,_ 可出现下标若想输出_或^,可用\+相应符号subplot(m,n,k) 将图形窗口划分成m行n列,所有的绘图操作都在一行一行数的第k个子图中进行【注】clf针对消除一个figure窗口内的内容,而plot等一系列操作针对一个子图中,且hold on/off被限于特定一个子图中,不影响其他子图polar(x,y) 绘制极图semilogx/semilogy(x,y) x轴对数,y轴线性/x轴线性,y轴对数作图loglog(x,y) 双对数坐标作图bar(x)/barh(x) x为矢量时,按x绘制垂直/水平条形图x为矩阵时,按各行分组绘制垂直/水平条形图bar3(x)/bar3h(x) 同上,绘制三维条形图pie(x)/pie3(x) 绘制(三维)饼状图。
一、二维数据曲线图1、MATLAB 最常用的画二维图形的命令是plot, plor 函数的基本调用格式为:plot(x.y)其 中x 和y 为长度相同的向豈,分别用于存储x 坐标和y 坐标数据。
例 1:在[0,2 7T ]画 Sill(.v) 0生成的图形如下图1所示:图1说明:(1) plot 函数的输入参数是矩阵形式时A 、 当x 是向量,y 是有一维与x 同维的矩阵时,则绘制出多根不同颜色的曲线。
曲线 条数等于y 矩阵的另一维数,x 被作为这些曲线共同的横坐标。
B 、 当x,y 是同维矩阵时.则以x,y 对应列元素为横、纵坐标分别绘制曲线,曲线条数 等于矩阵的列数。
C 、对只包含一个输入参数的plot 函数,当输入参数是实矩阵时,则按列绘制每列元素 值相对其卜.标的曲线,曲线条数等于输入参数矩阵的列数:当输入参数是复数矩阵时,则按 列分别以元素实部和虚部为横、纵坐标绘制多条曲线。
(2) 含多个输入参数的plot 函数 调用格式为:plot(xl,yl.x2,y2,"--.xn.yn)A, 当输入参数都为向量时,xl 和yl, x2和y2, xn 和yn 分别组成一组向量对,每一 组向量对的长度可以不同。
每一向量对可以绘制出一条曲线,这样可以在同一坐标内绘制岀 多条曲线。
B.当输入参数有矩阵形式时,配对的x_y 按对应列兀素为横、纵坐标分别绘制曲线,曲线 条数等于矩阵的列数。
例2:如卜所示的程序:x 1 =liuspace(0,2 *pi,l 00);x2=luispace(0.3 *pi,l 00);x3=linspace(0.4*pi,100);yl=sin(xl); y2=l+sin(x2);y3=2+sin(x3);x=[xl;x2;x3]';0.80.60.40.2-0.2-0.4-0.6-0.8y=[yl;y2;y3「plot(x,y,xl,yl-l) 其图形如图2所示:图2(3)plot函数最简单的调用格式是只包含一个输入参数:plot(x),在这种情况卜,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一•条连续曲线,这实际上是绘制折线图。
Matlab绘图和坐标操作a=linspace(1,2,10)plot(a,'--pr','linewidth',1.5,'MarkerEdgeColor','r','MarkerFaceColor','m','MarkerSize',10)legend('a','Location','best')title('a','FontName','Times New Roman','FontWeight','Bold','FontSize',16)xlabel('T','FontName','Times New Roman','FontSize',14)ylabel('a','FontName','Times New Roman','FontSize',14,'Rotation',0)axis auto equalset(gca,'FontName','Times New Roman','FontSize',14)1.曲线线型、颜色和标记点类型plot(X1,Y1,LineSpec, …) 通过字符串LineSpec指定曲线的线型、颜色及数据点的标记类型。
线型颜色数据点标记类型标识符意义标识符意义标识符意义- 实线r 红色+ 加号-. 点划线g 绿色o 圆圈-- 虚线b 蓝色* 星号: 点线c 蓝绿色. 点m 洋红色x 交叉符号y 黄色square(或s) 方格k 黑色diamond(或d) 菱形w 白色^ 向上的三角形v 向下的三角形> 向左的三角形< 向右的三角形pentagram(或p) 五边形hexagram(或h) 六边形2.设置曲线线宽、标记点大小,标记点边框颜色和标记点填充颜色等。
详尽全⾯的matlab绘图教程Matlab绘图强⼤的绘图功能是Matlab的特点之⼀,Matlab提供了⼀系列的绘图函数,⽤户不需要过多的考虑绘图的细节,只需要给出⼀些基本参数就能得到所需图形,这类函数称为⾼层绘图函数。
此外,Matlab还提供了直接对图形句柄进⾏操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、⽂字等)看做⼀个独⽴的对象,系统给每个对象分配⼀个句柄,可以通过句柄对该图形元素进⾏操作,⽽不影响其他部分。
本章介绍绘制⼆维和三维图形的⾼层绘图函数以及其他图形控制函数的使⽤⽅法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
⼀.⼆维绘图⼆维图形是将平⾯坐标上的数据点连接起来的平⾯图形。
可以采⽤不同的坐标系,如直⾓坐标、对数坐标、极坐标等。
⼆维图形的绘制是其他绘图操作的基础。
⼀.绘制⼆维曲线的基本函数在Matlab中,最基本⽽且应⽤最为⼴泛的绘图函数为plot,利⽤它可以在⼆维平⾯上绘制出不同的曲线。
1. plot函数的基本⽤法plot函数⽤于绘制⼆维平⾯上的线性坐标曲线图,要提供⼀组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的⼆维曲线。
plot函数的应⽤格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗⼝中输⼊以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线注意:指数函数和正弦函数之间要⽤点乘运算,因为⼆者是向量。
例52 绘制曲线这是以参数形式给出的曲线⽅程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线以上提到plot函数的⾃变量x,y为长度相同的向量,这是最常见、最基本的⽤法。
MATLAB绘图与图形处理人们很难从一大堆原始的数据中发现它们的含义,而数据图形恰能使视觉感官直接感受到数据的许多内在本质,发现数据的内在联系。
MATLAB可以表达出数据的二维,三维,甚至四维的图形。
通过图形的线型,立面,色彩,光线,视角等属性的控制,可把数据的内在特征表现得淋漓尽致。
下面我们分别介绍图形的命令。
7.1 二维图形7.1.1 基本平面图形命令命令1 plot功能线性二维图。
在线条多于一条时,若用户没有指定使用颜色,则plot循环使用由当前坐标轴颜色顺序属性(current axes ColorOrder property)定义的颜色,以区别不同的线条。
在用完上述属性值后,plot又循环使用由坐标轴线型顺序属性(axes LineStyleOrder property)定义的线型,以区别不同的线条。
用法plot(X,Y) 当X,Y均为实数向量,且为同维向量(可以不是同型向量),X=[x(i)],Y=[y(i)],则plot(X,Y)先描出点(x(i),y(i)),然后用直线依次相连;若X,Y为复数向量,则不考虑虚数部分。
若X,Y均为同维同型实数矩阵,X = [X(i)],Y = [Y(i)],其中X(i),Y(i)为列向量,则plot(X,Y)依次画出plot(X(i),Y(i)),矩阵有几列就有几条线;若X,Y中一个为向量,另一个为矩阵,且向量的维数等于矩阵的行数或者列数,则矩阵按向量的方向分解成几个向量,再与向量配对分别画出,矩阵可分解成几个向量就有几条线;在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。
plot(Y) 若Y为实数向量,Y的维数为m,则plot(Y)等价于plot(X,Y),其中x=1:m;若y 为实数矩阵,则把y按列的方向分解成几个列向量,而y 的行数为n,则plot(Y)等价于plot(X,Y)其中x=[1;2;…;n];在上述的几种使用形式中,若有复数出现,则复数的虚数部分将不被考虑。
三维绘图2 基本XYZ立体绘图命令●mesh和plot是三度空间立体绘图的基本命令,mesh可画出立体网状图,plot则可画出立体曲面图,两者产生的图形都会依高度而有不同颜色。
下列命令可画出由函数形成的立体网状图:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵mesh(xx, yy, zz); % 画出立体网状图●surf和mesh的用法类似:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是25x25的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是25x25的矩阵surf(xx, yy, zz); % 画出立体曲面图●peaks为了方便测试立体绘图,MATLAB提供了一个peaks函数,可产生一个凹凸有致的曲面,包含了三个局部极大点及三个局部极小点,其方程式为:要画出此函数的最快方法即是直接键入peaks:peaksz = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) - 1/3*exp(-(x+1).^2 - y.^2)●我们亦可对peaks函数取点,再以各种不同方法进行绘图。
meshz可将曲面加上围裙:[x,y,z]=peaks;meshz(x,y,z);●waterfall可在x方向或y方向产生水流效果:[x,y,z]=peaks;waterfall(x,y,z);●下列命令产生在y方向的水流效果:[x,y,z]=peaks;waterfall(x',y',z');●meshc同时画出网状图与等高线:[x,y,z]=peaks;meshc(x,y,z);●surfc同时画出曲面图与等高线:[x,y,z]=peaks;surfc(x,y,z);●contour3画出曲面在三度空间中的等高线:contour3(peaks, 20);●contour画出曲面等高线在XY平面的投影:contour(peaks, 20);plot3可画出三度空间中的曲线:t=linspace(0,20*pi, 501);plot3(t.*sin(t), t.*cos(t), t);亦可同时画出两条三度空间中的曲线:t=linspace(0, 10*pi, 501);plot3(t.*sin(t), t.*cos(t), t, t.*sin(t), t.*cos(t), -t);三维绘图的主要功能:绘制三维线图绘制等高线图绘制伪彩色图绘制三维网线图绘制三维曲面图、柱面图和球面图绘制三维多面体并填充颜色(一)三维线图plot3 ——基本的三维图形指令调用格式:plot3(x,y,z) —— x,y,z是长度相同的向量plot3(X,Y,Z) —— X,Y,Z是维数相同的矩阵plot3(x,y,z,s) ——带开关量plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,…)二维图形的所有基本特性对三维图形全都适用。
03 函数作图1 平面图形(1)竖直条形图调用格式为:bar(x,y)(2)用描点法绘制函数y f ( x) 随x 从a 到b 间的图形.调用格式为:x=a:h:b ;y=f(x) ;plot(x,y)(3)在同一坐标系下绘制多个函数图形.调用格式为:x=a:h:b ;plot(x,y1,x,y2,…)(4)绘制函数y=f(x)随x 从a 到b 间的图形.调用格式为:explo t(‘f(x)’, [a,b])(5)x 从xa 到xb和y 从ya到yb间隐函数 f ( x, y) 0 的图形.调用格式为:ezplo t(‘x’,’y’,[xa, x b , y a , y b ])(6)绘制t 从ta 到tb间参数方程x x(t ),y y(t )的函数图形.调用格式为:ezplo t(‘x’,’y’,[ta, t b ])(7)在一坐标系下可以绘制一个或多个显函数图形,对变化剧烈的函数,用此命令来进行较精确的绘画.调用格式为:fplot(’fun(x)’,[a,b])fplo t (‘[f1(x),f2(x),…]’,[a,b])其中fun(x)可以是自定义函数,[f1(x),f2(x),…]是函数组.(8)绘制散点图.调用格式为:scatter(x,y)2 空间图形(1)空间曲线.调用格式为:plot3(x,y,z)(2)产生一个以向量x 为行,向量y 为列的矩阵.调用格式为:meshgrid(x,y)(3)空间曲面.调用格式为:surf(x,y,z)(4)网格曲面.调用格式为:mesh(x,y,z)例 1 一次考试成绩0~10 分有0 人,10~20 分有0 人,20~30 分1 人,30~40 分有1 人,50~60 分有2 人,60~70 分有18 人,70~80 分有20 人,80~90 分有9 人,90~100 分有6 人.绘出成绩分析竖直条形图.【matlab 命令】>> x=0:10:90;>> y=[0,0,1,1,0,2,18,20,9,6];>> bar(x,y)【输出结果】20002图1例1输出图像例 2 绘制显函数图形.x(1)设 y 1x 3 2x , y2000 cos2sin x请分别作出这两个函数在区间 x[20,40] 的图像,然后将它们的图像在一个平面直角坐标系中,并判断方程 y 1x 3 2 x 1500cos x2sin x 有几个实数解.(2)在 x[0,4] 上画出分段函数方法一:【matlab 命令】>> x=-20:0.1:40;>> y1=x.^3-35*x.^2+100*x+1500; >> y2=2000*(cos(x/2)-sin(x)); >> figure(1)>> plot(x,y1,'b-'); >> figure(2) >> plot(x,y2,'k');f ( x )32 x 2x 20 x 2 x 2的图像>> figure(3)>> plot(x,y1,'b-',x,y2,'k')【输出结果】图2例2(1)函数y1图3 例 2(1)函数 y 2 输出图像图4例 2(1)函数 y 1 和 y 2 输出图像 从图中知:有 7 个交点,也就是有 7 个实数根.说明:绘制图形着色时,g 表示绿色,r 表示红色,b 表示蓝色,k 表示黑色.方法二:【matlab 命令2】%自定义函数M文件fx1 function y1=fx1(x)y1=x^3-35*x.^2+100*x+1500%自定义函数M文件fx2 function y2=fx2(x)y2=2000*(cos(x/2)-sin(x));Matlab命令窗口输入以下命令: >> figure(1)>> fplot('fx1(x)',[-20,40]); >> figure(2)>> fplot('fx2(x)',[-20,40]); >> figure(3)>> fplot('[fx1(x) , fx2(x)] ', [-20,40]); 【输出结果2】结果同上.【matlab 命令3】>> x=0:0.01:2;>> y=(2*x-x.^2).^(1/3);>> plot(x,y,'k','linewidth',2)>> hold on>> x=2:0.01:4;>> y=x-2;>> plot(x,y,'k','linewidth',2)【输出结果3】图5例2(2)函数f(x)的输出图像例3绘制隐函数和参数方程所确定函数的图形.(1)在x [3,3] 上画隐函数x 2 2 9 的图像.(2)在t [0,2] 上画参数方程x cos3 t ,y sin 3 t 的图像.【matlab 命令1】>> ezplot('x^2+y^2-9',[-3,3])>> axis equal【输出结果1】图6例3(1)输出图像说明:axis on 显示坐标轴,axis off 取消坐标轴,grid on 表示加网格线,grid off 表示不加网格线,clf 清楚图形窗口中的图形.也可以通过编辑图像的方法改变或增加设置,比如在图形窗口中,菜单栏Tools中鼠标选中Edit-Plot,可改变图像的颜色.【matlab 命令2】>> ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果2】图7例3(2)输出图像例4将图4,5,6,7在同一个图形窗口表现出来.【matlab 命令】clfsubplot(2,2,1)x=-20:0.1:40;y1=x.^3-35*x.^2+100*x+1500;y2=2000*(cos(x/2)-sin(x));plot(x,y1,'b-',x,y2,'k');subplot(2,2,2)x=0:0.01:2;y=(2*x-x.^2).^(1/3);plot(x,y) holdon x=2:0.01:4;y=x-2;plot(x,y)subplot(2,2,3)ezplot('x^2+y^2-9',[-3,3])axis equal subplot(2,2,4)ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果】图8 例4输出图像例5已知平面内8个散点的坐标(1,15,2,20(3,27(4,36(5,49,(6,65(7,87(8,117,在直角坐标系中绘制点图.【matlab 命令】 clf x=1:8; y=[15.3,20.5,27.4,36.6,49.1,65.6,87.8,117.6]; scatter(x,y,'ko') 【输出结果】图9例6 在区间[0,10] 上画出参数曲线x sin t, y cos t, z t .【matlab 命令】clft=0:pi/50:10*pi;plot3(sin(t),cos(t),t)【输出结果】图10例7画函数Z ( X Y) 2 的图形.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;surf(X,Y,Z)shading flat【输出结果】图11例8画出马鞍曲面Z X 2 Y2 在不同视角的网格图.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)【输出结果】图123 习题1.某城市一年12个月的日平均气温(单位: 0C )分别为:-10,-6,5,10,20,25,30,24,22,19,10,6,试画出条形图. 2.作出函数 f ( x )cos(e x ) e x / 2) 在区间 x [4,4] 的图形3.作隐函数 sin( xy ) 0 在 [6,6] 内的图形.cos x 2 x 2 4.已知分段函数 y x x 1 ,作出 15 x 15 的函数图形. 2 sin( x 1) 1x 15.在同一直角坐标系中,作出函数 y5 的图形和函数 x 3 的图形.6.已知sin( x 2 2 )7.绘制空间图形:(墨西哥帽子).x 2 2。
MATLAB中绘图命令介绍本节将介绍MATLAB基本xy平面及xyz空间的各项绘图命令,包含一维曲线及二维曲面的绘制。
plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x 及y座标。
下例可画出一条正弦曲线:close all;x=linspace(0, 2*pi, 100); % 100个点的x坐标y=sin(x); % 对应的y坐标plot(x,y);小整理:MATLAB基本绘图函数plot: x轴与y轴均为线性刻度(Linear scale)loglog: x轴与y轴均为对数刻度(Logarithmic scale)semilogx: x轴为对数刻度,y轴为线性刻度semilogy: x轴为线性刻度,y轴为对数刻度若要画出多条曲线,只需将座标对依次放入plot函数即可:hold on 保持当前图形,以便继续画图到当前坐标窗口hold off 释放当前图形窗口title(’图形名称’)(都放在单引号内)xlabel(’x轴说明’)ylabel(’y轴说明’)text(x,y,’图形说明’)legend(’图例1’,’图例2’,…)plot(x, sin(x), x, cos(x));若要改变颜色,在座标对後面加上相关字串即可:plot(x, sin(x), 'c', x, cos(x), 'g');若要同时改变颜色及图线型态,也是在座标对後面加上相关字串即可:plot(x, sin(x), 'co', x, cos(x), 'g*');小整理:plot绘图函数的叁数字元、颜色元、图线型态,y 黄色 .点k 黑色o 圆w 白色x xb 蓝色++g 绿色* *r 红色- 实线c 亮青色: 点线m锰紫色-. 点虚线-- 虚线plot3 三维曲线作图图形完成后,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围: axis([0, 6, -1.2, 1.2]);axis函数的功能丰富,其常用的用法有:axis equal :纵横坐标轴采用等长刻度axis square:产生正方形坐标系(默认为矩形)axis auto:使用默认设置axis off:取消坐标轴axis on :显示坐标轴此外,MATLAB也可对图形加上各种注解与处理:xlabel('Input Value'); % x轴注解ylabel('Function Value'); % y轴注解title('Two Trigonometric Functions'); % 图形标题legend('y = sin(x)','y = cos(x)'); % 图形注解grid on; % 显示格线我们可用subplot来同时画出数个小图形於同一个视窗之中:subplot(2,2,1); plot(x, sin(x));subplot(2,2,2); plot(x, cos(x));subplot(2,2,3); plot(x, sinh(x));subplot(2,2,4); plot(x, cosh(x));MATLAB还有其他各种二维绘图函数,以适合不同的应用,详见下表。
1matlab 画图中线型,颜色及字体的设置 (3)1。
1.................................................. plot格式31.2图形尺寸和字体的设置:方法:Flie—Export Setup,进入如下界面:4 2matlab作图标注 (5)2.1坐标轴的标题:title函数, (5)2。
2坐标轴的说明:xlabel和ylabel函数, (5)2。
3图形说明文字:text和gtext函数 (6)2。
4在图形中添加图例框:legend函数。
其调用格式为:62.5用鼠标点选屏幕上的点: (6)2。
6使用多个x轴和y轴 (8)2。
7..................................... axis对坐标轴的控制93绘图设置 (10)3.1网格设置: (10)3.2曲线设置 (10)3.3在单线图上绘制多重线:有三种办法. (11)4一些特殊函数的绘图方法 (11)5其他一些绘图技巧 (17)5.1图像不显示 (17)5.2Legend设置 (17)5.3Matlab如何在一个figure中添加多个data cursor 185。
4.............................. m atlab可不可以建文件夹?185.5如果程序不小心进入死循环,或者计算时间太长,可以在命令窗口中使用Ctrl+c来中断。
(18)5。
6.............................. f igure命令建一个绘图窗口185。
7注释掉一段程序: (19)5.8doc 命令名,打开命令的帮助文档 (19)5。
9.......................... box on %打开图框195。
10................................................ close all 195。
11.................................................. T ab补全195.12cell模式 (19)5.13获取文件列表,批处理 (20)5。
matlab中如何在指定一点画一个填充颜色的小圆 plot(1,1,'r.','markersize',50)
二维作图 绘图命令plot绘制x-y坐标图;loglog命令绘制对数坐标图;semilogx和semilogy命令绘制半对数坐标图;polor命令绘制极坐标图.
基本形式 如果y是一个向量,那么plot(y)绘制一个y中元素的线性图.假设我们希望画出
y=[0., 0.48, 0.84, 1., 0.91, 6.14 ] 则用命令:plot(y) 它相当于命令:plot(x, y),其中x=[1,2,…,n]或x=[1;2;…;n],即向量y的下标编号, n为向量y的长度
Matlab会产生一个图形窗口,显示如下图形,请注意:坐标x和y是由计算机自动绘出的.
图4.1.1.1 plot([0.,0.48,0.84,1.,0.91,6.14]) 上面的图形没有加上x轴和y轴的标注,也没有标题.用xlabel,ylabel,title命令可以加上.
如果x,y是同样长度的向量,plot(x,y)命令可画出相应的x元素与y元素的x-y坐标图.例:
x=0:0.05:4*pi; y=sin(x); plot(x,y) grid on, title(' y=sin( x )曲线图' ) xlabel(' x = 0 : 0.05 : 4Pi ') 结果见下图.
图4.1.1.2 y=sin(x)的图形 title 图形标题 xlabel x坐标轴标注 ylabel y坐标轴标注 text 标注数据点 legend 在右上角加解释文字
grid 给图形加上网格 hold 保持图形窗口的图形
表4.1.1.1 Matlab图形命令
多重线 在一个单线图上,绘制多重线有三种办法. 第一种方法是利用plot的多变量方式绘制: plot(x1,y1,x2,y2,...,xn,yn) x1,y1,x2,y2,...,xn,yn是成对的向量,每一对x, y在图上产生如上方式的单线.多变量方式绘图是允许不同长度的向量显示在同一图形上.
第二种方法也是利用plot绘制,但加上hold on/off命令的配合: plot(x1,y1) hold on plot(x2,y2) hold off 第三种方法还是利用plot绘制,但代入矩阵: 如果plot用于两个变量plot(x,y),并且x,y是矩阵,则有以下情况: (1)如果y是矩阵,x是向量,plot(x,y)用不同的画线形式绘出y的行或列及相应的x向量,y的行或列的方向与x向量元素的值选择是相同的.
(2)如果x是矩阵,y是向量,则除了x向量的线族及相应的y向量外,以上的规则也适用.
(3)如果x,y是同样大小的矩阵,plot(x,y)绘制x的列及y相应的列. 还有其它一些情况,请参见Matlab的帮助系统. 线型和颜色的控制 如果不指定划线方式和颜色,Matlab会自动为您选择点的表示方式及颜色.您也可以用不同的符号指定不同的曲线绘制方式.例如:
plot(x,y,'*') 用'*'作为点绘制的图形. plot(x1,y1,':',x2,y2,'+') 用':'画第一条线,用'+'画第二条线. 线型、点标记和颜色的取值有以下几种: 线型 点标记 颜色 - 实线 . 点 y 黄 : 虚线 o 小圆圈 m 棕色 -. 点划线 x 叉子符 c 青色 -- 间断线 + 加号 r 红色 * 星号 g 绿色 s 方格 b 蓝色 d 菱形 w 白色 ^ 朝上三角 k 黑色 v 朝下三角 > 朝右三角 < 朝左三角 p 五角星 h 六角星 表4.1.3.1线型和颜色控制符 如果你的计算机系统不支持彩色显示,Matlab将把颜色符号解释为线型符号,用不同的线型表示不同的颜色.颜色与线型也可以一起给出,即同时指定曲线的颜色和线型.
例如: t=-3.14:0.2:3.14; x=sin(t); y=cos(t); plot(t,x, '+r',t,y, '-b')
图4.1.3.1不同线型、颜色的sin,cos图形 对数图、极坐标图及条形图 loglog、semilogx、semilogy和polar的用法和plot相似.这些命令允许数据在不同的graph paper上绘制,例如不同的坐标系统.先介绍的fplot是扩展来的可用于符号作图的函数.
fplot(fname,lims)绘制fname指定的函数的图形. polar( theta, rho)使用相角theta为极坐标形式绘图,相应半径为rho,其次可使用grid命令画出极坐标网格.
loglog 用log10-log10标度绘图. semilogx用半对数坐标绘图,x轴是log10,y是线性的. semilogy用半对数坐标绘图,y轴是log10,x是线性的. bar(x)显示x向量元素的条形图,bar不接受多变量. hist绘制统计频率直方图. histfit(data,nbins)绘制统计直方图与其正态分布拟合曲线.
fplot函数的绘制区域为lims=[xmin,xmax],也可以用lims=[xmin,xmax,ymin,ymax]指定y轴的区域.函数表达式可以是一个函数名,如sin,tan等;也可以是带上参数x的函数表达式,如sin(x),diric(x,10);也可以是一个用方括号括起的函数组,如[sin, cos].
例1:fplot('sin',[0 4*pi]) 例2:fplot('sin(1 ./ x)', [0.01 0.1]) 例3:fplot('abs(exp(-j*x*(0:9))*ones(10,1))',[0 2*pi],'-o') 例4:fplot('[sin(x), cos(x) , tan(x)]',[-2*pi 2*pi -2*pi 2*pi]) %%(图4.1.4.1)
图4.1.4.1 sin,cos,tan函数图形 图4.1.4.2半对数图 下面介绍的是其它几个作图函数的应用. 例5:半对数坐标绘图 t=0.001:0.002:20; y=5 + log(t) + t; semilogx(t,y, 'b') hold on semilogx(t,t+5, 'r') %% (图4.1.4.2)
例6:极坐标绘图 t=0:0.01:2*pi; polar(t,sin(6*t)) %% (图4.1.4.3)
图4.1.4.3极坐标绘图 图4.1.4.4正态分布的统计直方图与其正态分布拟合曲线 例7:正态分布图 我们可以用命令normrnd生成符合正态分布的随机数. normrnd(u,v,m,n) 其中,u表示生成随机数的期望,v代表随机数的方差. 运行: a=normrnd(10,2,10000,1); histfit(a) %% (图4.1.4.4) 我们可以得到正态分布的统计直方图与其正态分布拟合曲线. 例8:比较正态分布(图4.1.4.5(1))与平均分布(图4.1.4.5(2))的分布图: yn=randn(30000,1); %%正态分布 x=min(yn) : 0.2 : max(yn); subplot(121) hist(yn, x) yu=rand(30000,1); %%平均分布 subplot(122) hist(yu, 25)
4.1.4.5(1) 4.1.4.5(2) 图4.1.4.5正态分布与平均分布的分布图 在绘图过程中,经常要把几个图形在同一个图形窗口中表现出来,而不是简单地叠加(例如上面的例8).这就用到函数subplot.其调用格式如下:
subplot(m,n,p) subplot函数把一个图形窗口分割成m×n个子区域,用户可以通过参数p调用个各子绘图区域进行操作.子绘图区域的编号为按行从左至右编号.
例9:绘制子图 x=0:0.1*pi:2*pi; subplot(2,2,1) plot(x,sin(x),'-*'); title('sin(x)'); subplot(2,2,2) plot(x,cos(x),'--o'); title('cos(x)'); subplot(2,2,3) plot(x,sin(2*x),'-.*'); title('sin(2x)'); subplot(2,2,4); plot(x,cos(3*x),':d') title('cos(3x)') 得到图形如下:
图4.1.5.1子图 利用二维绘图函数patch,我们可绘制填充图.绘制填充图的另一个函数为fill.
下面的例子绘出了函数humps(一个Matlab演示函数)在指定区域内的函数图形.
例10:用函数patch绘制填充图